Dual Charge and Vortex Superpositions in a Small Josephson Junction Array
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We studied the ground state of a small two-dimensional array of Josephson junctions, in which
the charging energy is comparable to the Josephson coupling energy. Measurements of the array’s
critical supercurrent demonstrate that dual charge and vortex superpositions coexist in the array.

PACS numbers: 74.50.4+r, 73.23.Hk, 03.65.-w

Josephson junction arrays with underdamped low-
capacitance junctions are model systems with non-
commuting phase and number variables. The Josephson
effect and single-charge effects have a competing influence
on the array’s ground state. We present an experiment
on a small two-dimensional array that has a self-dual ge-
ometry: It can be described as two coupled islands with a
high charging energy, but also as two coupled loops that
can each contain a vortex (Fig. la). We succeeded in
having experimental control over all magnetic and charge
frustrations (Fig. 2). This allowed for a study of the ar-
ray’s quantum mechanical ground state, and our results
demonstrate that charge and vortex superpositions occur
in the array in a dual fashion.

We measured the array’s critical supercurrent as a
function of charge and magnetic frustration, symmetri-
cally applied to both islands or loops. The charge frustra-
tion ng of the two islands was controlled with capacitively
coupled gate electrodes. The array’s magnetic frustration
f = @/, was set by applying a magnetic flux ® to the
loops (®@p is the flux quantum). The critical current as
a function of ny showed a periodic modulation with two
maximums per period (Fig. 3a). The period corresponds
to inducing a charge 2e on the islands. As a function
of f we observed a periodic modulation with two mini-
mums per period (Fig. 3b), and the period corresponds
to applying a flux quantum to each loop. In the ny win-
dow between the maximums in Fig. 3a, the array has
two different but degenerate charge configurations that
are stable (one excess Cooper pair on the top island, or
one on the bottom island in Fig. 1a). Similarly, in the f
window between the minimums in Fig. 3b the array has
two different stable phase configurations (a vortex in the
left or the right loop), that are also degenerate. We will
show that a study of the positions of the maximums and
minimums in the critical current (Fig. 4) yields informa-
tion about the array’s ground state, and that this can
be used to demonstrate superpositions of the degenerate
charge and vortex states.

Until now superposition states have only been demon-
strated in the most rudimental Josephson junction sys-
tems. Superpositions of single-charge states have been
observed in systems with a single island [1-3], but such

systems do not have multiple stable vortex configura-
tions. In single loops with Josephson junctions, super-
positions of persistent-current states have been demon-
strated [4], but these systems are insensitive to the back-
ground charges and the two current states do not corre-
spond to vortices at different geometric positions in an
array. Our array has both charge and vortex character-
istics, and our experiment links superconducting single-
charge effects with vortex physics in larger arrays. In
these larger systems, a small magnetic field induces vor-
tices that behave as particles. The array’s total Joseph-
son energy is minimized for a certain distribution of vor-
tices, where each vortex has a well-defined position. The
charging energy, on the other hand, favors a state with
a well-defined number of Cooper pairs on each island, in
which the charges are localized and the junction phases
have large quantum fluctuations. Background charges
polarize each island, and this determines which Cooper-
pair distribution has the lowest energy. The duality be-
tween these two pictures has drawn much attention (for
a recent review see [5]). It has been supported by the ob-
servation of superconductor-to-insulator transitions, and
several localization and quantum-interference effects in
two-dimensional and quasi-one-dimensional arrays [3].
However, these studies have been limited by the fact that
the charging effects could not be fully controlled: The
background charges are in practice strongly disordered,
and charge configurations with unpaired quasiparticles
usually play a role.

We present results from three arrays, denoted by 1-3
(the same arrays and numbering as in Ref. [6], where ex-
perimental details have been reported). The islands are
coupled to each other and to macroscopic leads by iden-
tical junctions that have Josephson coupling E; = %Iw
and charging energy Ec = e?/2C (where I, the crit-
ical current and C the capacitance of the junctions).
We estimated E; and E¢ from the current-voltage char-
acteristic and electron-microscope inspection [6]. Mi-
crowave spectroscopy yielded a better estimate for C
for arrays 2 and 3 [7]. Array 1 had E; = 71 ueV and
E;/Ec =0.48+0.1. Array 2 and array 3 (fabricated on
the same chip and nominally identical) had E; = 31 ueV
and F;/E¢c = 0.27+0.03. Measurements on array 3 were



most accurate, and we will emphasize these results.
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FIG. 1. a) Schematic of the array. The Josephson junctions
are modelled by the parallel combinations of the Josephson
tunnel element (cross) and the junction capacitance. A bias
current Ipias can be injected from macroscopic leads. b) The
array’s electrostatic energy vs. ng (solid). The dashed lines
are examples of eigen energies calculated for E;/FEc = 0.05,
f = 0 and Ipias = 0. ¢) The array’s total Josephson energy
vs. f (solid). The dashed lines are eigen energies calculated
for E;/Ec = 2, ng = 0 and Ipies = 0. The arrows show
that the distance between the level crossings is larger for the
quantum levels. In d) and e) the total Josephson energy U
vs. 1 and g, on the same gray scale (black is low Uy). The
plots are for f = 0.364, Ipias = 0, and § = 0 (d), and § = 7
(e).

The arrays had Al-Al;O3-Al tunnel junctions and
were fabricated with e-beam lithography and shadow-
evaporation techniques. The junctions had an area of
about 0.015 um? and C = 0.7fF. The loops had an area
of 1 um?. Measurements were carried out in a dilution
refrigerator with rfi-feedthrough filters at room temper-
ature and copper-powder filters at the temperature of
the sample (10-70 mK). The arrays were current-biased
(Ipias) in a low-impedance environment with a small but
non-vanishing damping. The current-voltage character-
istic had a clear supercurrent branch (Fig. 2a) , and the
bias current Igy where it switches from the supercurrent
branch was used as a measure for the theoretical value of
the array’s critical supercurrent I [1].

Measurements of Isy, as a function of the voltages on
the two gate electrodes showed a modulation that was
2e periodic in the induced charges (Fig. 2b). This shows

that unwanted parity effects from unpaired quasiparti-
cles were almost completely suppressed [6]. Previous
studies of small two-dimensional arrays were hindered by
these parity effects [8]. The observed honeycomb pattern
in Fig. 2b was used to tune the gates to values where
they compensate the influence of background charges in
the tunnel barriers or the substrate with an accuracy of
about 1% [6]. The charge frustration n, is thus defined
as ng = Cy(Vy — Vogr)/2e, where Cy <« C the gate ca-
pacitance, V; the voltage on the gate electrode, and V,
the gate voltage that compensates the influence of back-
ground charges. We will concentrate here on symmetri-
cally polarized islands, n45 = n42, denoted by n,. The
critical current is periodic with period 1 in f and ng4, and
we will therefore restrict ourselves to frustration values
between 0 and 1.
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FIG. 2. a) Curent-voltage characteristic of the array. Ar-
rows indicate the direction of the hysteretic cycle. b) Gray
scale plot of switching currents Isw vs. gate voltages Vg1 and
V42, measured with f = 0 on array 3 (black is 0 nA, white is
6 nA, 250.000 switching events). The Isw modulation is 2e
periodic in the induced gate charges.
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The array’s Hamiltonian is the sum of the Joseph-
son and electrostatic energies and has been worked out
by Lafarge et al. [9]. The two loops have a very small
self inductance, such that the fluxoid-quantization con-
ditions for each loop act as constraints on the junctions’
gauge-invariant phase coordinates 7;. The system has
three degrees of freedom and we use generalized coor-
dinates that are sum and difference coordinates of the



junction phases: 1 = $(v1 —72), w2 = $(73 — 74) and
0= %('Yl +72+73+74), with the junctions numbered as in
Fig. 1a (the direction of positive current is in each branch
from left to right or from top to bottom). These variables
have conjugate charge coordinates with commutation re-
lations [¢1,n1] = 4, [p2,n9] = ¢ and [6, k] = i. Here ng
and ng are the number of excess Cooper pairs on the top
and bottom island respectively, and k is the number of
Cooper pairs that has been transferred through the array.
The phase ¢ can thus be considered as the phase differ-
ence across the array, and ¢ and (o can be considered
the phases of the two islands. The array’s low-impedance
environment with small damping causes 6 to behave like
a classical phase coordinate. The island coordinates have
underdamped dynamics, and due to the low island capac-
itance both the charges (ny, no) and the phases (@1, @2)
are quantum variables. The bias current is related to ¢
by Ipias = %%—‘L, where E; is the array’s ground-state
energy. I¢ is the maximum of Iy;,, with respect to ¢, and
a measurement of I thus provides information about the
ground state.

d) *

FIG. 3. a) Isw vs. ng, for (top to bottom) f = 0to f = 0.5
in steps of 0.1 (data 7 nA, 5.5 nA, 5 nA, 5 nA, 3 nA and no
offset). b) Isw vs. f, for ng = 0.36 (top, 0.25 nA offset) and
ng = 0 (bottom, no offset). Data from array 3. The data
points with low Isw where ng ~ % and f ~ % are due to
residual parity effects [6]. Data points for very low Isw are
absent since they could not be recorded. In ¢) and d) simu-
lated I¢ in units of I, for E5/FEc = 0.27. Solid lines in ¢) are
for (top to bottom) f =0, 0.1, 0.2, 0.3, and dashed (bottom
to top, -0.05 offset) for f = 0.4, 0.5. In d) curves for ny =0
(bottom) and 0.36 (top, 0.05 offset).

Measurements of Isy as a function of n, (Fig. 3a)
show a minimum at n, = 0. At this point the array’s

electrostatic free energy F.; is lowest for the charge state
[n1,m2) =10,0) (if the array is in the zero-voltage state
it is independent of k). This state is coupled to con-
secutive charge states, which allows for a supercurrent
to flow. However, other charge states have a higher E.;
(Fig. 1b), and charge fluctuations are suppressed. Here
the Coulomb blockade of the supercurrent [10,1,2] is most
effective and causes the minimum in Igy,. When increas-
ing ngy from 0 to 1, the charge state with lowest E; is
first |0,0), then |0,1) and |1,0) (degenerate), and near
ng = 11it is |1,1) (solid lines in Fig. 1b). For Cy, <« C
the transitions are at ng, = % and ng = 2. Near these
points the Coulomb blockade effects are minimal and
there are maximums in Igy,. More interestingly, near
the maximums the array switches from having a single
state [ny,n9) with the lowest E.;, to a situation where
two degenerate charge states have the lowest E.;. The
ground state should be very sensitive to such a transition
since it is a superposition of states |nq,nq) with the high-
est amplitudes for the |ny,ne) with lowest E,; [10,1,2].
We observed that the positions of the maximums in
Igw versus ng, depend on f. The positions of the maxi-
mums are the result of a competition between two effects.
For n, values around n, = %, the ground state is close to
the form (|0, 1)+|1,0))/+/2, and has an eigen energy that
is about E;/2 lower than E,.; due to the coupling of the
central junction. Increasing E; of the central junction
results therefore in a larger n, window where the ground
state is of this form, and the distance between the max-
imums becomes larger as well. On the other hand, these
two charge state are also coupled to the |0,0) and |1, 1)
states by the junctions 1-4. This results in the level
repulsion at ng, = % and n, = %, as in Fig. 1b. Increas-
ing E; of the junctions 1-4 enhances the level repulsion,
which causes the maximums in E, to approach n, = %
or to merge into one maximum. The maximums in I¢
follow this pattern. For our array, the two effects are in
balance for f = 0 (Fig. 3a). Increasing f from zero in-
duces a persistent current in the array that flows through
the outer branches of the array, i. e. through junctions
1-4, but not through the central junction. The switch-
ing current measures the array’s ground state at finite
bias current. The combination of I;,s and the persistent
current breaks the symmetry in the effective Josephson
coupling for the top and the bottom island. For the bot-
tom island, the bias current is compensated by the per-
sistent current, while for the top island the bias current
and the persistent current add up and reduce the effec-
tive Josephson coupling —F; cos<y; of junction 1 and 2.
The overall effect is that the array has a lower Isy due
to the weak effective E; in the upper branch, but that
the strong coupling in the lower branch causes the two
maximums to merge into a single maximum with increas-
ing f. Around f = 0.3 a vortex enters the array (see also
below), and at f = 0.5 the symmetry is restored since
the flux-induced currents now lead to an equal reduction



of the effective E; for the two islands. Numerical cal-
culations (as described in [9,11]) of I (Fig. 3c) and the
POSItions 7y e, of the maximums (Fig. 4a) agree very
well with the measurements for f < 0.35. For f 2 0.35,
the Iy, data is less reliable due to residual parity effects
[6] that suppress sy at places where the maximums are
expected (lower two traces in Fig. 3a).
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FIG. 4. Measured and simulated positions of maximums in
Isw vs. ng, and minimums in Isw vs. f. Data from array 1
(squares), 2 (open circles) and 3 (solid circles). Errors bars in-
dicate the uncertainty in absolute positions of maximums and
minimums, uncertainty in the shifts of positions in one mea-
sured trace with respect another is about one order smaller.
In a) positions of maximums 7ngmee from data as in Fig. 3a,
for different f. In b) positions of minimums fm:, from data
as in Fig. 3b, for different ng. Solid black lines show simu-
lated values for Ej/FEc = 0.27, the black dashed parts in a)
represent the fact that Ic develops for f 2 0.37 an additional
peak structure. Gray areas indicate where ngmae and frmin
are expected for classical charging and Josephson effects.

Similarly, the critical current as a function of f was
studied. We will first analyze the case with Ip;qs = 0.
For f =0, the array’s total Josephson energy U is low-
est for |6, ¢1,p2) =0,0,0) (Fig. 1c,d). This corresponds
to a phase configuration without vortices in the array,
and it will be denoted as |0,0),. When increasing f
from 0 to 1, the phase configuration with lowest Uj is
for 0.364 < f < 0.636 one of the two degenerate states
|67 @17@2) = |7T77T + (f - %)ﬂ-a$(f - %)ﬂ->7 as indicated
by the solid lines in Fig. 1¢ and the double-well potential
in Fig. 1e (equivalent solutions exist for § = —, the clas-
sical behavior of ¢ enforces one of the two cases). These
states with ¢ = 7 correspond to phase configurations
with a single vortex in the array [9], i. e. with a vortex in
the right or the left loop. In Fig. 1c these two states are
denoted as |0,1), and |1,0),. For f > 0.636, the array
returns to a vortex-free phase configuration with § = 0,
but now with about one flux quantum induced in each
loop, and this state can thus be denoted as |1,1),. At
points close to f = 0.364 and f = 0.636, the band E,
versus 0 has minimum amplitude, and § can easily make
multiple transitions of 7. This leads to minimums in gy
(Fig. 3b).

In the f window around f = %, the underdamped
quantum behavior of ¢; and @9 allows for tunnelling be-
tween the two classical solutions at the minimums in U}
in Fig. le. Moreover, comparison with U; in Fig. 1d

shows that (1 and @9 are here less confined. The f win-
dow in which the array’s ground-state energy with 6 = 7
is lower than that for 6 = 0 is therefore expected to
be wider than the classical boundaries f = 0.364 and
f = 0.636, see also Fig. 1c (for finite bias currents the
classical boundaries move towards f = %, up to f = 0.393
and f = 0.607 for Ipiqs = Ic). The minimums in Fig. 3b
are clearly further apart than expected classically. More-
over, the positions of the minimums f,,;, depend on n,.
Due to the classical behavior of ¢ (i. e. no coherent cou-
pling to a vortex reservoir outside the array) we can in-
terpret the positions of the minimums here directly as
the point where the array makes the transition between
a ground state without a vortex in the array and a ground
state that is a superposition of the |0,1)  and |1,0), state.
A shift of the f,,;, corresponds to a shift of the position
of this transition.

The shift of f,,;, is analyzed in a picture where the
state of the array is analogous to a particle in a two-
dimensional periodic potential [10]. The Uy in Fig. 1d is
a unit cell for § = 0 and Fig. le for 6 = 7. The influ-
ence of ny becomes evident in a tight-binding description.
This has been worked out in Ref. [11] for a system with a
similar Hamiltonian. For § = 7 the terms that couple one
of the classical solutions with neighboring states is of the
form —t; — Y ; toe™ai where t; the coupling from intra-
unit cell coupling, and the sum over terms t5 for inter-
unit cell coupling. The length of the k vector is equal to
ng, and a; is the position vector to the nearest-neighbor
site. For 6 = 0, as in Fig. 1d, there is only inter-unit cell
coupling. The coupling terms to the nearest-neighbor
states are — ). tzet®® . The § = 7 ground state will
have a minimum energy for n, = 0. Non-integer values
of ng cause a phase difference between ¢; and inter-unit
cell coupling, and lead to a higher eigen energy. As a
result the f window where § = m becomes smaller. This
effect dominates the shift in f,,;, since the array has
t1 > ta > t3. For ng = %, where Coulomb blockade
effects are minimal, the minimums have moved in the
direction where f,,;, is expected for classical behavior.
An analysis with finite bias current is more tedious, but
the overall picture remains valid. Numerical calculations
of I (Fig. 3d) and the positions of the minimums f,,
(Fig. 4b) agree again very well with the observations.
From the observed positions and shifts of f,:, we con-
clude that the array has around f = % a ground state
that is a superposition of two vortex states.
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