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Capacitive Coupling of Atomic Systems to Mesoscopic Conductors
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We describe a technique that enables a strong, coherent coupling between isolated neutral atoms and
mesoscopic conductors. The coupling is achieved by exciting atoms trapped above the surface of a
superconducting transmission line into Rydberg states with large electric dipole moments that induce
voltage fluctuations in the transmission line. Using a mechanism analogous to cavity quantum
electrodynamics, an atomic state can be transferred to a long-lived mode of the fluctuating voltage,
atoms separated by millimeters can be entangled, or the quantum state of a solid-state device can be
mapped onto atomic or photonic states.
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FIG. 1 (color online). Considered experimental setup (not to
scale). Two atoms are located at a height h above two thin
normal metal disks, which are connected by a thin super-
conducting wire of length L. In the shown coplanar waveguide
geometry, the wire is screened from radiative losses by a
superconducting plane (lower plane). The disks and a normal
metal layer (top plane) screen the wire from light used for
trapping and manipulating the atoms, such that no stray light is
the same approach allows one to coherently couple atomic absorbed by the superconducting wire.
Stimulated by the emerging ideas from quantum in-
formation science, physical mechanisms that can facili-
tate a strong, coherent coupling of controllable quantum
systems are currently being actively explored [1]. Among
the leading systems being investigated are the atomic
physics implementations with trapped atoms and ions
[2,3]. These are very attractive in view of the long co-
herence times and the well-developed techniques for
detecting and manipulating the internal states. Further-
more, the quantum states of atoms can be reversibly
mapped into light, thereby providing the essential inter-
face for quantum communication [4–7]. At the same
time, solid-state systems are also being intensively inves-
tigated [8–11], and it is believed that the advanced level of
microfabrication techniques could allow for the scaling of
these systems to a large number of quantum bits.

This Letter describes a technique to combine the prin-
cipal advantages of the atomic and solid-state systems.
This is achieved by capacitively coupling a superconduct-
ing wire to neutral atoms trapped above its surface. If the
atoms are temporarily excited into the Rydberg states
their large electric dipole moments produce a strong in-
teraction with the charge fluctuations in the conductor.
This interaction can lead to a coupling between atomic
states and a single, long-lived mode of excitation in the
conductor in a manner similar to cavity quantum electro-
dynamics. Compared to the traditional approach of
microwave cavity QED [12–14], however, transmission
line resonators [15] feature a stronger confinement of the
electromagnetic field, thereby significantly enhancing the
relevant coupling strength.

The use of the large dipole moments of the Rydberg
levels to construct quantum gates has already been pro-
posed [16]. In free space, however, the interaction is
limited to nearby atoms because the dipole-dipole inter-
action falls off very rapidly with the interatomic distance
(L) as 1=L3. Here, the conductor acts as a waveguide for
the interaction between the atoms, and the interaction
strength can decrease as slow as 1=

����
L

p
. Furthermore,
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and solid-state quantum bits, since the resonator mode
can interact strongly with electronic spins in quantum
dots [9,17] or with the charge degree of freedom of super-
conducting Cooper pair boxes [11,18,19]. This can be
used to facilitate the reversible mapping of solid-state
qubits to atoms, or even to optical photons with single
atoms or atomic ensembles acting as mediators [4–7].
Finally, the present ideas can likely be extended to other
atomic systems such as trapped ions [2]. By exploiting the
dipole moment associated with the movement of an ion
[20] and using small wires to connect ions trapped in
separate traps, this could provide a novel route to a
scalable ion trap quantum computer.

We consider the situation shown in Fig. 1. A single
atom A (or a small atomic ensemble) is trapped at a dis-
tance h above a conducting disk of radius R, which in turn
is connected by a thin superconducting wire to a similar
disk. When atom A is excited into a state with a large
dipole moment, it induces a charge qA on the disk below it
and the opposite charge �qA is distributed on the wire
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and the other disk. The second disk can be capacitively
coupled to another atom B, or alternatively, to a solid-
state quantum bit. The charge induced by atom A on the
disk below atom B produces an electric field which inter-
acts with the dipole moment of atom B, and produces an
effective interaction between the two atoms. This inter-
action can be either electrostatic or electrodynamic in
nature. In the electrostatic case, the dynamics of the
atomic dipole are much slower than the resonance fre-
quency of the wire so that the conductor adiabatically
follows the atomic states and produces a static coupling
between the atoms. In the electrodynamic case the reso-
nance frequency of the atomic dipole is tuned to reso-
nance with one of the modes of the wire producing a
stronger and more flexible mechanism of interaction.

If the dynamics of the system are much slower than
the resonance frequency of the wire (�L=v, where v is
the transmission velocity in the wire), we can neglect the
inductance and the conductor is described by the
Hamiltonian Hc � �q2A � q2B�=2Cd � ��qA � qB�2=2Cw,
where Cd (Cw) is the capacitance of the disks (wire) and
qA (qB� is the charge on the disk below atom A (B).
Assuming that the interaction between the wire and the
atoms is negligible, the interaction with atom j (j � A or
B) is given by Hj � ~EEj � ~ddj, where ~EEj is the electric field
from the charge qj and ~ddj is the dipole operator of atom j.
Above the center of the disk the field is perpendicular to
the disk (along the z axis) and is given by Ez;j �
qj=�R2 � z2� [21] so that the interaction Hamiltonian is

Hj �
qjdz;j
R2 � h2

; (1)

where dz;j is the z component of the dipole operator.
Assuming that the charge on the conductor follows the
atomic dipoles adiabatically, dH=dqj � 0 (H � Hc �
HA �HB), we can eliminate the charges and obtain an
effective dipole-dipole interaction between the two atoms

Hint �
dz;Adz;B

�R2 � h2�2
C2
d

Cw � 2Cd
: (2)

The capacitance of a disk is Cd � 2R=� [21], and to
estimate the obtainable coupling we take the capacitance
of the wire to be given by the expression for a coaxial
cable Cw � L=2 ln�b=a�, where a and b are the inner and
outer diameters of the cable, and assume ln�b=a� 	 1. In
the limit L
 R with a fixed height h the largest coupling
is achieved with R � h and we find

Hint �
2

�2

dz;Adz;B
h2L

: (3)

Compared with the interaction in free space Hint �
dz;Adz;B=L3, this method provides a much stronger cou-
pling if the atoms are close to the conductor h� L.

A stronger and more flexible coupling is possible using
an electrodynamic mechanism. The finite waveguide sup-
ports a set of quantized modes of frequency !n 	
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n�v=L, where n is any integer. If the frequency of one
of the modes in the conductor is on resonance with a
transition between two Rydberg levels jr1i and jr2i, the
conductor can induce a transition between the Rydberg
levels accompanied by a change of excitation in the con-
ductor, similar to an atom emitting into a cavity. To
achieve such a resonant interaction the length of the
wire has to be similar to the wavelength of the Rydberg
transition which is typically in the range of mm or cm.

To estimate the obtainable coupling we quantize the
modes in the conductor. If the wire has a charge per unit
length ��x� and current i�x�, where x is the coordinate
along the wire, the Hamiltonian for the conductor is

Hc �
q2A � q2B
2Cd

�
Z �

��x�2

2c
�
l
2
i�x�2

�
dx; (4)

where c and l are the capacitance and the inductance per
unit length. This Hamiltonian is diagonalized by expand-
ing � and i on sines and cosines and imposing the bound-
ary condition that the potentials on the disks are the same
as at the ends of the wire. Using the equations of motion
@�=@t � �@i=@x and @i=@t � ��1=v2�@�=@x, where
v � 1=

�����
lc

p
, we identify the canonical momentum pn.

The Hamiltonian (4) can then be written as a sum of
harmonic oscillator Hamiltonians Hn �

1
2mn!2

nq2n �
p2
n=2mn, where qn is the charge on the disks associated

with mode n, and the ‘‘mass’’ is mn 	 Cw=2C
2
d!

2
n (for

L
 R). Finally, we quantize the system by introduc-
ing the annihilation operators âan � qn

���������������������
mn!n=2 
h

p
�

ipn=
������������������
2mn 
h!n

p
with commutation relations �âan; âa

y
n � � 1.

To describe the coupling between the atoms and the
conductor we again use (1). If we write the dipole opera-
tor as d̂dz � dz�jr1ihr2j � jr2ihr1j� the coupling Hamil-
tonian has a form familiar from cavity QED

H � g�jr1ihr2jâay � jr2ihr1jâa�; (5)

where we have performed the rotating wave approxima-
tion and omitted all modes which are far from resonance
with the transition. For L
 R the optimal coupling is
again achieved by choosing R � h, and we get

g � dz

��������������
2 
h!

�2h2L

s
: (6)

For a fixed transition frequency ! the coupling falls off
slowly with the distance (1=

����
L

p
) and therefore permits

strong coupling of atoms with a large separation.
Comparing with the expression from cavity QED, g �

d
�������������������
2� 
h!=V

p
, the effective mode volume is V � �3h2L.

The waist of a cavity mode cannot be confined to less than
a wavelength and the present approach allows for a
stronger coupling if h is smaller than the wavelength.

The coupling in Eq. (5) is well studied and there are
several proposals on how it can be exploited, e.g., for
generating entanglement or quantum computation
[22,23]. For these applications, it is essential that the
quantized modes of the wire are well isolated from the
063601-2
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environment. This is not the case if the wire is in
free space because it would strongly radiate, and it is
therefore necessary to screen the wire. Experimentally
the construction of such isolated microwave resonators is
being pursued and Q factors of 106 have already been
achieved [15].

To get a quantitative estimate for the electrodynamic
case we consider the transition from the p state with
principle quantum number N and vanishing angular mo-
mentum along the z axis to the N � 1 s state, and we
ignore the quantum defects and the fine and hyperfine
structure in the atoms. For N 
 1 the matrix element for
this transition is dz 	 eN2a0=3

���
3

p
[24], where e is the

electron charge and a0 is the Bohr radius. The coupling
constant is g 	 
h!

�����������������������
2(=�3��3n

p �����������
v0=v

p
N2a0=h, where (

is the fine structure constant, n is the number of the mode
which is resonant, and v0 is the speed of light in vacuum.
If we take n � 1, v 	 v0, N � 50 corresponding to ! on
the order of �2�� 50 GHz or L� n�3 mm�, and h �
10 )m we get g 	 �2�� 
h 3 MHz. For comparison, the
decoherence rate associated with Rydberg excitations can
be in the range of kHz [13], and the decoherence rate for
an excitation in the conductor is �2�� 50 kHz forQ� 106.

We next consider several practical aspects associated
with the present technique. A major concern is the van der
Waals forces on the atoms from the nearby conductor [25].
Ideally one would like to trap the Rydberg atoms to
ensure that the motional state remains decoupled from
the evolution of the internal states. Such trapping of
Rydberg atoms has not yet been demonstrated, but even
without trapping the Rydberg levels it is still possible to
avoid a significant deterioration due to the motion of the
atoms. If we assume that the atoms are initially in
their electronic ground state, which can be trapped, e.g.,
by optical dipole traps or microfabricated magnetic traps
[26,27], one can quickly excite the atoms into the Rydberg
levels with a resonant pulse, let them interact with the
wire, and quickly deexcite them after the interaction. A
simple estimate of the force can be found from the energy
of a dipole above a plane �E � �h2d̂d2z � d̂d2*i=16h

3, where
d̂d* is the component of the dipole operator perpendicular
to the z axis. For the numerical example considered above
this gives energy shifts �E���2�� 
h 1 MHz. Adding the
resonant contribution we find that the maximal force
experienced by an atom is F � �3�E� g�=h. If we as-
sume that the atoms are initially cooled to the motional
ground state of a trap with a trapping frequency ,, and
that they are temporarily transferred to an untrapped
Rydberg state for a time t, the probability to be excited
out of the ground state is P 	 F2t2=2 
hM,� ,2t2=8,
where M is the mass of the atom. For a Rb atom with
, � �2�� 50 kHz this gives P 	 10�3 for an interaction
time t � 
h�=g.

In addition to the van der Waals forces, the Rydberg
atom will also be influenced by fluctuating potentials
from the surface. In current experiments with small
superconducting quantum devices, the coherence times
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are limited by such charge fluctuations in the solid-state
environment [19]. These effects are not yet fully under-
stood and the experimental investigation is complicated
by the lack of probes which do not share the same envi-
ronment. The Rydberg atoms could be used as a sensitive
probe of these fluctuations that is controllably separated
from the device itself. If the atoms are excited into a state
with a large angular momentum where the Stark shift is
linear, a single electron charge added to an island of R �
10 )m can shift the frequency of an N � 50 Rydberg
atom located 10 )m away by 340 MHz. These effects are,
however, much less important for the electrodynamic
coupling since the nondegenerate s and p states experi-
ence a much weaker quadratic Stark shift. Noise in the
solid states environment will cause voltage fluctuations of
the wire of order hV2i � kbT=Cw, where T is the tempera-
ture, and we estimate that these fluctuations play a neg-
ligible role because of the large capacitance of the wire.
In addition the so-called patch potentials will influence
the atoms [28]. As a specific example we estimate that
the measured patch potentials in Ref. [25] would cause an
energy shift of �7 MHz at h � 10 )m. This shift how-
ever can be compensated as long as it does not change in
time, e.g., due to the movement of impurities on the
surface. At low temperatures such large-scale motions
freeze out, thus reducing the patch field fluctuations to
an acceptable level for the electrodynamic experiments.

One of the main challenges for the experimental real-
ization involves combining strong optical control fields
(needed for trapping and manipulation of atoms) with the
mesoscopic superconductors. If light is incident on the
superconductor the absorption of photons can break up a
large number of Cooper pairs. Even when heating effects
are minimal, this changes the inductance of the super-
conducting resonator [15] and causes decoherence of the
oscillating mode. This problem can be avoided by a design
in which the disks at the ends of the transmission line are
made of a normal metal. The rest of the transmission line,
the superconducting part, can be shielded by adding a
metal layer as shown in Fig. 1. Using here a normal metal-
superconductor sandwich combines low Ohmic losses for
the bottom side with good cooling of the screening layer
on the top side. Note that since the voltage on the disk is
determined by the total capacitance (which is mainly due
to the long wire) this metal layer does not affect the
coupling strength significantly. Because the current in
the conductor makes a standing wave with a node at the
end, the finite conductivity of the disks does not affect the
resonator significantly. To estimate the obtainable Q we
replace the entire conductor in Fig. 1 with a wire of length
L � 3 mm where the last 10 )m in both ends are made of
gold. With a conducting area of �1 )m2 the low resis-
tance of gold (for a thin layer at low temperature) makes a
negligible contribution (Q * 108). Another concern
would be the resistance in the contacts between the met-
als, but even with �0:1� contact resistance Q� 107. In
practice radiative losses and loss in the dielectric limit the
063601-3
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ultimate value of the Q factor. Because of the pillars
rising above the plane, the structure we propose in Fig. 1
differs slightly from the structures used for the experi-
ments [15]. We estimate the radiative losses from these
pillars to limit Q to roughly Q & �L=H�4, where H is the
height of the pillars, and hence this modification has a
negligible contribution for H & 30 )m. In addition the
radiative loss can be suppressed by surrounding the setup
with a Faraday cage, with the top plane in Fig. 1 as one of
the walls.

The above geometry allows one to reduce heating
effects from absorbing stray light to an acceptable level.
With milliwatts of power in the beams focused on the
atoms, stray light power at a level of nanowatts can be
expected to be absorbed by the reflecting normal metal
disk. Even at an operating temperature of 100 mK, the
10 )m disks will easily have sufficient cooling power
to the dielectric and the nearby normal metal plane.
Quasiparticle diffusion into the superconducting wire
can be minimized using a material with fast quasiparticle
relaxation and a short coherence length (such as NbN),
while increasing the dielectric spacing will further re-
duce the sensitivity of the inductance to the Cooper pair
density (desirable in contrast to [15]). Although sub-
Kelvin regimes are desirable for low thermal occupation
of the oscillator modes, operation at temperatures as high
as a few Kelvin might be feasible by using atoms to cool
the relevant modes [14] or by involving techniques analo-
gous to Refs. [12,29].

To summarize, we have presented a feasible method
to coherently couple atoms to a mesoscopic conductor
with a coupling strength significantly exceeding the
decoherence rates. It allows one to combine solid-state
microfabrication techniques with the excellent coherence
properties and controllability of atomic systems. Using
the proposed technique atoms separated by millimeters
can be entangled and one can imagine using this to
create scalable architectures for quantum computation
where atoms are connected by wires. Also, the tech-
nique can be used to couple solid-state quantum bits
to individual atoms or small atomic ensembles. The
former can thereby be reversibly coupled to light. A
different application of the ideas presented here could
be the nondestructive measurement of the presence of a
Rydberg atom by measuring the induced charge with a
single electron transistor [30], or alternatively Rydberg
atoms could be used to probe the noise in solid-state
systems.

The full realization of the present proposal requires a
number of technological advances toward trapping and
manipulation of highly excited atoms in the vicinity of
surfaces.Various elements of the proposed technique can,
however, be probed with existing technology. In particu-
lar, the basic mechanism of the capacitive coupling be-
tween atoms and transmission lines can be probed using a
beam of highly excited atoms directed over the conductor
using the techniques demonstrated in Refs. [25,31].
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Note added.—After submission of this work a related
preprint appeared [32] which describes an interface be-
tween a trapped ion and a solid-state quantum computer
using the static version of the capacitive coupling.
[1] Special issue on implementations of quantum computers
[Forschr. Phys. 48, 769–1138 (2000)].

[2] C. A. Sackett et al., Nature (London) 404, 256 (2000).
[3] O. Mandel et al., Phys. Rev. Lett. 91, 010407 (2003).
[4] A. Kuhn, M. Hennrich, and G. Rempe, Phys. Rev. Lett.

89, 067901 (2002).
[5] J. McKeever et al., Phys. Rev. Lett. 90, 133602 (2003).
[6] A. Kuzmich et al., Nature (London) 423, 731 (2003).
[7] C. H. van der Wal et al., Science 301, 196 (2003).
[8] D. Vion et al., Science 296, 886 (2002)
[9] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120

(1998).
[10] I. Chiorescu et al., Science 299, 1869 (2003).
[11] Y. Makhlin, G. Schön, and A. Shnirman, Nature

(London) 398, 305 (1999).
[12] S. Osnaghi et al., Phys. Rev. Lett. 87, 037902 (2001).
[13] M. Weidinger et al., Phys. Rev. Lett. 82, 3795 (1999).
[14] A Rauschenbeutel et al., Science 288, 2024 (2000).
[15] P. K. Day et al., Nature (London) 425, 817 (2003); B. A.

Mazin et al., Proc. SPIE-Int. Soc. Opt. Eng. 4849, 283
(2002).

[16] D. Jaksch et al., Phys. Rev. Lett. 85, 2208 (2000).
[17] L. I. Childress, A. S. Sørensen, and M. D. Lukin, quant-

ph/0309106.
[18] S. M. Girvin et al., cond-mat/0310670.
[19] Y. Nakamura et al., Phys. Rev. Lett. 88, 047901 (2002).
[20] J. I. Cirac and P. Zoller, Nature (London) 404, 579

(2000).
[21] J. D. Jackson, Classical Electrodynamics (Wiley,

New York, 1962).
[22] T. Pellizzari et al., Phys. Rev. Lett. 75, 3788 (1995).
[23] P. Domokos et al., Phys. Rev. A 52, 3554 (1995).
[24] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of

One- and Two-Electron Atoms (Plenum, New York,
1977).

[25] V. Sandoghdar et al., Phys. Rev. A 53, 1919 (1996).
[26] R. Folman et al., Phys. Rev. Lett. 84, 4749 (2000).
[27] J. Reichel, W. Hänsel, and T.W. Hänsch, Phys. Rev. Lett.
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