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Supplementary Note 1: AFM characterization 

We measure the height profile of the BN-encapsulated MoSe2 on a SiO2/Si substrate by AFM. The thickness of 

both of the MoSe2 and the top h-BN flakes are measured as 0.7 nm (Supplementary Figure 1b) which corresponds 

to monolayer MoSe2 and bilayer h-BN, in agreement with the reported values in literature1,2. The bottom h-BN has 

a thickness of 7.65 nm (21-22 layers). The AFM images also reveal the presence of bubbles due to trapped molecules 

in the h-BN/MoSe2 interface. Reportedly, the accumulation of the interface contaminants in these bubbles ensures 

a perfectly clean interface at the bubble-free regions, and is a signature of the good adhesion between the two 

layers.3 

 

 

Supplementary Figure 1 (a) AFM image of the BN-encapsulated MoSe2 on SiO2/Si substrate. The dashed lines highlight the edge 

of the flakes. (b) Height profile along the red and blue lines indicated in panel (a), corresponding to the edges of the monolayer 

MoSe2 and the bilayer h-BN flakes. For clarity, The profiles are offsetted to the same zero level. 
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Supplementary Note 2: Optical microscopy images of the fabrication process and the final device 

  

  

 

Supplementary Figure 2 Enhanced-contrast optical images of the device fabrication process (a) Fully encapsulated 1L-MoSe2 crystal 

before the fabrication of the contacts. (b) Final device. (c-e) Zoom in of the region indicated by a dotted square in panels (a) and (b) at 

the different stages of the fabrication process. (c) Exfoliated 1L-MoSe2 flake on SiO2 before processing. (d) Same flake shown in (c) 

after encapsulation with top bilayer h-BN and bottom multilayer h-BN. (e) Final device with the fabricated contacts on top of the 

BN/MoS2/BN stack. The electrodes used for the measurements of the main text are highlighted in green. The dashed white line indicates 

the edges of the 1L-MoSe2 flake. 
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Supplementary Note 3: Electrical characterization of the 1L-MoSe2 phototransistors 

The DC electrical characterization of the sample is performed in the dark while keeping the sample in vacuum (10-

4 mbar). In order to obtain the electrical transport properties of the MoSe2 channel, we perform four-terminal meas-

urements in Hall-bar geometry. We apply a source-drain current on the contacts 1 and 2 (See figure 1a in the main 

text) and measure the voltage drop along the channel using the Hall contacts A and C. We remark that using the 

contacts that only partially cover the channel is preferable for the characterization of the intrinsic electrical proper-

ties of the MoSe2 channel, since this allows to prevent the formation of depletion regions near the metal contacts.4  

Supplementary Figure 3a shows a transfer characteristic for the 1L-MoSe2 phototransistor, presenting a clear n-type 

behavior. We extract the threshold gate voltage (Vth) of 19 V as the gate voltage at which the conductivity starts to 

increase. We estimate a field-effect mobility of about 17 cm2/V.s from the linear fit to the transfer curve, for the 

range of gate voltage (Vgate > Vth) with linear dependence of conductivity. Supplementary Figure 3b shows the four-

terminal I-V characteristics of the phototransistor. The ohmic response of the channel can be readily observed from 

the linearity of the obtained I-Vs. The inset in Supplementary Figure 3b shows the square resistance of the MoSe2 

channel, Rsq, obtained as the slope of the linear fit to the I-V divided by the length-to-width ratio of the MoSe2 

channel, as a function of the gate voltage.  

In our device geometry, encapsulation of the MoSe2 channel with h-BN reduces the influence of the adsorbate 

molecules on the MoSe2 surface and prevents charge scatterings due to interface impurities and the Si substrate, 

which largely reduces the hysteresis in the charge transport measurements. Moreover, the bilayer h-BN plays the 

role of a tunnel barrier for injection of charge carriers, preventing the level pinning at the contacts.  

  

Supplementary Figure 3 Electrical characterization of the channel in 4-terminal geometry. (a) Channel conductivity as a function of gate 

voltage. The red line is a linear fit to the data for Vgate > Vth. (b) I-V characteristics of the channel and the square resistances, estimated for 

the gate voltages of 40 to 60 V (shown in the legend). 
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Supplementary Note 4: Color map of the CPC amplitude as a function of Vds and Vgate for illumination at normal 

incidence. 

Supplementary Figure 4 shows a colormap of the CPC amplitude C as a function of the drain-source and gate 

voltages for 𝜙 = 0o. The value of C remains near zero regardless of the applied voltages. This allows us to rule out 

that the dominant contribution to our observed CPC signals is a Berry phase-induced CPGE, since it should become 

maximal for normal incidence. This measurement also rules out that our signals have a significant contribution from 

the valley-Hall effect, since such effect would appear as a nonzero contribution to the CPC linear with the 

drain-source voltage. The absence of the valley-Hall effect in our device can be understood since this effect has 

been reported for studies on highly n-doped devices, and it increases with the gate voltage. In our device, the 1L-

MoSe2 channel only starts to open for Vgate > 20 V. Thus, a much larger doping could be required for observing the 

valley-Hall effect. 

 

  

Supplementary Figure 4 Colormap of the CPC amplitude, C 

as a function of the drain-source and gate voltages, Vds and Vgate 

for normal incidence angle, ϕ = 0 degrees. 
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Supplementary Note 5: Comparison of the photovoltage and photocurrent measurements and consistency 

checks 

Supplementary Figure 5 shows the helicity-dependent open-circuit photovoltage and short-circuit photocurrent 

measured in two sets of electrodes: [A, B] and [1, 2]. These results are representative for a wider range of checks 

that we performed, where we always found a linear relation between the observed values for C, L1 and L2 in the 

current and voltage signals. This photoresponse can thus be measured equivalently as current or voltage signals on 

our device. In addition, for C we observed no dependence on the orientation of the linear polarization for the laser 

beam incident on the /4 plate. 

Finally, Figs. 2b and 3c (main text) show that the spectral dependence of C is preserved for two different sets of 

electrodes, further ruling out a role for specific contacts or standing-wave effects between electrodes. Our full range 

of consistency checks allows us to rule out that effects at specific electrodes, and effects from confining light be-

tween the micron-scale metallic electrode structure, give a significant contribution to the helicity-dependent signals 

that we analyze. 

  

Supplementary Figure 5 Helicity-dependent open-circuit 

photovoltage (red circles) and short-circuit photocurrent (blue 

circles) for electrodes [1, 2] (a) and [A, B] (b) at Vgate = 0 V 

and Vds = 0, as a function of the waveplate angle (θ). The black 

solid lines are fittings to the phenomenological equation (1) in 

the main text. Except for a scale factor, the θ dependence of 

the photovoltage and photocurrent are very similar, as ex-

pected from the linear I-V of the semiconductor channel. 
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Supplementary Figure 6 shows the power dependence of C, L1 and L2 for electrodes A and B and measuring pho-

tocurrent instead of photovoltage, in contrast with the measurements shown in the main text for contacts 1 and 2 

(Figure 1c). This shows that the same linear power dependence appears regardless of the contacts or the measure-

ment technique. 

 
 

  

Supplementary Figure 6 Illumination power dependence of 

L1, L2 and C extracted from the fittings of helicity-dependent 

photocurrent measurements (as those shown in Supplementary 

Figure 5) for contacts A and B. 
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Supplementary Note 6: Theoretical analysis of the photogalvanic and photon drag effects 

I. General description of photogalvanic and photon drag effects 

The theoretical foundations of the photogalvanic and photon drag effects (PGE and PDE) trace back to several 

decades ago.5–7 More specifically, they are characterized by a DC current generated by a time-varying electric field, 

with amplitude proportional to the square of the applied field. This current is generated by photoelectrons which 

are excited by optical (vertical in the band structure) transitions and, depending on its microscopic origin, can de-

pend on the polarization (linear PCE and PDE) or the helicity (circular PGE and PDE) of the applied field. Recent 

studies on derivations of PGE and PDE rely on the nonlinear susceptibility 8, Floquet theory 9 and the kinetic equa-

tion approach. 

Let us consider the situation of a 2D material illuminated by a monochromatic light source, with complex electric 

field defined as the plane wave 

𝐸𝑗(𝑟, 𝑡) = 𝐸𝑗𝑒
𝑖ω𝑡+𝑖�⃗⃗� ∙ 𝑟 + 𝐸𝑗

∗𝑒𝑖ω𝑡−𝑖�⃗⃗� ∙ 𝑟,  (1) 

where the subindices i, j and k stand for the Cartesian coordinates, 𝜔 is the angular frequency and the wave vector 

�⃗� can be expressed in spherical coordinates as 

�⃗� = −𝑞(sin(𝜙) cos(𝛼) , sin(𝜙) sin(𝛼) , cos(𝜙)).   (2) 

We assume that the incident light forms a polar angle 𝜙 and an azimuthal angle α with the 2D plane (see Figure 1 

in the main text). We can write down the electric field (as well as the vector potential 𝐴 = �⃗⃗�/𝑖ω) as 

�⃗⃗� = (

𝐸𝑥
𝐸𝑦
𝐸𝑧

) = 𝐸0 (

−𝑖 sin(2𝜃) sin(𝛼) + (1 − 𝑖 cos(2𝜃)) cos(𝜙) cos(𝛼)

𝑖 𝑠𝑖𝑛(2𝜃) cos(𝛼) + (1 − 𝑖 cos(2𝜃)) cos(𝜙) sin(𝛼)

−(1 − 𝑖 cos(2𝜃)) sin(𝜙)
) , 

 

(3) 

with E0 as the magnitude of the applied electric field and θ as the angle between the fast axis of the λ/4 waveplate 

and the initial linear polarization of the light. θ = π/4, (3π/4) for left (right) circularly polarized light. For future 

purpose, here we write (�⃗⃗� × �⃗⃗�∗) as 

(�⃗⃗� × �⃗⃗�∗)
𝑥
= −2𝑖 cos(𝛼) sin(2𝜃) sin(𝜙)𝐸0

2 

(�⃗⃗� × �⃗⃗�∗)
𝑦
= −2𝑖 sin(𝛼) sin(2𝜃) sin(𝜙)𝐸0

2 

(�⃗⃗� × �⃗⃗�∗)
𝑧
= −2𝑖 sin(2𝜃) cos(𝜙)𝐸0

2 

 

 (4) 

 

The light-induced current density 𝐽 inside the material can be generically written in series of the Cartesian compo-

nents (l, j, k) of the electric field �⃗⃗�. Per component of 𝐽 this gives 

𝐽l = 𝜎𝑙𝑗𝐸𝑗𝑒
−𝑖𝜔𝑡+𝑖�⃗⃗�𝑟 + σ𝑙𝑗𝑘

(2′)
𝐸𝑗𝐸𝑘𝑒

−2𝑖𝜔𝑡+2𝑖�⃗⃗�𝑟 + 𝜎𝑙𝑗𝑘
(2)
𝐸𝑗𝐸𝑘

∗ +⋯ , (5)  

where 𝜎𝑙𝑗 is a second rank tensor and 𝜎𝑙𝑗𝑘
(2)

, and 𝜎𝑙𝑗𝑘
(2′)

 are third rank tensors. The first and second terms in the right 

correspond respectively to a linear AC current (at optical frequency) in response to the electric field and an AC 
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current of twice the frequency of the radiation, responsible for second harmonic generation. The relevant term for 

us is the third term, which corresponds to a DC current 𝐽l
DC in response to the oscillating field: 

𝐽l
DC = 𝜎𝑙𝑗𝑘

(2)
𝐸𝑗𝐸𝑘

∗  ,  (6) 

By doing a Taylor expansion over the wave vector q we can rewrite 𝐽𝑙
𝐷𝐶 as 

𝐽𝑙
DC = 𝜎𝑙𝑗𝑘

(2)(𝜔, �⃗�)𝐸𝑗𝐸𝑘
∗ = 𝜒𝑙𝑗𝑘(𝜔)𝐸𝑗𝐸𝑘

∗ + 𝑇𝑙𝑗𝑘𝜇(𝜔)𝑞𝜇𝐸𝑗𝐸𝑘
∗ +⋯  (7) 

Here 𝜒𝑙𝑗𝑘 = 𝜎𝑙𝑗𝑘
(2)(𝜔, 0) does not depend on the radiation wave vector �⃗� and is responsible for the photogalvanic 

effect, 𝐽PGE, while 𝑇𝑙𝑗𝑘𝜇 accounts for the photon drag effect  𝐽PDE, linear with factors ql. 

Requirement of inversion symmetry breaking 

We now show that the absence of inversion symmetry is necessary for getting nonzero photogalvanic and photon 

drag effect. First, we note that 𝐽𝑙
DC is antisymmetric (changes its sign) under inversion of the spatial coordinates x, 

y, z  -x, -y, -z, while the object 𝐸𝑗𝐸𝑘
∗ is symmetric under that transformation. In consequence, if the inversion 

transformation is a symmetry of the studied system, 𝐽𝑙
DC cannot have any dependence on 𝐸𝑗𝐸𝑘

∗ and 𝜒𝑙𝑗𝑘 must be 

zero. In other words, the photogalvanic effect can only emerge in systems with broken inversion symmetry. 

Linear and circular photogalvanic and photon drag effect 

Next, we observe that, since the current density must be real, it cannot change under complex conjugation. In con-

sequence, from equation (7) we get 𝜒𝑙𝑘𝑗
∗ = 𝜒𝑙𝑗𝑘. Therefore, the real part of 𝜒𝑙𝑗𝑘 is symmetric under coordinate 

exchange while its imaginary part is antisymmetric under this operation. This allows us to rewrite the photogalvanic 

current as follows, 

𝐽𝑙
PGE = 𝜒𝑙𝑗𝑘𝐸𝛽𝐸𝛾

∗ = 𝜒𝑙𝑗𝑘
sym
𝐸𝑗𝐸𝑘

∗ + 𝑖𝜒𝑙𝑗𝑘
antisym

𝐸𝑗𝐸𝑘
∗  , (8)  

or, using the transformation under permutation of the subindices j and k, 

𝐽𝑙
PGE =

1

2
𝜒𝑙𝑗𝑘
sym
(𝐸𝑗𝐸𝑘

∗ + 𝐸𝑘𝐸𝑗
∗) +

1

2
𝜒𝑙𝑗𝑘
antisym

(𝐸𝑗𝐸𝑘
∗ − 𝐸𝑘𝐸𝑗

∗) ≡ 𝐽𝑙
LPGE + 𝐽𝑙

CPGE (9)  

We can now compare 𝐽𝑙
LPGE and 𝐽𝑙

CPGE with the Stokes parameters: 

𝑆1 =
|𝐸𝑥|

2 − |𝐸𝑦|
2

|𝐸𝑥|
2 + |𝐸𝑦|

2 ;          𝑆2 =
𝐸𝑥𝐸𝑦

∗ + 𝐸𝑥
∗𝐸𝑦

|𝐸𝑥|
2 + |𝐸𝑦|

2 ;       𝑆3 = 𝑖
𝐸𝑥𝐸𝑦

∗ − 𝐸𝑥
∗𝐸𝑦

|𝐸𝑥|
2 + |𝐸𝑦|

2  (10) 

We see that 𝐽𝑙
LPGE is proportional to S2, which accounts for the linearly polarized radiation (linear photogalvanic 

effect), while 𝐽𝑙
CPGE is proportional to S3, and, therefore, it is sensitive to the circularly polarized radiation (circular 

photogalvanic effect). 
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Finally, the totally antisymmetric Levi-Civita tensor 𝜖𝑠𝑗𝑘 can be used to contract 𝜒𝑙𝑗𝑘
antisym

 to only one pseudo vector 

index, 

∑𝜒𝑙𝑗𝑘
antisym

(𝐸𝑗𝐸𝑘
∗ − 𝐸𝑘𝐸𝑗

∗)

𝑗𝑘

= 𝑖∑2𝛾𝑙𝑠𝜖𝑠𝑗𝑘(𝐸𝑗𝐸𝑘
∗ − 𝐸𝑘𝐸𝑗

∗)

𝑠𝑗𝑘

= 𝑖∑𝛾𝑙𝑠(�⃗⃗� × �⃗⃗�
∗)
𝑠

𝑠

  ,  
(11) 

where 𝛾𝑙𝑠 is a second rank pseudo-tensor and l and s stand for Cartesian coordinates. Thus 𝐽𝑙
CPGE can be expressed 

as 5 

𝐽𝑙
CPGE = 𝑖∑𝛾𝑙𝑗(�⃗⃗� × �⃗⃗�

∗)
𝑗

𝑗

  ,  
(12) 

It is convenient to separate 𝐽𝑙
PDE in a similar fashion into its circular and linear polarization sensitive components, 

𝐽𝑙
CPDE and 𝐽𝑙

LPDE. For 𝐽𝑙
CPDE we get: 

𝐽𝑙
CPDE =  𝑖∑𝑇𝑙𝑗𝑘𝑞𝑗(�⃗⃗� × �⃗⃗�

∗)
𝑘

𝑗𝑘

  , (13)  

At this point it is worth noting that we have not still made any assumption about the physical origin of 𝐽𝑙
𝐶𝑃𝐺𝐸. Thus, 

equations (12) and (13) are completely general and must hold regardless of the underlying physical mechanism.  

II. Symmetry arguments for the CPC in monolayer TMDCs. 

In the following, we use symmetry arguments to determine the nonzero components of the tensors 𝛾𝑖𝑗  and 𝑇𝑙𝑠𝑗, as 

defined in equations (12) and (13). This allows to extract constraints for the dependence of 𝐽𝑙
CPGE and 𝐽𝑙

CPDE on the 

illumination angles α and ϕ. We remark again that, since equations (12) and (13) must hold regardless of the physical 

origin of the CPC, the discussion below is completely general. 

In order of decreasing symmetry we analyze three cases: D3h, C3v, and Single mirror-plane symmetry. We find that 

crystal structures belonging to the high-symmetry class D3h cannot support any CPGE. For the case of C3v symmetry 

with an oblique incidence angle ϕ, only 𝛾𝑥𝑦 can have a nonzero value, which then gives a nonzero CPGE, but always 

with the property that it flips signs upon reversal of ϕ (in conflict with a BC origin). Systems with only one mirror 

symmetry can not only have nonzero 𝛾𝑥𝑦 but also nonzero 𝛾𝑦𝑧 and 𝛾𝑥𝑧, allowing for BC-CPGE. We conclude that 

our experimental results for low source-drain voltage are only compatible with, at most, one mirror-plane symmetry, 

since otherwise 𝛾𝑥𝑧 and 𝛾𝑦𝑧 cancel out and, therefore, the photocurrent cannot be preserved upon inversion of the 

incidence angle, ϕ. 
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D3h symmetry 

The scenario of a 1L-TMDC system with ideal mirror symmetry with respect to the crystal plane (symmetric envi-

ronments and external fields) give the system the high D3h symmetry. This has a three-fold rotation symmetry 

around the z axis, defined by the operator C3, three two-fold axes perpendicular to C3, a mirror plane in the xy plane, 

defined by 𝜎ℎ = (
1 0 0
0 1 0
0 0 −1

 ) and three mirror vertical planes with respect to the xy plane σv. The improper 

rotation is σhC3.  

In the section directly below here on C3v symmetry we derive that the CPGE current is 

𝑗𝐶𝑃𝐺𝐸 = 𝑖 (

0 𝛾𝑥𝑦 0

−𝛾𝑥𝑦 0 0

0 0 0

 )

(

 
 
(�⃗⃗� × �⃗⃗�∗)

𝑥

(�⃗⃗� × �⃗⃗�∗)
𝑦

(�⃗⃗� × �⃗⃗�∗)
𝑧)

 
 
= 𝑖 (

    𝛾𝑥𝑦(�⃗⃗� × �⃗⃗�
∗)
𝑦

−𝛾𝑥𝑦(�⃗⃗� × �⃗⃗�
∗)
𝑥

0

) . (14)  

This result for C3v can be extended to the case for D3h by adding the requirement for the additional mirror symmetry 

𝜎ℎ. This brings that a pseudo-vector (�⃗⃗� × �⃗⃗�∗) becomes −𝜎ℎ(�⃗⃗� × �⃗⃗�
∗), and gives the condition 𝛾𝑥𝑦 = 0. Conse-

quently, all CPGE current contributions cancels out for the D3h symmetry. 

For CPDE, the C3v symmetry (below) yields 

𝑗𝐶𝑃𝐷𝐸 = 𝑖(𝑇𝑦𝑥𝑧 + 𝑇𝑦𝑧𝑥)𝑞𝑧(

−(�⃗⃗� × �⃗⃗�∗)
𝑦

(�⃗⃗� × �⃗⃗�∗)
𝑥

0

) ∝ (
−sin(𝛼) sin(2𝜃) sin (2𝜙)

cos(𝛼) sin(2𝜃) sin (2𝜙)
0

) . (15)  

A direct extension of this analysis shows that the additional mirror plane σh does not impose further constrains on 

𝑗𝐶𝑃𝐷𝐸. Thus, CPDE photocurrents can be present for this symmetry. 

C3v symmetry 

If we assume a 1L-TMDC crystal symmetry in the plane, but drop the assumption of mirror symmetry with respect 

to the crystal plane (relevant, for example, for a 1L-TMDC sustained on a substrate), the system has C3v symmetry. 

This corresponds to a three-fold rotation symmetry around the z axis C3, and three mirror planes perpendicular to 

the xy plane. The CPGE photocurrent is given by 

𝑗𝑖
𝐶𝑃𝐺𝐸 = 𝑖 𝛾𝑖𝑗(�⃗⃗� × �⃗⃗�

∗)
𝑗
.  (16) 

Under a 2π/3 rotation  

𝑅 = (
cos(2𝜋/3) sin(2𝜋/3) 0

−sin(2𝜋/3) cos(2𝜋/3) 0
0 0 1

 ) , 

�⃗⃗� × �⃗⃗�∗ becomes 𝑅(�⃗⃗� × �⃗⃗�∗) and 𝑗𝐶𝑃𝐺𝐸 becomes 𝑅𝑗𝐶𝑃𝐺𝐸. Since 𝛾 should remain the same under the rotational sym-

metry, we have 
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𝑅𝑗𝐶𝑃𝐺𝐸 = 𝑖𝛾𝑅(�⃗⃗� × �⃗⃗�∗) .  (17) 

By replacing (26) into (27) we obtain 

𝑅𝛾 = 𝛾𝑅 .  (18) 

An additional constraint is given by the mirror symmetry. There are three mirror planes perpendicular to the xy 

plane, and we assume that the angle between the mirror plane and the x axis is ψ. Under the mirror reflection, 

characterized by the operator = (
cos(2𝜓) sin(2𝜓) 0

sin(2𝜓) −cos(2𝜓) 0
0 0 1

 ) , 𝛾 should remain the same, while 𝑗𝐶𝑃𝐺𝐸 becomes 

𝑀𝑗𝐶𝑃𝐺𝐸. As a pseudo-vector, (�⃗⃗� × �⃗⃗�∗) becomes −𝑀(�⃗⃗� × �⃗⃗�∗). Therefore, we obtain 

𝑀𝛾 = −𝛾𝑀 .  (19) 

Combining the constraints from rotational and mirror symmetries, we conclude that 𝛾𝑖𝑗 has only one independent 

parameter: 

𝛾𝑖𝑗 = (

0 𝛾𝑥𝑦 0

−𝛾𝑥𝑦 0 0

0 0 0

 ) , 
 

(20) 

and the CPGE current must have a form of 

𝑗𝐶𝑃𝐺𝐸 = 𝑖 (

0 𝛾𝑥𝑦 0

−𝛾𝑥𝑦 0 0

0 0 0

 )

(

 
 
(�⃗⃗� × �⃗⃗�∗)

𝑥

(�⃗⃗� × �⃗⃗�∗)
𝑦

(�⃗⃗� × �⃗⃗�∗)
𝑧)

 
 
∝ 𝛾𝑥𝑦 (

sin(𝛼) sin(2𝜃) sin(𝜙)

−cos(𝛼) sin(2𝜃) sin(𝜙)
0

) . 

 

(21) 

This description yields a nonzero CPGE current that indeed shows a sin(2𝜃) dependence in the polarization control. 

Further, it only yields nonzero CPGE currents for nonzero angles ϕ. For this symmetry group the CPGE current 

changes sign when the incidence angle is switched from ϕ to – ϕ. 

For the CPDE, we have 𝐽𝑙
CPDE =  𝑖𝑇𝑙𝑗𝑘𝑞𝑗(�⃗⃗� × �⃗⃗�

∗)
𝑘
. Imposing that, for a transverse electromagnetic wave, the vec-

tor (�⃗⃗� × �⃗⃗�∗) should be along the same direction as the photon momentum �⃗�, we get 𝑞𝑗(�⃗⃗� × �⃗⃗�
∗)
𝑘
= 𝑞𝑘(�⃗⃗� × �⃗⃗�

∗)
𝑗
. 

Imposing the invariance of 𝑗𝐶𝑃𝐷𝐸 under a rotation of 2π / 3, 𝑗𝐶𝑃𝐷𝐸′ = 𝑅𝑗𝐶𝑃𝐷𝐸 we get 

𝑇𝑧𝑖𝑗𝑅𝑖𝑘𝑞𝑘𝑅𝑗𝑙(�⃗⃗� × �⃗⃗�
∗)
𝑙
= 𝑇𝑧𝑖𝑗𝑞𝑖(�⃗⃗� × �⃗⃗�

∗)
𝑗
 .  (22) 

From each 𝑞𝑖(�⃗⃗� × �⃗⃗�
∗)
𝑗
 we get 

𝑇𝑧𝑥𝑧 + 𝑇𝑧𝑧𝑥 = 𝑇𝑧𝑦𝑧 + 𝑇𝑧𝑧𝑦 = 𝑇𝑧𝑥𝑦 + 𝑇𝑧𝑦𝑥 = 0 ; 

𝑇𝑧𝑦𝑦 = 𝑇𝑧𝑥𝑥 . 

 

(23) 

Also, from jx and jy we get 
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𝑇𝑥𝑧𝑧 = 0 ; 𝑇𝑥𝑦𝑦 = −𝑇𝑥𝑥𝑥 ;  𝑇𝑦𝑥𝑥 =
√3

2
𝑇𝑥𝑥𝑥 ;  𝑇𝑦𝑥𝑦 + 𝑇𝑦𝑦𝑥 = −2𝑇𝑥𝑥𝑥 ; 

𝑇𝑦𝑥𝑧 + 𝑇𝑦𝑧𝑥 = −(𝑇𝑥𝑦𝑧 + 𝑇𝑥𝑧𝑦) ;  𝑇𝑦𝑦𝑧 + 𝑇𝑦𝑧𝑦 = 𝑇𝑥𝑥𝑧 + 𝑇𝑥𝑧𝑥  ; 𝑇𝑦𝑦𝑦 = −
1

2
(𝑇𝑥𝑥𝑦 + 𝑇𝑥𝑦𝑥) . 

 

(24) 

Combining this with the restrictions imposed by the mirror symmetry we find that only 𝑇𝑦𝑥𝑧 + 𝑇𝑦𝑧𝑥 =

−(𝑇𝑥𝑦𝑧 + 𝑇𝑥𝑧𝑦) ≡ 𝜒 remains and 

𝑗𝐶𝑃𝐷𝐸 = 𝑖(𝑇𝑦𝑥𝑧 + 𝑇𝑦𝑧𝑥)𝑞𝑧(

−(�⃗⃗� × �⃗⃗�∗)
𝑦

(�⃗⃗� × �⃗⃗�∗)
𝑥

0

) ∝ (
−sin(𝛼) sin(2𝜃) sin (2𝜙)

cos(𝛼) sin(2𝜃) sin (2𝜙)
0

) . (25)  

Remarkably, under C3v symmetry we find that a CPGE must have a sin(ϕ) dependence, while a CPDE must have a 

sin(2ϕ) dependence. They can thus be distinguished by their dependence on ϕ. 

Single mirror-plane symmetry 

Now we consider a case of even lower symmetry: that of a 1L-TMDC system that has just one mirror plane which 

is perpendicular to the xy plane. In a real device, the presence of asymmetric electrodes and strain gradients is 

expected to lead to this low-symmetry situation (or even lower symmetry). In particular, this scenario is relevant 

for strained monolayer MoSe2, since the lowest stiffness for deformation occurs along the armchair direction in the 

crystal. We cannot assume that this crystal direction has a known relation with the xy coordinate frame (defined by 

the experimental geometry with electrodes, see Fig. 1 main text). We therefore introduce the angle ψ to describe 

angle between the mirror plane and the x axis. 

Under the mirror reflection, 𝑗𝐶𝑃𝐺𝐸 becomes 𝑀𝑗𝐶𝑃𝐺𝐸, where 𝑀 = (
cos(2𝜓) sin(2𝜓) 0

sin(2𝜓) −cos(2𝜓) 0
0 0 1

 ). Once more, as a 

pseudovector, (�⃗⃗� × �⃗⃗�∗) becomes −𝑀(�⃗⃗� × �⃗⃗�∗). Therefore, we obtain 𝑀𝛾 = −𝛾𝑀. The absence of the 2π/3 rota-

tional symmetry in this case allows more independent parameters to appear in 𝛾𝑖𝑗 and the CPGE current takes the 

form 

𝑗𝐶𝑃𝐺𝐸 = 𝑖 (

0 𝛾𝑥𝑦 𝛾𝑥𝑧
−𝛾𝑥𝑦 0 𝛾𝑦𝑧
𝛾𝑧𝑥 𝛾𝑧𝑦 0

 )

(

 
 
(�⃗⃗� × �⃗⃗�∗)

𝑥

(�⃗⃗� × �⃗⃗�∗)
𝑦

(�⃗⃗� × �⃗⃗�∗)
𝑧)

 
 
∝ (

[𝛾𝑥𝑦(sin(𝛼) sin(𝜙) + 𝛾𝑥𝑧 cos(𝜙)] sin(2𝜃)

[−𝛾𝑥𝑦(cos(𝛼) sin(𝜙) + 𝛾𝑦𝑧 cos(𝜙)] sin(2𝜃)

0

) , 

 

(26) 

where we assumed that the 𝑗𝑧
𝐶𝑃𝐺𝐸 component must be zero for a single-layer crystal. 

The mirror symmetry yields the additional conditions: 

𝛾𝑥𝑧 =
1 − cos(2𝜓)

sin(2𝜓)
𝛾𝑦𝑧   and 

𝛾𝑧𝑥 =
1 − cos(2𝜓)

sin(2𝜓)
𝛾𝑧𝑦   . 

 
(27) 

 

(28) 
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Thus, we get a CPGE contribution independent of α and changing as cos(). In the next section we will show that 

this angular dependence is required for a Berry curvature-induced CPGE.  

Now we consider the CPDE. For simplicity, we assume that the mirror symmetry is from x to –x. We get 

𝑗𝑥
𝐶𝑃𝐷𝐸 = 2 sin(2𝜃) {𝑇𝑥𝑧𝑧 cos

2(𝜙) +
𝑇𝑥𝑦𝑧 + 𝑇𝑥𝑧𝑦

2
sin(𝛼) sin(2𝜙)

+ (𝑇𝑥𝑥𝑥 cos
2(𝛼) + 𝑇𝑥𝑦𝑦 sin

2(𝜙)) sin2(𝜙)}  ; 

𝑗𝑦
𝐶𝑃𝐷𝐸 = sin(2𝜃) {(𝑇𝑦𝑥𝑧 + 𝑇𝑦𝑧𝑥) cos(𝛼) sin(2𝜙) + (𝑇𝑦𝑥𝑦 + 𝑇𝑦𝑦𝑥) sin(2𝛼) sin

2(𝜙)}   ; 

𝑗𝑧
𝐶𝑃𝐷𝐸 = sin(2𝜃) {(𝑇𝑧𝑥𝑧 + 𝑇𝑧𝑧𝑥) cos(𝛼) sin(2𝜙) + (𝑇𝑧𝑥𝑦 + 𝑇𝑧𝑦𝑥) sin(2𝛼) sin

2(𝜙)} ; 

 

(29) 

Here, we find that CPDE can have a contribution dependent on sin(2𝛼) sin2(𝜙), which matches the observed 

angular dependence for the low-Vds regime.  

As discussed in the main text, this symmetry analysis does not bring forward the sin(3α) dependence experimentally 

observed for the large-Vds regime (although this could still come forward from asymmetric transport properties of 

the zig-zag and armchair directions of the MoSe2 crystal). 

In the particular case where an additional mirror symmetry in the z direction is allowed (original D3h case subject 

to e.g. uniaxial strain), the CPGE and CPDE current is further constrained, yielding  

𝑗𝐶𝑃𝐺𝐸 = 𝑖 (

0 0 𝛾𝑥𝑧
0 0 𝛾𝑦𝑧
𝛾𝑧𝑥 𝛾𝑧𝑦 0

 )

(

 
 
(�⃗⃗� × �⃗⃗�∗)

𝑥

(�⃗⃗� × �⃗⃗�∗)
𝑦

(�⃗⃗� × �⃗⃗�∗)
𝑧)

 
 
∝ (

𝛾
𝑥𝑧
cos(𝜙) sin(2𝜃)

𝛾
𝑦𝑧
cos(𝜙) sin(2𝜃)

0

), 

 

(30) 

𝑗𝐶𝑃𝐷𝐸 = (

(𝑇𝑥𝑦𝑧 + 𝑇𝑥𝑧𝑦) sin(𝛼) sin(2𝜙) sin(2𝜃)

(𝑇𝑦𝑥𝑧 + 𝑇𝑦𝑧𝑥) cos(𝛼) sin(2𝜙) sin(2𝜃)

(𝑇𝑧𝑦𝑧 + 𝑇𝑧𝑧𝑥) cos(𝛼) sin(2𝜙) sin(2𝜃)

), 

 

(31) 

and only the cos(𝜙)-dependent CPGE contribution can still appear. Also, for the CPDE current, the terms on 

sin(2𝛼) sin2(𝜙) fade out. Thus, we see that our experimental results require a broken out-of-plane mirror sym-

metry. 

III. Berry curvature and circular photogalvanic effect 

In this section, we show how a circular photogalvanic current can emerge as a consequence of a nonzero Berry 

curvature. We start the derivation of the photocurrent equation based on the assumption that the momentum of light 

is small and can be ignored. Thus, we consider only vertical optical interband transition between the initial and final 

bands. The photocurrent 𝐽 can be derived based on the Fermi-Golden rule 10:   

𝐽i = −
2𝜋𝑒𝜏

ℏ
∑

𝑑2𝑘

(2𝜋)2
𝑓𝐼𝐹(�⃗⃗�)(𝑣𝐹

𝑖 − 𝑣𝐼
𝑖)𝛿(Δ𝐸𝐹𝐼 −ω)|𝐷|

2

𝐼,𝐹

 
 

(32) 
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where 𝑣 is the group velocity of the electron state, 𝜔 is the excitation energy, Δ𝐸𝐹𝐼 = 𝐸𝐹(�⃗⃗�) − 𝐸𝐼(�⃗⃗�) and 𝑓𝐼𝐹(�⃗⃗�) ≡

𝑓𝐼(�⃗⃗�) − 𝑓𝐹(�⃗⃗�)  are the differences of energy and equilibrium Fermi distribution function between the initial and 

final states. |𝐼⟩ and |𝐹⟩ are the Bloch wavefunction of the initial and final states. D is the optical transition dipole 

defined as    

𝐷 =
𝑒

𝑚𝑒
⟨𝐹| 𝐴 ∙ 𝑝 |𝐼⟩  ,  

(33) 

where e and 𝑚𝑒  are the charge and mass of a bare electron, 𝐴 is the vector potential of light and 𝑝 is the momentum 

operator defined as 𝑝 = (𝑚𝑒/𝑖ℏ)[𝑟, 𝐻]. Here we assume 𝜏 is the relaxation time for all bands. 

Now we consider the light as 

𝐸 = (

𝐸𝑥
𝐸𝑦
𝐸𝑧

) = (

−𝑖 sin(2𝜃) sin(𝛼) + (1 − 𝑖 cos(2𝜃)) cos(𝜙) cos(𝛼)

𝑖 sin(2𝜃) sin(𝛼) + (1 − 𝑖 cos(2𝜃)) cos(𝜙) cos(𝛼)

−(1 − 𝑖 𝑐𝑜𝑠(2𝜃)) sin(𝜙)
) , 

 

(34) 

with E0 as the magnitude of the electric field and 𝐴 = �⃗⃗�/𝑖ω   Therefore under this polarized light |𝐷2| is given as 

|𝐷|2 = (
ω𝑒

𝑚𝑒
)
2

|⟨𝐹|𝐸𝑥𝑝𝑥 + 𝐸𝑦𝑝𝑦 + 𝐸𝑧𝑝𝑧|𝐼⟩|
2
. 

 
(35) 

We further rewrite 𝐸𝑎𝐸𝑏
∗ (the subindices refer to Cartesian coordinates) as   

𝐸𝑎𝐸𝑏
∗ = {𝐸𝑎𝐸𝑏

∗} + [𝐸𝑎𝐸𝑏
∗]  ,  (36) 

where 𝜖𝑠𝑎𝑏[𝐸𝑎𝐸𝑏
∗] =

1

2
(�⃗⃗� × �⃗⃗�∗)

𝑠
 with 

(�⃗⃗� × �⃗⃗�∗)
𝑥
= −2𝑖 cos(𝛼) sin(2𝜃) sin(𝜙)𝐸0

2  ;  (37) 

(�⃗⃗� × �⃗⃗�∗)
𝑦
= −2𝑖 sin(𝛼) sin(2𝜃) sin(𝜙)𝐸0

2  ;  (38) 

(�⃗⃗� × �⃗⃗�∗)
𝑧
= −2𝑖 sin(2𝜃) cos(𝜙)𝐸0

2 .                (39) 

In the following, we drop {𝐸𝑎𝐸𝑏
∗} and |𝐸𝑎|

2 terms which do not contribute to the circular photogalvanic effect, 

characterized by the sin(2𝜃) dependence. Therefore, we obtain    

  

|𝐷|2 =
1

2
(
ω𝑒

𝑚𝑒
)
2

[(�⃗⃗� × �⃗⃗�∗)
𝑧
(⟨𝐹|𝑝𝑥|𝐼⟩⟨𝐼|𝑝𝑦|𝐹⟩ − ⟨𝐹|𝑝𝑦|𝐼⟩⟨𝐼|𝑝𝑥|𝐹⟩)  

                              −(�⃗⃗� × �⃗⃗�∗)
𝑦
(⟨𝐹|𝑝𝑥|𝐼⟩⟨𝐼|𝑝𝑧|𝐹⟩ − ⟨𝐹|𝑝𝑧|𝐼⟩⟨𝐼|𝑝𝑥|𝐹⟩) 

                              +(�⃗⃗� × �⃗⃗�∗)
𝑥
(⟨𝐹|𝑝𝑦|𝐼⟩⟨𝐼|𝑝𝑧|𝐹⟩ − ⟨𝐹|𝑝𝑧|𝐼⟩⟨𝐼|𝑝𝑦|𝐹⟩)] . 

 

(40) 

Here, the sin(2𝜃) factor that governs the currents changes sign when the helicity of light is inverted. 
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In a 2D crystal, we can use Peierls substitution, 𝑝𝑖 =
𝑚𝑒

ℏ
[𝑧, �̂�] for 𝑖 = 𝑥, 𝑦. Because translational symmetry is bro-

ken along the z direction for a 2D crystal, we use 𝑝𝑧 = 𝑖𝑚𝑒/ℏ[𝑧, �̂�] in |𝐷|2,    

 

 

 

|𝐷|2 = (
ωE0𝑒

ℏ
)
2

[−𝑖 cos(𝜙) sin(2𝜃) (⟨𝐹|
𝜕�̂�

𝜕𝑘𝑥
|𝐼⟩⟨𝐼|

𝜕�̂�

𝜕𝑘𝑦
|𝐹⟩ − ⟨𝐹|

𝜕�̂�

𝜕𝑘𝑦
|𝐼⟩⟨𝐼|

𝜕�̂�

𝜕𝑘𝑥
|𝐹⟩)  

                    + sin(𝛼) sin(𝜙) sin(2𝜃)(⟨𝐹|
𝜕�̂�

𝜕𝑘𝑥
|𝐼⟩⟨𝐼|[𝑧, �̂�]|𝐹⟩ − ⟨𝐹|[𝑧, �̂�]|𝐼⟩⟨𝐼|

𝜕�̂�

𝜕𝑘𝑥
|𝐹⟩) 

                    − cos(𝛼) sin(𝜙) sin(2𝜃) (⟨𝐹|
𝜕�̂�

𝜕𝑘𝑦
|𝐼⟩⟨𝐼|[𝑧, �̂�]|𝐹⟩ − ⟨𝐹|[𝑧, �̂�]|𝐼⟩⟨𝐼|

𝜕�̂�

𝜕𝑘𝑦
|𝐹⟩)] . 

 

(41) 

The first term in |𝐷|2 can be related to Berry curvature (BC) for the electronic Bloch states of the nth band: 

Ω𝑛
𝑧(�⃗⃗�) = 𝑖�̂� ∙ (∇�⃗⃗�𝑢𝑛�⃗⃗�

∗ ) × (∇�⃗⃗�𝑢𝑛�⃗⃗�) = −2 ∑  

Im(⟨𝑢𝑛�⃗⃗�|
𝜕�̂�
𝜕𝑘𝑥

|𝑢𝑛′�⃗⃗�⟩⟨𝑢𝑛′�⃗⃗�|
𝜕�̂�
𝜕𝑘𝑦

|𝑢𝑛�⃗⃗�⟩) 

[𝐸𝑛(�⃗⃗�) − 𝐸𝑛′(�⃗⃗�)]
2

𝑛≠𝑛′

 . 

 

(42) 

In a 2D crystal the Berry curvature has only a nonzero component, perpendicular to the xy plane (the Berry curvature 

behaves as a pseudoscalar). In a N-band system, the BC of the nth band comes from all the other N - 1 bands. 

Therefore the photocurrent Eq. (32) needs to sum over all possible initial and final states that satisfy the energy 

conservation δ(∆EFI − ω). For a simple two-band approximation, F stands for the conduction band (CB) and I for 

the valance band (VB) with the definition of Berry curvature,  

Ω𝐹
𝑧(�⃗⃗�) = −Ω𝐼

𝑧(�⃗⃗�) =

2 Im(⟨𝐶𝐵|
𝜕�̂�
𝜕𝑘𝑥

|𝑉𝐵⟩⟨𝑉𝐵|
𝜕�̂�
𝜕𝑘𝑦

|𝐶𝐵⟩) 

[𝐸𝐶𝐵(�⃗⃗�) − 𝐸𝑉𝐵(�⃗⃗�)]
2  . 

 

(43) 

 

This approximation allows us to simplify  |𝐷|2 as   

|𝐷|2 = (
ΩE0𝑒

ℏ
)
2

[−𝑖 cos(𝜙) sin(2𝜃)Ω𝐹
𝑧(�⃗⃗�)(Δ𝐸𝐹𝐼)

2  

              + sin(𝛼) sin(𝜙) sin(2𝜃) (⟨𝐹|
𝜕�̂�

𝜕𝑘𝑥
|𝐼⟩⟨𝐼|𝑧|𝐹⟩ − ⟨𝐹|𝑧|𝐼⟩⟨𝐼|

𝜕�̂�

𝜕𝑘𝑥
|𝐹⟩) Δ𝐸𝐹𝐼 

              − cos(𝛼) sin(𝜙) sin(2𝜃)(⟨𝐹|
𝜕�̂�

𝜕𝑘𝑦
|𝐼⟩⟨𝐼|𝑧|𝐹⟩ − ⟨𝐹|𝑧|𝐼⟩⟨𝐼|

𝜕�̂�

𝜕𝑘𝑦
|𝐹⟩)Δ𝐸𝐹𝐼] . 

 

(44) 

For multi-band cases, ΩI
𝑧(�⃗⃗�) ≠ ΩF

𝑧(�⃗⃗�) and we could have additional corrections from other bands to the Berry 

curvature [4] of the forms 
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−2 ∑  

Im(⟨𝑢𝑛�⃗⃗�|
𝜕�̂�
𝜕𝑘𝑥

|𝑢𝐼�⃗⃗�⟩⟨𝑢𝐼�⃗⃗�|
𝜕�̂�
𝜕𝑘𝑦

|𝑢𝑛�⃗⃗�⟩) 

[𝐸𝑛(�⃗⃗�) − 𝐸𝐼(�⃗⃗�)]
2

𝑛≠𝐹,𝐼

 

 

(45) 

In pristine monolayer TMDCs, the conduction and valence band edges can be well-described by a two-band (with-

out the inclusion of spins) or four-band (with the inclusion of spins), massive Dirac fermion model (see ref. 11 and, 

for a recent review, ref. 12). In this effective model (supported by first principle calculations), the Berry curvatures 

at the conduction and valence bands take opposite values, ΩF
𝑧 (𝑘) =  −ΩI

𝑧 (𝑘), where F stands for the conduction 

bands (CB) and I for the valence band (VB). The Berry curvature is dependent on spin through the spin-dependent 

band gap. In this description, the Fermi golden rule with two-band approximation allows us to connect the photo-

current to the Berry curvature with no additional corrections. TMDCs with lower symmetry are well described by 

a tilted Dirac model13 and the Berry curvature is also found to take opposite values for conduction and valence band 

edges in this case. However, first principle calculations are needed for understanding the higher band corrections to 

the photocurrent. 

One could also consider a possible role for intraband transitions, as discussed in ref. 14. However, these intra-

band contributions can only occur for ℏ𝜔 <  2𝜇, where ℏ𝜔 is the the photon energy and 𝜇 is the chemical potential 

(choosing 𝜇 = 0 at the bottom of the conduction band). In our measurements, the photon energy is around 1.6 eV, 

well above the chemical potential, in the order of 0.1-0.2 eV even when a gate voltage is applied. Thus , such effects 

are not expected to give a strong contribution here, but could still be observed in infrared to microwave regime. 

In equation (44) the first term of |𝐷2| is from Berry curvature Ω𝐹
𝑧(�⃗⃗�) and shows that this contribution to the CPGE 

is independent of α, and maximal for normal incidence, ϕ = 0. As discussed in the main text and in Supplementary 

Section 4, we do not find any contribution to CPC that satisfies this angular dependence. It is worth noting that, 

from the general definition of 𝐽l
CPGE, equation (12), we find that a CPGE contribution changing as cos(ϕ) sin(2θ) is 

associated with the matrix elements 𝛾𝑥𝑧 and 𝛾𝑦𝑧. The symmetry arguments discussed above confirm that these 

matrix elements can only be nonzero if the device symmetry is reduced to, at most, a single mirror plane. Therefore, 

the D3h symmetry of 1L-MoSe2 must be reduced (for example from device asymmetries or strain gradients) in order 

to allow for a Berry curvature-induced CPGE (BC-CPGE). 
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Supplementary Note 7: Spectral characterization of CPC amplitude for different voltages 

Supplementary Figure 7 shows the CPC amplitude C as a function of the illumination wavelength for different 

combinations of voltages, Vds and Vg. The resonant character of C is clearly observed for all measurements, with 

the maximum signal occurring at 785 nm for Vds = 1 V and at 790 nm for Vds = 0 V (see also Fig. 3c in the main 

text). 

For the data acquired at Vds = 1 V, a weaker but nonzero CPC is also observed for off-resonance excitation with 

energies above the 1L-MoSe2 absorption edge, which could be associated to the emergence of free-electron driven 

CPC. At negative gate voltages, this CPC contribution even presents a different sign from that of the main peak at 

~785 nm. Although relevant, a comprehensive analysis of this off-resonance CPC contribution is beyond the scope 

of our present work. 

 

 
  

Supplementary Figure 7 Spectral dependence 

of C at gate voltages, Vg =  40 V, -20 V and -

40 V, as labelled, for Vds = 1 V (a) and 

Vds = 0 V (b). The spectral measurements cor-

responding to Vg = 0 can be found in the main 

text (Figure 3c). The dashed vertical lines are 

guides to the eye for 785 nm (green) and 790 

nm (orange). 
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Supplementary Note 8: Brief note on valley exciton transitions in monolayer MoSe2 

The diagram shown in Supplementary Figure 8 summarizes the different excitonic transitions at the band edges of 

the K valley that can occur for monolayer MoSe2 (similar transitions occur at the K’ valley, but all the spins have 

opposite orientation). For each pair of spin-orbit split subbands one gets an optically active neutral exciton (A0 and 

B0) which, at room temperature, is expected to give absorption peaks at 1.58 eV and 1.78 eV. Positively and nega-

tively charged trion absorption can also occur (A+/- and B+/-), at roughly 30 meV lower photon energies. Finally, 

electrons and holes from subbands with opposite spin can also combine to form the so-called dark excitons (AD
0 

and BD
0). Dark exciton absorption is a priori spin-forbidden, but can become allowed for oblique illumination15 or 

even for normal incidence in the presence of a gate voltage16. Further review on exciton physics in TMDCs can be 

found in references 17 and 18. 

 

 

  

Supplementary Figure 8 Diagram illustrating the 

possible valley exciton transitions for monolayer 

MoSe2. 
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