Final exam for Kwantumfysica 1 - 2011-2012
Thursday 3 November 2011, 9:00 - 12:00

READ THIS FIRST:

Note that the lower half of this page lists some useful formulas and constants.

Clearly write your name and study number on each answer sheet that you use.

On the first answer sheet, write the total number of answer sheets that you turn in.

The exam has several questions, it continues on the backside of the papers.

Start each question (number 1, 2, etc.) on a new answer sheet.

The exam is open book with limits. You are allowed to use the book by Griffiths or

Liboff, the handouts Extra note on two-level systems and exchange degeneracy for

identical particles, and Feynman Lectures chapter IlI-1, one A4 sheet with your

own notes, but nothing more than this.

o If it says “make a rough estimate”, there is no need to make a detailed calculation,
and making a simple estimate is good enough. If it says “calculate” or “derive”,
you are supposed to present a full analytical calculation.

e If you get stuck on some part of a problem for a long time, it may be wise to skip it
and try the next part of a problem first.

e If you are ready with the exam, please fill in the course-evaluation question
sheet. You can keep working on the exam until the scheduled end time, and fill it
in shortly after that if you like.

Useful formulas and constants:

Electron mass me =9.1- 107" kg
Electron charge e =-16-10"C
Planck’s constant h =6.626-107*Js=4.136 - 107 eVs

Planck’s reduced constant % = 1.055-10*Js=6.582 - 10"¢ eVs

Fourier relation between x-representation and k-representation of a state

Y(x) = ﬁj?(k)e"“ dk
Y(k)= ﬁ ]E‘P(x)e”'“ dx

Standard Fourier transform pairs:

‘I"(x)= ﬁ, ‘x‘Sb Fourier ?(k):\/gsmkb
0, |q>b - P

. ; i
‘I’(x):\/gsmbx Fourier ‘P(k)—{m’ ‘k‘éb
T bx L

Standard integrals:

]Ee"‘: de=+r

—n

«
sze"“gdx =3z

—n
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Problem 1
Consider a particle with mass m in a one-dimensional square well with the following

potential: V(x)
o0 o0

o for x<0 or x>a
V(x)=
0 for O0<x<a 0 X
0 a
a) Write down the Hamiltonian of this system in x-representation, and write out each
term in as much detail as you can.
Also write down the eigenstates and eigenenergies of this system.

b) Atatime =0 a particle is in a superposition of the ground state and first excited

state of this system: “P(t:0)>:%q(p‘>+‘¢z>)' What is:

b.1) the expectation value for the total energy.
b.2) \‘P(t» (you can either use Dirac notation or x-representation, but otherwise

work it out in as much detail as you can).
b.3) the expectation value of the energy at a time 7> 0.

232
>, what

¢) From a measurement of the energy of the system at / =¢, we got £ =

is the state of the system just after the measurement? Make a sketch of the
wavefunction of this state.

d) Just after measuring the energy, the right wall of the well moves very quickly from
the position x=a to x =2a. This change happens so quickly that the wavefunction
of the particle does not have time to change during the displacement of the wall. Make
a sketch of the wavefunction immediately after we moved the wall.

¢) Now make another sketch of the ground state and first excited state of the new well
with width 2a.

f) Assume again the situation immediately after we moved the wall. Using just simple
arguments, present a conceptual/qualitative discussion that explains whether the
probability of finding the particle in the ground state is smaller or larger than the
probability of finding the particle in the first excited state. Hint: look at your two
previous sketches and remember what it means to analyze the projection of one state
onto another. Also note that you are asked to calculate the exact result in question g).

g) Calculate the two probabilities of question f) and check if your predictions were
correct. You might need the following trigonometric relation:

sin(a)sin(b) = %[cos(a —b)—cos(a+b)]
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Problem 2

Consider a hydrogen atom. Assume that the electron is in a state for which the orbital
wavefunction has the quantum numbers » = 4 and /= 2 (using the usual notation). In
this problem you need to consider the electron as a particle that has spin.

a) We have an instrument that can be used to measure to the z-component of angular
momentum or to measure the length of an angular momentum vector. Before each
measurement the electron is first prepared in the state with n =4 and /=2.

al) The instrument is tuned to measure the z-component of the spin of the
electron. What are the possible measurement outcomes?

a2) The instrument is tuned to measure the length of the angular momentum
vector while only measuring on the spin of the electron. What are the possible
measurement outcomes?

a3) The instrument is tuned to measure the z-component of the orbital angular
momentum of the electron. What are the possible measurement outcomes?

a4) The instrument is tuned to measure the length of the angular momentum
vector while only measuring on the orbital angular momentum of the electron.
What are the possible measurement outcomes?

a5) A similar instrument can be used to measure to the z-component of the
magnetic dipole moment of the electron (from the electron on itself, it is not
measuring a magnetic dipole moment from the orbital state). What are the
possible measurement outcomes if this instrument is used?

b) Now, the same instrument as in questions al)-a4) is tuned to measure the fotal
amount of angular momentum in the atom (the addition of orbital and spin
contributions). In this problem you are supposed to ignore the angular momentum of
the nucleus. Assume again that before each measurement the electron is first prepared
in the state with » =4 and /=2. What are now the possible measurement outcomes
when:

b1) we measure the length of the angular momentum vector of the atom’s total
amount of angular momentum.

b2) we measure the z-component of the total amount of angular momentum.

Problem 3
A certain atom is in a state with its total angular momentum vector L (described by

the operator L) defined by quantum number / = 1. For the system in this state, the

operator for the z-component of angular momentum is iz. It has three eigenvalues, +4

(with corresponding eigenstate ‘+Z>), 04 (with eigenstate OZ>), and -7 (with
eigenstate ‘—Z> ). This operator can be represented as a matrix, and the ket-states as

column vectors, using the basis spanned by ‘+:> R

OZ> and ‘—Z>, according to
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10 0 1 0 0
Lo 0 0f [+)e]0] [0)e|1Lad |- )e|0]
00 -1 0 0 1

Using this same basis for the representation, the operator and eigenstates for the

system’s x-component of angular momentum are given by

01 0 1 + 1
iXe)il 0 1L [+)e|k]l [0)e] 0 Lad [-)e -4
\/5 010 1 e 1

2 ﬁ 2

a) At some point the system is in the normalized state
“I’1> = \/% ‘+Z> + \/g ‘0:> +i \E ‘—Z> . Calculate for this state the expectation value for

angular momentum in z-direction and the expectation value for angular momentum in

x-direction.

b) With the system still in this same state “I’I> , you are going to measure the

x-component of the system’s angular momentum. What are the possible measurement
results? Calculate the probability for getting the measurement result with the highest

value for angular momentum in x-direction.

¢) Now the system is prepared in a different state (now superposition of eigenstates of
L: ), “I‘Z> = \/g ‘+X> +\/% ‘—X> . You are going to measure the z-component of the

system’s angular momentum. What is the probability to find the answer +#4?

d) Now the system is prepared in a different state (now again a superposition of
cigenstates of L), |¥,)= Jr ‘+Z>+\/;

system is that one now applied an external magnetic field with magnitude B along the

0z> , at time ¢ = 0. Another change to the

z-axis. The Hamiltonian of the system is now, H= yBiZ , where v is a constant that
reflects how much the energy of angular momentum states shifts when applying the

field. Calculate how the expectation value for angular momentum in x-direction
N —iflt
depends on time. Use Dirac notation and the operator U =¢ " .

Also describe and discuss (in words, use about 4 lines of text) the dynamics of the

angular momentum vector L that occurs in this situation.
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