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Chapter 1

Introduction

1.1 Electrons: charge and spin

In classical mechanics, the spin angular momentum is associated with the rotation

of a body around its own center of mass. For example, the spin of the Earth is

associated with its daily rotation about the polar axis, not to be confused with

the orbital angular momentum of the Earth which is associated with its annual

motion around the Sun.

The concept spin for elementary particles was first proposed in 1925 by Uh-

lenbeck and Goudsmit [1, 2]. However, the first experimental observations that

were in fact due to spin were made long before that, when in 1857 the Anisotropic

MagnetoResistance (AMR) was discovered [3]. The classic experiment by Stern

and Gerlach in 1922 showed there was more to the electron than only its charge

and was the first direct observation of the quantization of angular momentum [4].

In some ways an electron can be considered as a spinning sphere of charge.

In classical terms that means that it possesses a magnetic dipole moment and

that it can be described as a vector that is (for a free electron) antiparallel to

the direction of its spin. Consequently, a magnetic field can exert a torque such

that the spin vector undergoes precession. However, spin is a purely quantum

mechanical property. Quantum mechanics states that whenever the spin of an

electron is measured along a certain axis, there are only two possible outcomes,

either spin-up or spin-down. The field of spintronics (or spin-based electronics)

was founded on this quantum mechanical form of binary logic. Currently, several

research efforts investigate whether spin can play a role in the electron transport

properties of materials and electronic devices.

1



2 Introduction

1.2 Motivation

This thesis presents research that aims at improving the understanding and con-

trol of the dynamics of electrons and electron spin in electronic nanodevices. Our

work contributes mainly to fundamental research on these topics. The behavior of

electrons and spins is studied in nanodevices that are fabricated with ultra-clean

non-magnetic semiconductors, and by state-of-the-art nanofabrication processes.

Further, the experiments are performed at very low temperatures (less than one

degree above absolute zero), such that thermal fluctuations do not impede an

analysis of how fundamental interactions in materials influence electron and spin

states in nanodevices. Even though this work is fundamental in character, this

research is related to application-driven research in the field of spintronics. In the

remainder of this section, I will first introduce the two experimental systems that

were used in this research (the quantum point contact and the quantum dot),

and discuss for each system the scientific questions that underlie the work. After

this, I will shortly summarize why these studies are of importance for developing

practical spintronic devices.

Research on Quantum Point Contacts

The first part of this thesis presents experiments on Quantum Point Contacts

(QPCs). A QPC is a narrow constriction between two large electron reservoirs

and is essentially a short one-dimensional transport channel in which the electron

transport is ballistic. It is one of the most fundamental electronic systems and

a key model system for showing how modern nanotechnology can give electronic

devices in which there is very high control over the electronic states and trans-

port. In particular, these devices show quantized conductance [5, 6], an effect

that has now been observed and understood for 20 years already. Furthermore,

the electron emission from QPCs can be spin-polarized when a strong in-plane

magnetic field is applied [7]. The conductance of this device also shows several

features that reveal signatures of electron many-body effects, which include the

so-called 0.7 anomaly, enhancement of the electron g-factor, and the Kondo effect.

In particular the 0.7 anomaly has been observed in nearly all QPC studies in

these last 20 years, but it is still not fully understood. At the same time, this

phenomenon is very interesting. Several models have been proposed that relate

the 0.7 anomaly to a spontaneous spin splitting in zero magnetic field [8, 9].

The Kondo effect is a many-body interaction effect between a single magnetic

impurity and a sea of conduction electrons [10]. An earlier study on QPCs [11]
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investigated a feature in the QPC conductance that shows remarkable similarity

to a characteristic of the Kondo effect seen in few-electron quantum dots [12],

where a localized state with a magnetic impurity is deliberately formed. The

Kondo signatures in a QPC suggest that by only making a narrow constriction in

a clean non-magnetic semiconductor, a localized state can spontaneously form,

while a QPC is in fact an open quantum system.

Thus, the QPC provides a very simple model system, that is suited for in-

vestigating how many-body effects and electron spin can affect electron and spin

transport in nanodevices. Notably, the QPC is a key element in several proposal

for spintronics and quantum information devices, and for this the understanding

of these many-body effects is important. The work on QPCs that is presented

in this thesis aims to improve the understanding of these many-body effects by

looking at the influence of a change in QPC geometry, and hence Coulomb ef-

fects, on the signatures of these many-body phenomena. Further, we studied the

possible correlation between the 0.7 anomaly and signatures of the Kondo effect.

We also used this work to determine how the spin-polarized emission of electrons

from QPCs in strong magnetic fields can be optimized.

Spin relaxation in large Quantum Dots

The second part of this thesis presents experiments on electron spin relaxation in

large open quantum dots. Spin accumulation and relaxation of the spin ensemble

is in these systems influenced by ballistic scattering of electrons in the device

structure. Such a system is best described as an electron ensemble that is bal-

listically scattering inside a chaotic cavity., thus providing a regime in between

bulk samples (that have been mainly studied with optical techniques [13]) and

ultra small dots [14]. For large open dots, however, spin relaxation occurs in

a fundamentally different manner and its full understanding is still a challenge

to the spintronics community [15]. It is expected that spin-orbit effects have a

dominant role, and that the scattering rate at the edge of the dot is important.

Spin-orbit interaction results from the motion of an electron in an electric field

[16]. The electric field is felt as a magnetic field in the electron’s rest frame and

interacts with the spin of the electron, leading to precession of the spin state.

This effect is a source of relaxation but also a possible means for controlled

spin manipulation. This is in contrast with spin relaxation in few-electron dots,

where electrons are highly localized due to quantum confinement, and the spin

relaxation due to momentum scattering inside the dot and spin-orbit effects is

thereby nearly irrelevant [17].
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Figure 1.1: Schematic drawing of the Datta-Das spin transistor. A ferromagnetic
electrode emits spin-aligned electrons into a narrow semiconducting channel. Dur-
ing transport in the channel towards the ferromagnetic collector the electrons precess
around the spin-orbit fields that can be controlled by the gate electrode. The resistance
of the device is determined by the alignment of the spins with the direction of magne-
tization of the ferromagnetic collector electrode when they arrive at the collector. The
resistance, and thus also the emitter-collector current can be modulated by the gate
voltage.

The work in this thesis aims at observing spin signals from large quantum

dots and to understand the relaxation mechanism in these systems. At the same

time, such results are indeed relevant for developing spintronic devices that work

with large spin ensembles in device structures (as for example the Datta-Das

transistor) instead of few-electron dots. We succeeded in measuring electronically

the spin relaxation time, which is a measure for how long the spin polarization

of the ensemble of electrons can be maintained. We also performed a numerical

study of the interaction of the oriented spin ensemble with its environment via

the spin-orbit interaction. In particular, we wanted to understand how the spin

polarization evolves in various device geometries.

Relation with the field of spintronics

Besides being an interesting topic for fundamental research on its own, the spin

degree of freedom may offer new device functionalities that cannot be achieved

with charge transport alone, and that could lead to a new generation of compu-

tational devices [18, 19].

The field of metallic spintronics originates from the discovery of the Giant
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MagnetoResistance (GMR) in 1988 [20, 21] and subsequent development of the

spin valve [22]. Since then, the GMR effect has already found many practical

applications, mainly in the read heads used for high density data storage on com-

puter hard disks. The discovery of this effect has therefore been rewarded with

the 2007 Nobel prize in physics. The interest in semiconductor spintronics was

greatly stimulated by a proposal in 1990 by Datta and Das for a field-effect spin

transistor [23]. We will present it here as an archetype example of a device that

shows spintronic functionality. In this device, shown schematically in Fig. 1.1,

spins are injected into a two-dimensional semiconductor transport channel by a

ferromagnetic emitter electrode and detected by a ferromagnetic collector elec-

trode. The emitter injects electrons with their spin oriented along the direction

of its magnetization. The electrons are precessing during transport from emitter

to collector as a result of spin-orbit coupling. The resistance of this device is high

when on average electrons arrive at the collector with their spin anti-parallel to

the magnetization of the collector and low when their spin is parallel to this mag-

netization. The gate electrode influences the strength of the spin-orbit interaction

and therefore modulates the resistance of the device.

This example shows that the ability to generate, transport, and detect elec-

tron spin in a controlled manner is important for the field of spintronics and is also

a very useful tool for investigating basic properties of spin in electronic systems.

The electrical injection, transport and detection of spin has been demonstrated

for metals in a non-local measurement geometry [24, 25]. Non-local experiments

sensitive to precession of the spins around an externally applied magnetic field

were also performed [26, 27]. Early efforts towards realization of spin injection in

semiconductors using a ferromagnetic metal, as proposed for the Datta-Das spin

transistor, were complicated by an effect known as the conductivity mismatch

[28]. A solution to this fundamental limitation in polarization of the injected cur-

rent was the use of tunnel barriers [29, 30], but only very recently experimental

results were presented for the all-electrical injection, detection [31], and preces-

sion [32] of spin polarization in an n-doped GaAs channel using ferromagnetic

contacts. The work that is presented in this thesis is therefore clearly relevant

for open questions regarding spin injection and manipulation, and contributes to

the understanding of fundamental properties of electron and spin transport in

semiconductor nanostructures.
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1.3 Outline of this thesis

In this thesis we thus present experimental and numerical results on quantum

point contacts and quantum dots. Chapter 3 then forms the first part devoted

measurements on individual quantum point contacts. Chapters 4, 5, and 6 form

the second part, presenting experiments and a numerical study, related to spin

accumulation and relaxation in a quantum dot. In addition we present in Chap-

ter 7 an experimental study of the fabrication of ohmic contacts to a GaAs

heterostructure. We start in Chapter 2 with an explanation of the basic theory

of quantum dots and point contacts. Further, this chapter describes how we fab-

ricate our devices and we present the measurement techniques and set-up used

in this work.

In Chapter 3 we present an experimental study of the dependence of many-

body effects, like the 0.7 anomaly, the enhancement of the electron g-factor, and

the Kondo effect, on the geometry of a QPC. We determine these properties for a

set of 12 QPCs with identical material parameters, where we used different values

for the length L and width W for the electrode spacing that defines the device.

We find a clear relation between the enhanced g-factor and the subband spacing in

our QPCs, and can relate this to the device geometry with electrostatic modeling

of the QPC potential. The many-body electron physics that causes the apparent

energy splitting of the 0.7 anomaly does not show a clear dependence on QPC

geometry, but we do find a clear correlation with a field-independent exchange

effect that contributes to spin splittings in high magnetic fields. Signatures of

the Kondo effect also show no regular dependence on QPC geometry, but are

possibly correlated with the splitting of the 0.7 anomaly.

In Chapter 4 we present experimental results on a four-terminal quantum dot

system in a GaAs heterostructure. We use a non-local measurement geometry

for studying spin accumulation and relaxation. We find that this can be used

to extract in a single measurement the relaxation time for electron spins inside

the dot (τsf ≈ 300 ps), contributions to the relaxation from coupling to the

reservoirs, and the degree of spin polarization of the contacts (P ≈ 0.8). In this

Chapter we also study the two-terminal conductance of a quantum dot, where

one of the contacts is used as a spin filter. We find that this method is harder

to implement since it requires a very flat spin-resolved conductance plateau for a

QPC. We could therefore not get a clear conclusion for the spin relaxation time

or polarization of the contacts using this method.

In Chapter 5 we present a numerical study of electron spin relaxation due
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to spin-orbit interaction in confined systems where we study the effects of con-

finement and large external magnetic fields. We used an approach where the

relaxation was simulated with semiclassical electron trajectories, and studied 2D

and confined systems with realistic device parameters. We find that confinement

in a micronscale dot can result in enhanced relaxation with respect to a free

two-dimensional electron ensemble, contrary to the established result that strong

confinement or frequent momentum scattering reduces relaxation.

Chapter 6 presents additional experimental results on quantum dots, where

we investigate quantum fluctuations in the non-local resistance of an open quan-

tum dot which is connected to four reservoirs via quantum point contacts. The

amplitude of the resistance fluctuations is strongly reduced when the coupling

between the voltage probe reservoirs and the dot is enhanced. Along with exper-

imental results, we present a theoretical analysis based on the Landauer-Büttiker

formalism.

Ohmic contacts to a two-dimensional electron gas (2DEG) in GaAs/AlGaAs

heterostructures are often realized by annealing of AuGe/Ni/Au that is deposited

on its surface. In the last chapter of this thesis, Chapter 7, we study how the

quality of this type of ohmic contact depends on the annealing time and tempera-

ture, where we focussed on the question how the optimum parameters change for

a different depth of the 2DEG. Combined with transmission electron microscopy

and energy dispersive X-ray spectroscopy studies of the annealed contacts, our

results allow for identifying the annealing mechanism and describing a model that

can predict optimal annealing parameters for a certain heterostructure.
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Chapter 2

Theory, device fabrication and

measurement techniques

2.1 Quantum Point Contacts

One of the most fundamental systems in mesoscopic physics is the Quantum Point

Contact (QPC). Generally speaking a QPC is a short channel that carries ballistic

one-dimensional electron transport between two reservoirs. Its conductance as

a function of channel width is quantized [1, 2] and shows plateaus at integer

multiples of 2e2/h, where e is the electron charge and h Planck’s constant.
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Figure 2.1: (a) Energy of one-dimensional subbands as a function of longitudinal
wave function ky. Electrons in the source and drain leads are filled up to their chemical
potentials, µs and µd. (b) The conductance G of a QPC, quantized in steps of 2e2/h

as a function of gate voltage Vg in zero magnetic field.
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This type of device can be formed by two depletion gates on the surface

of a GaAs/AlGaAs heterostructure with a 2-Dimensional Electron Gas (2DEG)

below the surface. This is the so-called split gate QPC. When a negative voltage

is applied to these gates with respect to the 2DEG, the 2DEG directly beneath

the gates is electrostatically depleted. These constrictions can also be created by

etching two trenches with a narrow gap in between. Then the 2DEG is locally

destroyed. All devices presented in this thesis are formed by depletion gates.

The potential felt by the electrons near a QPC can be approximated as a

saddle-point potential [3]. The confinement for the two transverse directions

leads to the quantization of energy levels. There is a parabolic confinement in

x-direction 1/2m∗ω2
0x

2, like the harmonic oscillator potential, where x is the

direction in plane perpendicular to the current direction. In z-direction the con-

finement of the 2DEG also leads to quantization of energy levels in that direction.

The energy dispersion is then

En(ky) =
h2k2

y

2m∗ + En,x + Ez, (2.1)

where En,x is given by

En,x = (n− 1

2
)~ω0 + eV0, (2.2)

where V0 is the bottom of the constriction, ~ω0 is the level separation, ky is the

wave vector in y-direction, and n labels the subbands in x-direction. We assume

that the confinement in z direction is much stronger, such that only the lowest

subband in the 2DEG is occupied.

These energies describe 1-D subbands because electrons are free to move in the

y-direction (described by the free-electron kinetic energy dispersion) but quan-

tized in the x-direction. Figure 2.1 shows these 1-D subband dispersions versus

the longitudinal wave vector ky. Electrons in the source and drain leads fill up

states in the Fermi sea to the respective chemical potentials, µs and µd. The cur-

rent is then determined by the number of subbands that lie below or in between

these potentials.

In the next section we will derive the quantized conductance and properties of

these type of devices in electric and magnetic fields. Here we will also introduce

the 0.7 anomaly and other signatures of many-body effects, but we will mainly

focus on non-interacting electrons. Many-body interaction effects in QPCs and

their effect on the conductance properties will be discussed in more detail in

Chapter 3.
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2.2 Quantized conductance

A current will flow through the 1D conductor when a voltage Vsd is applied across

the source and the drain reservoirs. The chemical potentials of these reservoirs

are then related as eVsd = µs − µd and the current that will flow is

I =
Nc∑

n=1

∫ ∞

0

2eNn(E)υn(E)[f(E, µs)− f(E, µd)]Tn(E)dE, (2.3)

where Nc = integer[EF−eV0

~ω0
+ 1

2
] is the total number of modes propagating through

the QPC, Nn(E) = 1
2π

[dEn(ky)/dky]
−1 is the 1D density of states, f(E, µs,d) are

Fermi-Dirac distributions, Tn(E) is the transmission probability through the QPC

and υn(E) = 1
~ [dEn(ky/dky] is the group velocity. Since the product of the density

of states and the group velocity in a 1D system is constant, the current is now

given by

I =
Nc∑

n=1

∫ ∞

0

2e

h
[f(E, µs)− f(E, µd)]Tn(E)dE. (2.4)

As the transport is in the linear regime (small Vsd), the difference in the Fermi-

Dirac distributions is given in first order approximation as

f(E, µs)− f(E, µd) ≈ −eVsd
∂f(E, µ)

∂E
. (2.5)

Considering for simplicity the case of zero temperature, equation 2.4 is reduced

to

I =
Nc∑

n=1

2e2Vsd

h
Tn(EF ), (2.6)

and the conductance is given by

G =
Nc∑

n=1

2e2

h
Tn(EF ). (2.7)

If we assume unity transmission probability for each mode, Tn = 1, then Eq. 2.7

for the conductance reduces to
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G =
2e2

h
Nc. (2.8)

Each subband contributes 2e2/h to the conductance (in the absence of a magnetic

field). The quantized conductance plateaus are shown in Fig. 2.1b.

Possible causes for deviations from good quantization are tunneling, scatter-

ing and reflections of electron waves in the QPC. Reflections from, or tunnel-

ing through the top of the potential barrier is visible in the experimental data

as smooth transitions from one conductance plateau to another, even at zero

temperature. Reflections and scattering from irregularities in the saddle point

potential may lead to unwanted resonances in the conductance plateaus.

2.2.1 The 0.7 anomaly

The shoulder in the conductance around 0.7(2e2/h) in Fig. 2.1b is the so-called

0.7 anomaly. Even though this feature was present in the first measurement

of quantized conductance [1] it is still not fully understood. Nevertheless its

appearance is a clear sign of the importance of many-body effects in QPCs. In

Chapter 3 of this thesis we study how the appearance of the 0.7 anomaly depends

on the geometry of the point contact.

One of the most striking features of the 0.7 anomaly is its temperature de-

pendence. Figure 2.2 shows experimental results of the conductance of a QPC

at different temperatures. In several detailed experimental studies [4, 5, 6, 7] it

was shown that the 0.7 anomaly becomes more pronounced at elevated temper-

atures. When the temperature is increased, the conductance plateaus at integer

multiples of 2e2/h become thermally smeared. The conductance at the shoulder

on the left of the 2e2/h plateau, however, reduces with increasing temperature,

strengthening the appearance of the 0.7 anomaly. At T = 4.2 K the 0.7 anomaly

is the only remaining feature in the conductance.

The 0.7 feature appears and has been investigated in many other device struc-

tures, like QPCs defined in two-dimensional hole systems [8] as well as in local-

oxidation-defined QPCs [9]. Several models have been proposed that relate the

0.7 anomaly to a spontaneous spin splitting in zero magnetic field [10, 11], since

the 0.7 plateau evolves continuously into the spin-resolved plateau at 0.5(2e2/h)

when an in-plane magnetic field is applied.
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Figure 2.2: Conductance G of a QPC as a function of gate voltage Vg, shown for four
different temperatures. With increasing temperature the shoulder on the conductance
around 0.7(2e2/h) becomes more pronounced.

2.2.2 External magnetic fields and non-linear transport

In a non-interacting electron picture, the application of a large magnetic field

splits the spin degenerate 1-D subbands by the Zeeman energy, ∆Ez = g∗µBB,

where g∗ is the effective g-factor. The spin-resolved subbands each carry a con-

ductance of e2/h as is shown in Fig. 2.3. The magnetic field considered here is

applied parallel with the plane of the 2DEG.

Figure 2.4a shows the differential conductance G = dI/dV as a function of

dc source-drain bias voltage, Vsd, at many different gate voltages, Vg. Each line

is a measurement at a different Vg value. The plateaus in conductance appear as

regions where many lines accumulate. In a large magnetic field of 9 T the spin-

resolved plateaus are visible at multiples of e2/h (Fig. 2.4b). At high bias the

so-called half-plateaus appear in the differential conductance, when the number

of transport modes available for left-going and right-going electrons differs by

one, i.e. when the bottom of a subband dispersion (as shown in Fig. 2.1a) lies in

between the chemical potentials of the reservoirs, µs and µd.

In these experiments we observe two features that are associated with many-

body interactions but not fully understood. In Fig. 2.4a, the conductance peak

around Vsd ∼ 0 for G < 2e2/h is the zero-bias anomaly (ZBA). This peak is only
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Figure 2.3: Conductance G of a QPC as a function of gate voltage Vg, shown for zero
and high magnetic field. Additional plateaus appear at odd multiples of e2/h in high
magnetic field due to the Zeeman splitting of spin-degenerate subbands.

present at low magnetic fields and low temperatures. In the same figure, the

plateaus at 0.8(2e2/h) at high bias (Vsd ∼ ±1 mV in the B = 0 data are also not

expected in a non-interacting picture.

Figures 2.4c,d present the transconductance dG/dVg as a function of Vsd for

0 T and 9 T respectively. Transitions between plateaus appear in white whereas

the black regions correspond to plateaus. The central diamond shapes in the

plot in zero field (labeled in units of 2e2/h) and the high-bias half-plateaus can

be understood from a non-interacting picture. A clear explanation of this plot

with corresponding energy diagrams can be found in chapter 6 of Ref. [12]. The

additional lines that appear near the bottom edge of the first integer plateau are

again related to the 0.7 anomaly and cannot be explained in this non-interacting

model. The data in high magnetic field shows the spin-resolved plateaus. These

appear as small diamonds in between the larger diamonds that are labeled in

units of 2e2/h.

This type of experiment is in particular useful to extract information about

the energy splittings between the 1-D subbands (see also Ref. [12]) and to find

a lever arm for converting gate voltage Vg scale into energy scale as described in

Chapter 3 of this thesis.
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Figure 2.4: (a), (b) Differential conductance G as a function of DC source-drain
voltage Vsd for many different values of gate voltage Vg, shown for zero (a) and high
magnetic field (b). Plateaus appear as regions where many lines converge. (c), (d)
Derivative of the conductance with respect to gate voltage dG/dVg as a function of
Vsd for many different values of gate voltage Vg, shown for zero (c) and high magnetic
fields (d). White lines indicate transitions between plateaus (black regions). The
conductance plateaus are labelled in units of 2e2/h.
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2.3 Quantum Dots

A Quantum Dot (QD) is a device where electrons are confined in all three direc-

tions and can contain any number from a single electron to thousands of electrons

[13]. For the QDs in this thesis the confinement is realized using electrostatic de-

pletion gates. Quantum Point Contacts (QPCs) are used as tunable contacts to

the dot, connecting the dot to large 2DEG reservoirs. These enable electrical

transport measurements on the dot.

The coupling to these reservoirs can be in the tunneling regime, where GQPC ¿
2e2/h, such that the dot is very weakly coupled to the reservoirs. On the other

hand, the QPCs can also be tuned to carry one or more modes of conductance,

G ∼ 2e2/h, such that electrons can enter and exit the dot without tunneling.

Measurements in these regimes are often referred to as closed dot or open dot

experiments respectively.

The number of electrons in the dot can simply be changed by changing the

area within the lithographically defined depletion gates. The dots we are study-

ing are so-called large QDs and contain up to thousands of electrons. These dots

are however still sufficiently small to be in the ballistic regime, where edge scat-

tering (scattering on the walls of the QD) is much more frequent than impurity

scattering.

In practice, transport in large open QDs always shows mesoscopic fluctuations

of the conductance, a characteristic that results from the interference of multiple

transport paths through the sample [14, 15]. Any change in the QD system which

affects the accumulation of the trajectory phase, such as a small change to the

the shape with a gate voltage, or by changing the accumulated (Aharonov-Bohm)

phase with a perpendicular magnetic field, will alter the interference pattern,

resulting in random but repeatable conductance fluctuations as a a function of the

external parameter. If you want to study average properties of our system, this

requires that for each measurement we need to average over sufficient statistically

independent samples.

Another important effect in this type of device is Weak Localization (WL).

This is an interference effect of electron trajectories scattering back to their point

of origin. When Time Reversal Symmetry (TRS) is not broken and coherence is

not lost, the phase accumulated along these trajectories is exactly the same as

the phase of the time reversed trajectories. This creates constructive interference,

leading to an increased probability for the electron to remain at the origin, hence

decreasing the conductance. If TRS is broken due to for instance a strong Spin-
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Orbit (SO) field, the constructive interference can be suppressed or turned into

destructive interference leading to a peak in conductance. This effect is called

Weak Anti-Localization (WAL). These effects can and have been used to study

the coherence time in open QDs [16, 17] and SO interaction in open QDs [18] and

large area 2DEG systems [19]. In our type of experiment we are typically in the

regime where TRS is broken, since in practice we always suppress WL when we

apply a large in-plane magnetic field, due to a small perpendicular component of

that magnetic field.

For measurement on large open QDs Coulomb Blockade (CB) effects are less

important because the charging energy for electrons Ec decreases with increasing

dot area A and can be much smaller than temperature. Further the level broad-

ening Γ due to electrons entering and leaving the dot through the point contacts

is larger than the spin degenerate mean level spacing ∆m even for only a few

modes in each point contact.

2.4 Device fabrication

2.4.1 GaAs/AlGaAs heterostructures

Fabrication of lateral structures like QPCs and quantum dots starts with a semi-

conductor heterostructure as shown in Fig. 2.5a. The stacked layers of GaAs

and AlGaAs layers are grown by Molecular Beam Epitaxy (MBE). Dopants can

be implanted during the growth process.

A 2-Dimensional Electron Gas (2DEG) forms by doping the n-AlGaAs layer

with Si. The doping introduces free electrons that accumulate at the interface

between the GaAs and the AlGaAs since there is a dip in the conduction band

(see Fig. 2.5c). Due to the confinement in the z-direction, the energy levels in this

triangular potential are quantized. The 2DEG is separated from the n-AlGaAs

donor layer by an undoped AlGaAs buffer layer. This separation greatly reduces

the scattering with the Si donors resulting in extremely high mobilities of the

electrons in the 2DEG. Usually, the heterostructure is engineered such that only

the first subband is occupied.

Figure 2.5b shows the effect of electrostatic gates on the electron gas below.

This gating effect is typically realized by applying negative voltages to metal

gates on top of the heterostructure.

We use heterostructures grown in the group of D. Reuter and A.D. Wieck at

the Ruhr-Universität in Bochum, Germany. The sequence of the grown layers is
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Figure 2.5: (a) Semiconductor heterostructure containing a 2DEG. (b) Electrons
can be confined by applying negative voltages to gates on top of the wafer surface.
The underlying 2DEG can then be fully depleted. (c) Energy band diagram for the
conduction band of the heterostructure.

indicated in Fig. 2.5a. For most of the results presented in this thesis we used a

heterostructure where the 2DEG is at 114 nm below the surface from modulation

doping with Si. The buffer layer had a thickness of 36.8 nm and Si doping was

about nSi ≈ 1·1024 m−3. At 4.2 K, the mobility of the 2DEG was µ = 159 m2/Vs,

and the electron density ns = (1.5± 0.1) · 1015 m−2. In Chapters 6 and 7 we also

present results where we have used another heterostructure from this group and

a wafer purchased from Sumitomo Electric Industries, Inc. The specifications for

all wafers can be found in Appendix A.

2.4.2 Electron beam lithography

The most important tool for fabrication of the devices presented in this thesis is

Electron Beam Lithography (EBL). In essence it is the irradiation of a layer of

an electron-sensitive polymer with a focused electron beam. The e-beam breaks

the polymer chains in the resist and the exposed resist can then be selectively

removed with a suitable solvent. The main advantages of EBL are high resolution

and great flexibility. This general principle of EBL is depicted in Fig. 2.6.

The first EBL machines were developed in the late 1960s. Shortly thereafter

it was found that polymethyl methacrylate (PMMA) made an excellent e-beam

resist [20]. The resist layer that has to be used in the EBL process depends mainly

on the thickness of the structure that is fabricated. In general, resists with a lower

molecular weight are more sensitive to exposure and dissolve faster in a developer.

Therefore the contrast of a resist becomes higher as the molecular weight of the
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Figure 2.6: Electron beam lithography process to either define metal structures or
to etch the surface of the heterostructure wafer. (a) Writing a pattern in the resist
with an electron beam. (b) After development the exposed resist has been removed.
(c) Evaporating metal (top figure) or wet etching (bottom figure). (d) After lift-off all
resist, and all metal on top of that resist has been removed.

PMMA increases. To facilitate the spin coating of thin PMMA layers, the PMMA

is diluted in solution.

Two different types of resist were used, 950k PMMA dissolved in chloroben-

zene (2%) and 50k PMMA dissolved in ethyl-L-lactate (7%). The most common

procedure is a bi-layer PMMA where the PMMA with the highest molecular

weight is on top. Both layers are spin coated at 4000 rpm and then baked for 15

minutes at 170 ◦C. After exposure and development this results in the formation

of an undercut of the bottom resist layer, which is important for a good lift-off.

However for high-resolution patterns with a thickness less than ∼ 50 nm we use

a single layer 950k PMMA resist. During ELB exposure, backscattered electrons

from the substrate create an undercut even for a single layer of resist.

In our lab we use Raith E-line system for exposure. Typically we use an accel-

eration voltage of 10 keV, however for the high-resolution patterns we use 30 keV.

The exposed polymer can be easily dissolved in a 1:3 solution of methyl-isobutyl-

ketone (MIBK) and isopropanol (IPA). The developing process is stopped by

rinsing in pure IPA. The unexposed resist remains unaffected. After further pro-

cessing (like metal deposition or wet etching of the surface) all remaining resist

and any material on top of that resist is removed using acetone. After this pro-

cess, called lift-off, we rinse in IPA and spin-dry the sample.
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2.4.3 Fabrication steps

The fabrication of devices used in this thesis required up to 5 fabrication steps.

Each of these steps involves the writing of a specifically designed pattern using

EBL as described in the previous section. Here we present shortly each of the

steps, in Appendix B we describe the fabrication process in more detail.

Markers

The first fabrication step is the deposition of markers as shown in Fig. 2.7a. The

marker pattern consists of 4 crosses in each corner of the device, where each line

has a length of 50 µm and a width of 5 µm. A small square is added in a specific

corner of the cross for easy recognition. These markers will be used for alignment

in subsequent fabrication steps. We deposit Au with a thickness of 45 nm using

a Ti sticking layer.

Mesa

The next step is the definition of a mesa by wet etching (Fig. 2.7b). Etching the

heterostructure wafer is necessary to electrically isolate conducting regions of the

device. This isolation is in principle achieved when all the Si donors in the n-

AlGaAs layer are removed, since they provide the electrons to form the 2DEG. In

practice we always etched below the 2DEG and also removed the AlGaAs spacer

layer.

The etchant is H2SO4 : H2O2 : H2O, a mixture of sulphuric acid, hydrogen

peroxide and DI water, with a composition 1:1:50. This results in an etching rate

of approximately 2 nm/s. The etching process is stopped by rinsing the sample

in DI water. Finally we spin-dry the sample.

Ohmic contacts

Electrical contacts to the 2DEG are realized by thermal annealing of surface

electrodes in the shape of bonding pads. These electrodes have an area of 150 by

150 µm2 and are located at specific places near the edge of the mesa (Fig. 2.7c).

We make sure that the edge of the ohmic contact intersects the mesa edge at

several places, such that there can be no edge currents around an ohmic contact.

We deposit 150 nm of Au and Ge in a eutectic mixture of 88:12 wt% followed

by a layer of Ni with a thickness of 30 nm and a layer of Au with a thickness of

20 nm. The melting temperature of the eutectic AuGe mixture is 363 ◦C. For
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Figure 2.7: Electron beam lithography patterns for the fabrication of Quantum Point
Contact and Quantum Dot devices. Each individual step is shown in the left image
while the right image shows the sequential result for (a) alignment markers, (b) mesa
etching, (c) ohmic contacts, (d) small gates (not to scale), and (e) large gates.
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the annealing we use a quartz tube oven at 450 ◦C with an N2 flow to prevent

oxidation. Further, for devices that were accidentally annealed without an N2

flow we have found that a conducting layer forms on the surface of the wafer.

During the annealing the electrodes melt and diffuse into the heterostructure

wafer. The metal-rich phases penetrate into the wafer but do not actually reach

the 2DEG. The Ge atoms form a highly doped region in between the diffused

metal and the 2DEG, resulting in linear IV characteristics for the contact. At

4.2 K the contact resistance is typically well below 1 kΩ. The results of an in

depth study on the fabrication of ohmic contacts can be found in chapter 7 of

this thesis.

Fine gates

This step is the most critical step in the sample fabrication, since in this step

the gates defining the quantum point contacts and quantum dots are made. The

structures are defined in the center of the mesa as shown in Fig. 2.7d.

The pattern is written with a larger acceleration voltage for the electrons of

30 keV (compared to 10 keV for the other steps) to reduce proximity effects.

We deposit 15 nm of Au with a Ti sticking layer. In this step the lift-off has to

be done more carefully, typically the sample is left in heated acetone for several

hours.

Large gates

The fabrication of the large gates is necessary to connect the fine gates to large

bonding pads on the outside of the mesa (Fig. 2.7). We deposit a thick layer

(typically 150 nm) of Au with a Ti sticking layer to overcome the height step of

the mesa.

After the processing is finished, the sample is glued onto a chip carrier with

varnish and bonding wires are attached to the bonding pads.

2.5 Measurement techniques

2.5.1 Dilution refrigerator

Our measurements are done at temperatures well below 1 K, in order to resolve

very small energy differences. We use a 3He/4He dilution refrigerator purchased

from Leiden Cryogenics, which has a base temperature less than 10 mK and
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Figure 2.8: Circuit drawing of a 4-terminal voltage-bias measurement. Thin black
wires carry very small signals at the sample level, connected to a clean ground and
electrically isolated from the thick grey wires. These wires carry signals at the 1 V
level that are connected to our measurement equipment.

a cooling power of about 1 mW at 100 mK. The sample is mounted onto a

sample holder, thermally anchored to a cold finger, and inside a series of 3 copper

cans that act as radiation shields. The sample holder is placed in the bore of a

superconducting magnet that can apply a magnetic field up to 9 T.

2.5.2 Measurement electronics

Many properties of our devices can be studied by measuring the resistance R =

V/I or conductance G = I/V of the device. In practice we mostly measured

the differential resistance or differential conductance using a lock-in technique.

There are two common measurement geometries to determine the resistance of a

sample. One where a fixed current is passed through the device and the voltage

drop is measured, or vice versa. This is called a current biased or voltage biased

measurement respectively.

A voltage biased measurement is typically used when Rdevice > e2/h, be-

cause all resistances in series with the sample add up to determine the current

I = Vsd/Rtotal, where Rtotal = Rdevice + Rohmics + Rwiring + RIV conv. The input

impedance of the IV converter RIV conv = 2 kΩ for the most typical choice of the

feedback resistance (10 MΩ). The sample resistance is ideally much larger than

the other resistances in the set-up. Because in our measurements this require-

ment is not always met we use an additional set of voltage probes to determine

the voltage drop across the device ∆V . Then the resistance of the device can be
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determined as Rdevice = ∆V/I.

An important condition for our measurements (in the linear regime) is that

the voltage drop across the device Vsd is smaller than temperature eVsd < kT .

This can be achieved using a voltage biased measurement or by actively checking

with a current biased measurement.

Here we will describe the 4-terminal voltage biased measurement as drawn in

Fig. 2.8. The AC modulation voltage of an SR830 lock-in amplifier is used, if so

desired together with a DC voltage from a Keithley 2041, to control the output of

the voltage source. The inputs are passed through isolation amplifiers to isolate

the sample electrically from the measurement electronics. An IV converter, or

transimpedance amplifier, measures a voltage proportional to the current through

the device. The non-inverting input (+) of the amplifier is grounded. Then its

inverting input (-), although not connected to ground, will assume a similar

potential, becoming a virtual ground. The AC component of the IV converter

output is, after passing through an isolation amplifier, measured by the SR830

lock-in, the DC component is measured by the Keithley 2041. We typically use

lock-in frequencies of 11 Hz for quantum dot measurements and 380 Hz for point

contact measurements, and Vsd = 10 µV. Lower frequencies are required for the

quantum dot experiments because there can be a large resistance in the voltage

probe path.

The voltage difference measured by the two voltage probes on the right side

of Fig. 2.8 is amplified by a factor 10 to 104 and measured by a second SR830

lock-in (phase locked to the first) and a Keithley 2010 multimeter. Voltages to

the gates are applied via 8 Digital-to-Analogue Converters (DACs). These DACs

are floating voltage sources where we connect the ground to the minus wire of

the bias voltage source.

We use LabView to control the measurements. All signals are sent to the

computer via a GBIP interface. This computer also controls the DAC outputs

via an optical fiber.

2.5.3 Measurement wires and filtering

In between measurement electronics and the device, several filtering stages are

required to ensure that the effective electron temperature is close to the lattice

temperature. In practice the effective electron temperature is always higher due

to interference and noise.

Four sets of 12 twisted pair manganin wires (making a total of 96 wires) with
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a diameter of 0.13 mm run all the way from room temperature down to base

temperature. To minimize the heat load on the mixing chamber, these wires are

thermally anchored near the top of the IVC at 4.2 K, at the 1K pot (∼ 1.5 K),

at the still (∼ 500 mK), at the 80 mK plate, and finally at the mixing chamber.

At room temperature all wires are connected to a pi-filter, or capacitor-input

filter. This filter acts as a low-pass filter and consists of a 1.5 nF capacitor to

ground, an inductive element in series and another 1.5 nF capacitor to ground.

At the mixing chamber all wires go through copper powder filters [21]. These

are copper tubes in which 4 measurement wires are wound, each with a length of

∼ 3 m. The tubes are then filled with copper powder to create a large contact

area with the wires. The resistance of these wires, in combination with their

stray capacitance, RC-filters high-frequency noise.
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Chapter 3

Many-body effects in quantum point

contacts

Abstract

The conductance of a quantum point contact (QPC) shows several
features that result from many-body electron interactions. The spin
degeneracy in zero magnetic field appears to be spontaneously lifted
due to the so-called 0.7 anomaly. Further, the g-factor for electrons
in the QPC is enhanced, and a zero-bias peak in the conductance
points to similarities with transport through a Kondo impurity. We
report here how these many-body effects depend on QPC geome-
try. We find a clear relation between the enhanced g-factor and the
subband spacing in our QPCs, and can relate this to the device ge-
ometry with electrostatic modeling of the QPC potential. We also
measured the zero-field energy splitting related to the 0.7 anomaly,
and studied how it evolves into a splitting that is the sum of the
Zeeman effect and a field-independent exchange contribution when
applying a magnetic field. While this exchange contribution shows
sample-to-sample fluctuations and no clear dependence on QPC ge-
ometry, it is for all QPCs correlated with the zero-field splitting of
the 0.7 anomaly. This provides evidence that the splitting of the 0.7
anomaly is dominated by this field-independent exchange splitting.
Signatures of the Kondo effect also show no regular dependence on
QPC geometry, but are possibly correlated with the splitting of the
0.7 anomaly.

This chapter is based on Refs. 6 and 7 on p. 131.

27
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3.1 Introduction

A quantum point contact (QPC) is a short channel that carries ballistic one-

dimensional electron transport between two reservoirs. Its conductance as a

function of channel width is quantized [1, 2] and shows plateaus at integer mul-

tiples of 2e2/h, where e is the electron charge and h Planck’s constant. This

quantization of the conductance can be understood with a non-interacting elec-

tron picture. However, there are several features in the conductance that result

from many-body interaction effects between electrons. The effective electron g-

factor is enhanced and almost all semiconductor QPCs show an additional plateau

at ∼ 0.7(2e2/h), the so-called 0.7 anomaly. Further, electron transport through

QPCs tuned to conditions where the 0.7 anomaly appears has similarities with

transport through a Kondo impurity. These many-body effects are not yet fully

understood, and in particular understanding the 0.7 anomaly has been the topic

of on-going research for more than a decade now [3, 4]. A consistent picture

of these effects is of interest for spintronics and quantum information proposals

where QPCs are a key element, and QPCs are now also a key model system for

studies of many-body physics in nanodevices.

Several models have been proposed that relate the 0.7 anomaly to a spon-

taneous spin splitting in zero magnetic field [5, 6, 7, 8, 9, 10, 11], since the

0.7 plateau evolves continuously into the spin-resolved plateau at 0.5 (2e2/h)

when an in-plane magnetic field is applied. A recent theory paper [12] presented

spin-density functional calculations of realistic QPC geometries that show that a

localized state can exist near pinch-off in a QPC, providing a theoretical back-

ground for the Kondo-like physics that was found experimentally [13]. Other

studies have proposed electron-phonon scattering [14], Wigner crystal formation

[15], or a dynamical Coulomb blockade effect [16] as the microscopic origin of the

0.7 anomaly. Graham et al. reported evidence that many-body effects also play

a role in magnetic fields at crossings between Zeeman levels of different subbands

[17], and at crossings of spin-split subbands with reservoir levels [18].

We report here how these many-body effects in QPCs depend on the QPC

geometry. We study the energy spacing between the one-dimensional subbands

and spin-splittings within one-dimensional subbands, both in zero field and high

magnetic fields. While this type of data from individual devices has been reported

before [6, 19], we report here data from a set of 12 QPCs with identical material

parameters. Our measurements show a clear correlation between the subband

spacing ~ω12 and the enhancement of the effective g-factor |g∗|. Both also depend
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Figure 3.1: (a) The differential conductance G as a function of gate voltage Vg at
200 mK, for a QPC with L = 300 nm and W = 400 nm. The in-plane magnetic field is
increased from B = 0 T to B = 9 T. The first three spin-degenerate plateaus at integer
multiples of 2e2/h for B = 0 T split into six spin-resolved plateaus integer multiples
of e2/h for B = 9 T. (b) Micrograph of a device containing 8 QPCs. From left to
right the width W is increased, where W is defined as the spacing between the gate
electrodes as shown in (c). L is the length of the channel. Table 3.1 contains all values
for L and W of the measured devices. (d) Differential conductance G as a function
of gate voltage Vg at zero field for different temperatures. The 0.7 anomaly becomes
more pronounced with increasing temperature.

in a regular manner on the geometry of the QPC, and we can understand this

behavior using electrostatic modeling of the QPC potential.

The appearance of the 0.7 anomaly and signatures of the Kondo effect do not

show a regular dependence on QPC geometry. Intriguingly, however, we find that

in high magnetic fields there is a field-independent exchange contribution to the

spin-splitting for the lowest one-dimensional subband in addition to the regular

Zeeman splitting, and this exchange contribution is clearly correlated with the

apparent zero-field splitting of the 0.7 anomaly. This new observation provides

evidence that the apparent splitting of the 0.7 anomaly is dominated by this

field-independent exchange splitting. The Kondo effect appears as a zero-bias

peak in the differential conductance G, and the width of this peak is set by the

Kondo temperature TK , which represents the strength of the Kondo effect. Our

measurements of TK suggest a correlation between TK and the 0.7 anomaly.
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This chapter is organized as follows. Section 3.2 presents information about

sample fabrication and measurement techniques. In section 3.3 we present mea-

surements of the conductance of our set of QPCs, and we extract the energy

splittings between subbands and spin splittings. In section 3.4 we focus on ana-

lyzing the signatures of many-body effects in our QPC data, before ending with

concluding remarks in the last section.

3.2 Experimental realization

Our devices were fabricated using a GaAs/Al0.32Ga0.68As heterostructure with a

2DEG at 114 nm below the surface from modulation doping with Si. The buffer

layer had a thickness of 36.8 nm, and Si doping was about nSi ≈ 1 · 1024 m−3. At

4.2 K, the mobility of the 2DEG was µ = 159 m2/Vs, and the electron density

ns = (1.5± 0.1) · 1015 m−2. A QPC is formed by applying a negative gate voltage

Vg to a pair of electrodes on the wafer surface. The 2DEG below the electrodes

is then fully depleted, and tuning of Vg allows for controlling the width of a short

one-dimensional transport channel. Our QPCs had different values for the length

L and width W for the electrode spacing that defines the device (see Table 3.1,

and Figs. 3.1b,c). Note that W should not be confused with the actual width

of the transport channel that is controlled with Vg. The depletion gates were

defined with standard electron-beam lithography and lift-off techniques, using

deposition of 15 nm of Au with a Ti sticking layer. The reservoirs were connected

to macroscopic leads via Ohmic contacts, which were realized by annealing a thin

Au/Ge/Ni layer that was deposited on the surface.

All QPCs were fabricated in close proximity of each other on a single central

part of the wafer to ensure the same heterostructure properties for all QPCs. The

set of 8 QPCs for which we varied L (Device 1 in Table 3.1) had all QPCs within

a range of about 10 µm. The set of 8 QPCs for which we varied W (Device

2 in Table 3.1 and Fig. 3.1b) had an identical layout, and was positioned at 2

mm from Device 1. Thus, all semiconductor processing steps (resist spinning,

e-beam lithography, metal deposition, etc.) could be kept nominally identical for

all 16 QPCs. Electron-microscope inspection of the measured devices (after the

measurements) confirmed that the dimensions of all gate electrodes were within

10 nm of the designed values (see table 3.1). In our data this appears as a very

regular dependence of QPC properties (see for example the discussion of the

pinch-off voltage Vpo and subband spacing ~ω12 in the next session) on L and W

for QPCs within the sets of Device 1 and 2. At the same time, two devices from
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Device 1

L (nm) 100 150 200 250 300 350 400 450

W (nm) 350 350 350 350 350 350 350 350

Device 2

L (nm) 300 300 300 300 300 300 300 300

W (nm) 200 250 300 350 400 450 500 550

Table 3.1: Dimensions of the measured QPCs. The QPC length L and width W are
defined as in Fig. 3.1c.

two different sets with nominally identical values of L and W (labeled (1) and

(2) in Figs. 3.3 and 3.4) show slightly different QPC properties (in particular for

the subband spacing ~ω12). This is not fully understood.

Measurements were performed in a dilution refrigerator with the sample at

temperatures from ∼ 5 mK to 4.2 K. For all our data the temperature dependence

saturated when cooling below ∼ 200 mK. We therefore assume for the data in

this chapter that this is the lowest effective electron temperature that could be

achieved. For measuring the differential conductance G we used standard lock-in

techniques at 380 Hz, with an ac voltage bias Vac = 10 µV. Only the V− contact

was connected to the grounded shielding of our setup, and all gate voltages were

applied with respect to this ground. The in-plane magnetic field was applied

perpendicular to the current direction, and the current in the QPCs was along

the [110] crystal orientation. Alignment of the sample with the magnetic field

was within 1◦, as determined from Hall voltage measurements on the 2DEG. We

have data from 12 different QPCs from the set of 16 that we cooled down. From

these QPCs 4 could not be measured. For two this was due to the presence of

strong telegraph noise in conductance signals. Two other QPCs did not show

clear conductance plateaus.

For analyzing QPC conductance values we subtracted a magnetic field and

temperature dependent series resistance (from the wiring and filters, Ohmic con-

tacts and 2DEG) from the transport data that was obtained with a voltage-bias

approach. The criterium here was to make the observed conductance plateaus

coincide with integer multiples of 2e2/h or e2/h.
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3.3 Spin splitting and energy splitting between

QPC subbands

3.3.1 QPC conductance and energy splittings

Figure 3.1a presents the differential conductance G of a QPC as a function of

Vg, with the source-drain voltage Vsd ≈ 0. Increasing Vg from pinch-off (G = 0)

lowers and widens the saddle-point-like potential that defines the short transport

channel. Consequently, an increasing number of one-dimensional subbands gets

energies below the Fermi level. In zero magnetic field, this results in a step of

2e2/h in the conductance each time an additional subband starts to contribute to

transport. We label these spin-degenerate subbands with a number N , starting

with N = 1 for the lowest subband. With a high in-plane magnetic field B the

spin degeneracy within each subband N = 1, 2, 3... is lifted, and the conductance

increases now in steps of e2/h.

We use this type of data to determine the energy splitting ∆E between spin-

up and spin-down levels within the subbands N = 1, 2, 3, and the spacing ~ω12

between the N = 1 and N = 2 subband (a measure for the degree of trans-

verse confinement in the channel). The onset of transport through a next (spin-

polarized) subband appears as a peak in transconductance (dG/dVg) traces as

in Figs. 3.2a,c,e, which we derive from traces as in Fig. 3.1a. We assume that

each subband contributes in a parallel manner to the QPC conductance, and the

transconductance curves can then be analyzed as a superposition of peaks, with

one (two) peak(s) per (spin-split) subband. We then determine the peak spacings

∆Vg along the Vg axis by fitting one or two peaks per subband on the transcon-

ductance traces (using least squares fitting with a Gaussian peak shape). The

specific shape of a step between the quantized conductance plateaus depends

on the shape of the saddle-point-like potential that defines the QPC [20], and

can result in asymmetric transconductance peaks. We checked that this is not a

significant effect for our analysis.

Subsequently, transconductance data (not shown) from non-linear transport

measurements is used for converting ∆Vg values into energy splittings [21]. Here,

the onsets of conductance plateaus appear as diamond shaped patterns in the

Vsd − Vg plane. The width of these diamonds along the Vsd axis defines the

subband spacing, and we use this to determine the spacing ~ω12 between the

N = 1 and N = 2 subband. The slopes of the diamonds can be used to convert a

gate-voltage scale into energy scale [21]. In this analysis of ~ω12 and conversion
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Figure 3.2: (a) Transconductance dG/dVg traces (offset vertically) obtained from
the data in Fig. 3.1a (from the QPC with L = 300 nm and W = 400 nm). The 0.7
anomaly appears as a splitting of the transconductance peak for the N = 1 subband at
B = 0 T. (b) Energy splittings ∆E obtained from the transconductance traces in (a),
as a function of magnetic field. The traces present ∆E for the subbands N = 1, 2, 3,
see the legend in (f). These ∆E traces are characterized (results presented in Fig. 3.4)
with two or three parameters for each subband N = 1, 2, 3: An effective g-factor |g∗|,
the offset from a linear Zeeman effect in high fields, characterized by the high-field offset
∆Ehfo, and for N = 1 at low fields the energy splitting of the 0.7 anomaly, ∆E0.7. See
text for details. (c)-(f) Transconductance traces dG/dVg and energy splittings ∆E as
in (a), (b) obtained for a QPC with L = 250 nm and W = 350 nm in (c), (d) and
L = 450 nm and W = 350 nm in (e), (f). All data from measurements at 200 mK
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of ∆Vg into spin splittings ∆E we observed a weak dependence on magnetic field

and temperature, and took this in account.

The 0.7 anomaly is clearly visible in the data set presented in Fig. 3.1. The

conductance trace for zero field in Fig. 3.1a shows besides pronounced steps of

2e2/h an additional shoulder at ∼ 0.7(2e2/h), which becomes more pronounced at

higher temperatures (Fig. 3.1d). With increasing magnetic field, the 0.7 anomaly

evolves into the first spin-resolved conductance plateau at e2/h. In Figs. 3.2a,c,e

the 0.7 anomaly appears as a zero-field splitting in the transconductance peak

for N = 1, which evolves into two spin-split peaks in high fields. In earlier work

this observation was the basis for assuming that the 0.7 anomaly results from a

spontaneous removal of spin degeneracy in zero field [5, 6]. For the remainder

of this chapter we will assume that the 0.7 anomaly is indeed related to such

a spontaneous spin splitting, such that we can describe and characterize the

splitting of the N = 1 transconductance peak in B = 0 in terms of an energy

splitting ∆E between a spin-up and a spin-down subband. Note however, that

this is an assumption, and that our experimental results do not provide evidence

that the 0.7 anomaly is related to a spontaneous spin splitting. In particular,

there is no evidence that such a splitting is related to a static ferromagnetic

polarization, while the Kondo-like behavior of the 0.7 anomaly suggests that is

could be a dynamical spin splitting [13]. In high fields, all 12 QPCs showed also

for N = 2 and higher a pronounced spin splitting into two transconductance

peaks, but these subbands did not clearly show a zero-field splitting.

We studied how the spin splittings ∆E for N = 1, 2, 3 increase with magnetic

field from B = 0 T up to 9 T (Fig. 3.2b,d,f). We first concentrate on data for

N = 1. At zero field ∆E shows the splitting associated with the 0.7 anomaly,

that we label ∆E0.7. It is observed in all our QPCs with a typical value of

0.5 meV. At high fields ∆E has a linear slope similar to the Zeeman effect.

However, linear extrapolation of this slope down to B = 0 shows that there

is a large positive offset (unlike the usual Zeeman effect). We characterize the

slope with an effective g-factor |g∗| = 1
µB

d∆E
dB

(note that one should be careful

to interpret |g∗| as an absolute indication for the g-factor of electrons in a QPC,

since different methods for extracting a g-factor can give different results [13, 19]).

The high-field offset from a linear Zeeman effect is characterized with a parameter

∆Ehfo. Qualitatively, this type of data for ∆E looks similar for all 12 QPCs

(Figs. 3.2b,d,f), and we use a suitable fitting procedure to characterize the traces

for N = 1 with the parameters ∆E0.7, ∆Ehfo and |g∗|. Notably, two-parameter

fitting using spin-1
2

energy eigenvalues with ∆E =
√

(∆E0.7)2 + (|g∗|µBB)2 does
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Figure 3.3: (a),(b) The pinch-off voltage Vpo as a function of QPC length L (with
fixed width W = 350 nm), and as a function QPC width W (with fixed length L =
300 nm). Data points labeled with (1) and (2) are from two different devices with
nominally identical values for L and W (see text for details). (c),(d) The measured
subband spacing ~ω12 as a function of L and W . (e),(f) Calculated subband spacing
~ω12 as a function of L and W , from electrostatic modeling of the QPC potential. The
results qualitatively reproduce the trend in the experimental data in (c),(d).

not yield good fits. For the traces as in Fig. 3.2b,d,f for N = 2, 3, we cannot

resolve a spin splitting at low fields, only the parameters ∆Ehfo and |g∗| can be

derived. Further analysis of these results for ∆E0.7, ∆Ehfo and |g∗| is presented

in Section 3.4 on many-body effects.

3.3.2 Electrostatics and subband splitting

Figs. 3.3a,b present how the pinch-off voltage Vpo (the value of Vg where the G

starts to increase from zero) depends on QPC geometry. Figs. 3.3c,d presents
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this for the subband spacing ~ω12, which provides a parameter for the strength of

the transverse confinement in the QPC and is possibly of importance for several

of the many-body effects in QPCs. The observed dependence of Vpo on the QPC

geometry (a more negative Vpo for shorter and wider QPCs) agrees with the

expected trend. This provides the first of several indications that part of the

physics of our set of QPCs depends in a regular manner on L and W .

Furthermore, the variation of ~ω12 is in good agreement with an electrostatic

analysis [22] of the degree of transverse confinement in the saddle-point-like po-

tential of the QPC (presented in Figs. 3.3e,f). In summary, short and narrow

QPCs yield the strongest transverse confinement (Figs. 3.3d-f). This is valid

down to the point where the QPC width W . 3d (where d the depth of the

2DEG below the wafer surface), which results in the maximum for W = 350 nm

in Figs. 3.3d,f.

For this analysis, we calculate the confining electrostatic potential due to

the depletion gates in the plane of the 2DEG. An important ingredient of the

calculation is the threshold voltage Vt, which is the (negative) voltage that must

be applied to a gate to reduce the electron density underneath it to zero,

Vt = −en2Dd

εrε0

, (3.1)

where n2D is the 2DEG electron density (without gates) and d the depth of the

2DEG below the surface. We use the dielectric constant for GaAs ε = εrε0 =

12.9ε0.

The subband spacing can be calculated from the transverse curvature of the

saddle-point-like potential. However, this curvature changes with the applied

gate voltage. Therefore, we calculate the curvature for all QPCs when the QPC

is just pinched-off (G = 0), when the potential in the middle of the transport

channel is equal to Vt. For these calculations we used the dimensions L, W and d

of the measured devices. Qualitatively the trends in ~ω12 as a function of L and

W are reproduced, but the calculated values for ~ω12 are significantly larger than

the experimentally obtained values. From earlier work [22] it is known that it is

hard to get quantitative agreement from this type of calculations. Furthermore,

the maximum in ~ω12 versus W is found for a smaller value for W than we have

observed experimentally, approximately when W ∼ 2d.

The origin of differences between our simple calculations and experimental

results is well understood. The treatment of the exposed surfaces between the

depletion gates is an important aspect of the calculations. A different choice

for the boundary condition of the exposed surface may result in a noticeable
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difference in the confining potential [22, 23]. We used a so-called pinned-surface

approach (because it is a simple analytical approach) where the Fermi level at

the surface becomes pinned to the Fermi level in the 2DEG. However, a pinned

surface requires charge to move from the 2DEG to the surface when the gate

voltage is changed, in order to keep the surface potential constant. This process is

strongly suppressed at low temperatures. Alternatively, the surface can be treated

as a dielectric boundary, with a fixed charge density (frozen surface approach).

Davies et al. [22] have compared the results for pinned and frozen surfaces and

found that the maximum in ~ω12 shifts from W ∼ 2d to W ∼ 3d when a frozen

surface is assumed instead of a pinned surface. This corresponds very well to

the experimentally observed value of 350 nm. Furthermore, the model used here

is based on the calculation of the electrostatic potential due to the gates alone.

Other effects, as the contribution to the potential from donor ions and other

electrons in the 2DEG are ignored. Self-consistent calculations [24] have shown

that the values of ~ω12 decrease rapidly when electrons enter the conduction

channel.

3.4 Many-body effects

3.4.1 Enhancement of the effective g-factor

Figures 3.4a,b present how the effective g-factor |g∗| for N = 1 varies with L

and W of the QPCs. It is strongly enhanced up to a factor ∼ 3 with respect

to the g-factor for bulk 2DEG material [25] (the temperature dependence of this

|g∗| data is shortly discussed in section 3.4.2). This has been observed before [6]

and is attributed to many-body effects. Notably, the values of |g∗| and ~ω12 in

Figs. 3.3c,d are clearly correlated.

The enhancement of the effective g-factor has been explained in terms of

exchange interactions (see [26] and references therein). Calculations of the ex-

change potential in a square (quantum well) confining potential have shown that

the effective g-factor decreases when the 1D confining potential weakens and the

2D limit is approached [27]. For a harmonic confining potential, the results of

this study predict that |g∗| scales indeed with ~ω12. We observed this here for

the lowest subband (N = 1) in dependence on QPC geometry. Earlier work [6]

observed the same trend in a single QPC, using that the transverse confinement

decreases with increasing subband index N .
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Figure 3.4: (a),(b) Effective g-factor |g∗| as a function of QPC length L (with fixed
width W = 350 nm), and as a function QPC width W (with fixed length L = 300
nm). The effective g-factor |g∗| is enhanced as compared to the bulk 2DEG value (up
to a factor ∼ 3) and shows a clear dependence on L and W , that is correlated with the
dependence of the subband spacing ~ω12 in Fig. 3.3c,d. Data points labeled with (1)
and (2) are from two different devices with nominally identical values for L and W (see
text for details). (c),(d) The 0.7 energy splitting ∆E0.7 and high-field offset ∆Ehfo for
the N = 1 subband as a function of L and W . The values of ∆E0.7 and ∆Ehfo both
vary with L and W in a irregular manner, but there is a strong correlation between
∆E0.7 and ∆Ehfo. (e),(f) The difference between ∆E0.7 and ∆Ehfo as a function of L

and W . This data again shows a correlation with the dependence of subband spacing
~ω12 on L and W . All data points are for the N = 1 subband from results measured
at 200 mK. (Fig. 3.3c,d).
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3.4.2 The 0.7 anomaly and exchange

Figs. 3.2b,d,f show that for all QPCs ∆E appears in high fields as the sum of

the Zeeman effect and the constant contribution ∆Ehfo. This suggest that the

splittings in high field have, in particular for N = 1, a significant contribution

from a field-independent exchange effect that results from each subband being

in a ferromagnetic spin-polarized state. In high fields such an interpretation

is less ambiguous than for zero field (where the possibility of a ferromagnetic

ground state for spin-polarized subbands is the topic of debate [28, 29]) since the

Zeeman effect suppresses spin fluctuations. Thus, measuring ∆Ehfo can be used

to determine this exchange splitting.

We now further analyze how this parameter ∆Ehfo and ∆E0.7 depend on L

and W . The open squares in Figs. 3.4c,d present this for ∆E0.7. Overall, the

dependence here is not very regular, possibly indicating that the exact appearance

of the otherwise robust 0.7 anomaly is sensitive to small irregularities in the

potential that defines the QPC (only the data in Fig. 3.4d suggests an anti-

correlation with ~ω12). The black squares present how ∆Ehfo for N = 1 varies

with L and W . Also here the dependence is irregular. Remarkably, however, the

irregular variations of ∆E0.7 and ∆Ehfo are clearly correlated throughout our set

of 12 QPCs. This means that ∆E0.7, which is derived from data in zero field,

is correlated with ∆Ehfo, which is derived from data taken at fields in excess of

5 T. Further evidence for the significance of this correlation comes from data from

the N = 2 and N = 3 subband (see Figs. 3.2b,d,f). We analyzed the data for

N = 2, 3 in the very same way as for N = 1, and the most important observation

is that the ∆Ehfo parameter for N = 2, 3 is much smaller than for N = 1, and

often close to zero. A high ∆Ehfo value is only observed for N = 1, just as the 0.7

anamaly itself. Notably, for N = 1, ∆E0.7 and ∆Ehfo also have a similar order of

magnitude. This analysis points to the conclusion that the spontaneous energy

splitting of the 0.7 anomaly is dominated by the same effect that causes the high-

field offset ∆Ehfo. As we discussed, this is probably an exchange contribution

[30]. The error bar that we attribute to these values includes an error from the

transconductance peak-fitting, one from the conversion of gate voltage to energy

scale, and an error due to scatter in the ∆E datapoints as a function of B.

Fig. 3.4e,f presents data for the difference between ∆E0.7 and ∆Ehfo. Here,

∆E0.7 − ∆Ehfo shows again a correlation with ~ω12. This indicates that the

splitting of the 0.7 anomaly has (in addition to the exchange contribution that

is also present in high fields) a contribution that scales with ~ω12. At this stage

we cannot relate this new observation to earlier experimental or theoretical work.
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Note that for the error bars in Figs. 3.4e,f we first subtracted the values of peak

positions in terms of gate voltage, such that the error from gate voltage to energy

scale conversion is accounted for only once.

We will now discuss the effect of increasing the temperature on the many-

body phenomena in our QPCs. Figs. 3.5a-d show the conductance G at Vsd ∼ 0

as a function of magnetic field for temperatures T = 200 mK, 450 mK, 825 mK,

1.5 K, 2.8 K and 4.2 K. As the temperature is increased the spin-degenerate

plateaus and the spin-resolved plateaus both become less pronounced due to

thermal smearing. In high magnetic fields the spin-resolved plateaus increase

slightly in conductance with increasing temperature. At even higher temper-

atures the plateau at 0.7(2e2/h) is the last remaining feature in the differential

conductance. Notably, here the 0.7 anomaly appears to be present over the whole

range of magnetic fields. The corresponding transconductance traces dG/dVg are

plotted in Figs. 3.5e-h. As a result of the thermal smearing of the conductance

plateaus, the peaks in dG/dVg become broader and decrease in height. The zero-

field splitting in the transconductance peak for N = 1 has been identified as

the 0.7 anomaly. When the temperature is increased, the 0.7 anomaly becomes

more pronounced as was shown in the temperature dependence of the differential

conductance G presented in Fig. 3.1d. Consequently the zero-field splitting in

Figs. 3.5e-h also increases. For T = 825 mK and 1.5 K (Figs. 3.5f,g) even a

small zero-field splitting of the N = 2 transconductance peak can be observed,

suggesting the appearance of a 1.7(2e2/h) plateau [6].

Using the temperature dependence of ∆E data (Fig. 3.6a), we find that the

correlation between ∆E0.7 and ∆Ehfo remains intact at higher temperatures

(Fig. 3.6c). Figure 3.6b shows that |g∗| has a very different temperature de-

pendence. This indicates that the g-factor enhancement and the 0.7 anomaly

arise from different many-body effects.

3.4.3 Kondo signatures

The appearance of the 0.7 anomaly has been related to a peak in the differential

conductance as a function of source-drain voltage around zero bias, for G values

around e2/h. Earlier work [13] showed that this zero-bias anomaly (ZBA), and its

temperature and magnetic field dependence, have a very striking similarity with

electron transport through a Kondo impurity that can be studied with quantum

dots [31, 32]. For quantum dots, the Kondo effect is a many-body interaction of

the localized electron(s) inside the dot with the delocalized electrons in the leads
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Figure 3.5: (a) Differential conductance G as a function of gate voltage Vg at 200
mK, for a QPC with L = 300 nm and W = 400 nm. The in-plane magnetic field is
increased from B = 0 T to B = 9 T. (b) Transconductance dG/dVg traces (offset
vertically for clarity) obtained by differentiating the data in (a). The conductance G

and transconductance dG/dVg as in (a),(b) are shown for T = 450 mK in (c),(d), for
T = 825 mK in (e),(f), for T = 1.5 K in (g),(h), for T = 2.8 K in (i),(j) and for T

= 4.2 K in (k),(l).
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connected to the dot [31, 33, 32, 13]. Together these electrons form a spin-singlet

state, effectively screening the local spin on the dot. In contrast to a quantum

dot, where there is a clear localized state, a QPC is an open system where the

formation of a bound state is much less obvious. A recent theoretical result [12]

has shown that a self-consistent many-body state can indeed form inside a QPC,

and that this can result in Kondo-like physics.

In this section we present the measurements of this ZBA in our set of QPCs.

Most of our QPCs showed a clear ZBA in nonlinear conductance measurements.

The temperature and magnetic field dependence of this data (Figs. 3.7a-d) is

consistent with the earlier reports [13] that relate the 0.7 anomaly to transport

through a Kondo impurity.

The relevant energy scale for Kondo physics is the Kondo temperature TK .

Below this temperature the magnetic impurity giving rise to Kondo physics is

completely screened by the formation of a spin-singlet state and at zero-bias the

differential conductance G ∼= 2e2/h. The Kondo temperature determines the

width of the zero-bias peak. We observe that the peak width and height δG of

the ZBA are not constant over the whole range 0 < G < 2e2/h (see also Fig. 6-12

in reference [19]). We choose to fit these parameters at G ∼ 0.3, where the peak

height has a relative maximum. The peak width and height are determined by

fitting the non-linear conductance traces with a Gaussian shaped peak added to

a parabola.

Figs. 3.7e,f show the peak width as a function of L and W (during our mea-

surement run, one gate of Device 2 broke during an electronic malfunction, and

we can only present data from 3 QPCs in the set with different values of W ).

The width of the ZBA does not show a clear dependence on L and W , and has

a value of about 2 mV for all QPCs. For completeness, we also report the peak

height δG in Figs. 3.7g,h as a function of L and W . We observe that for a single

QPC δG varies with Vg, but the the values in Fig. 3.7g,h do give for each QPC a

good representation of the typical value of δG throughout the Vg interval where

the ZBA is observed. As a function of L and W , we observe here a stronger

scatter in the values than for the peak width, but also here there is no clear rela-

tion with the QPC geometry. To conclude this section, we consider a correlation

between the signatures of the Kondo effect and the values of ∆E0.7 (Fig. 3.7e,f).

The irregular variation of the ZBA peak width with L and W suggests indeed a

correlation with ∆E0.7, but here the evidence is very weak given the size of the

error bar that we attribute to these values.
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Figure 3.6: (a) Energy splitting for N = 1 as a function of magnetic field for different
temperatures T , for a QPC with L = 150 nm and W = 350 nm. (b) Effective g-factor
|g∗| as a function of temperature for the same QPC. The g-factor enhancement is
strongest for the N = 1 subband at the lowest temperature. For the N = 2 and
N = 3 subband the g-factor is also enhanced at low temperatures. As the temperature
is increased the g-factor enhancement is weaker for all subbands. (c) The 0.7 energy
splitting ∆E0.7 and high-field offset ∆Ehfo as a function of temperature. The value for
∆Ehfo is highest for the N = 1 subband and decreases to zero with increasing subband
number. As the temperature is increased, the ∆E0.7 value as well as the ∆Ehfo values
for N = 1, 2, 3 strongly increase. The correlation between ∆E0.7 and ∆Ehfo remains
present upon increasing the temperature.

3.5 Discussion and conclusions

We have studied many-body interaction effects in quantum point contacts. Our

main point of interest was the dependence of these many-body electron interac-
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tions on the geometry of the QPC. We found a clear relation between the subband

spacing and the enhancement of the effective electron g-factor. These parameters

depend on geometry in a regular manner that we can understand from electro-

static modeling of the QPC potential. The many-body electron physics that

causes the apparent energy splitting of the 0.7 anomaly does not show a clear

dependence on QPC geometry, but we do find a clear correlation with a field-

independent exchange effect that contributes to spin splittings in high magnetic

fields. This suggests that the splitting of the 0.7 anomaly is dominated by this

exchange contribution. We also measured a zero-bias anomaly in the non-linear

conductance of our QPCs, that has been interpreted as a signature of the Kondo

effect. Here, there is also no clear dependence on QPC geometry, but our data

suggests that it is worthwhile to further study its correlation with the splitting of

the 0.7 anomaly. These results are important for theory work that aims at devel-

oping a consistent picture of many-body effects in QPCs, and its consequences

for transport of spin-polarized electrons and spin coherence in nanodevices. Our

analysis of experimental data is very phenomenological, presenting parameters

and correlations for which it is difficult to draw conclusions about the underlying

physics. At the same time, part of state-of-the-art theory work now relies on

numerical simulations of realistic QPC geometries (using spin-density-functional

theory [12, 29] or other numerical approaches [28]) from which it is hard to derive

analytical expression for the underlying physics. However, the validity of this nu-

merical modeling can be easily tested for its consistency with the parameters and

correlations that we reported here.
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Chapter 4

Spin accumulation and spin relaxation

in a large open quantum dot

Abstract

We report electronic control and measurement of an imbalance be-
tween spin-up and spin-down electrons in micron-scale open quantum
dots. Spin injection and detection was achieved with quantum point
contacts tuned to have spin-selective transport, with four contacts
per dot for realizing a non-local spin-valve circuit. This provides an
interesting system for studies of spintronic effects since the contacts
to reservoirs can be controlled and characterized with high accuracy.
We show how this can be used to extract in a single measurement the
relaxation time for electron spins inside a ballistic dot (τsf ≈ 300 ps)
and the degree of spin polarization of the contacts (P ≈ 0.8).

This chapter is based on Ref. 5 on p. 131.

47
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4.1 Introduction

The ability to control and detect the average spin orientation of electron ensem-

bles in non-magnetic conductors lies at the heart of spintronic functionalities [1].

We report here electronic control and detection of spin accumulation –an imbal-

ance between the chemical potential of spin-up and spin-down electrons– in a

large ballistic quantum dot in a GaAs heterostructure. We use quantum point

contacts (QPCs) to operate a four-terminal quantum dot system, which is suited

for realizing a non-local spin-valve circuit [2]. Before, such spin-valve circuits

were realized with ferromagnetic contacts on various non-magnetic conductors

[2, 3, 4], but for these systems it is hard to characterize the contact properties.

An interesting aspect of our spintronic system is that it is realized with ultra-

clean non-magnetic materials, while each spin-selective mode in the contacts can

be controlled individually. We demonstrate that this can be exploited to measure

and unravel for a single device the spin relaxation rate inside the dot, contribu-

tions to spin relaxation from coupling the dot to reservoirs, and the degree of

polarization for spin-selective transport in the contacts. Thus, we report here the

spin relaxation time for two different confinement geometries. Chaotic scattering

inside such ballistic cavities can result in a spin relaxation mechanism that differs

from that of bulk materials and very small few-electron quantum dots [5], but its

full understanding is still a challenge to the community [6].

Figure 4.1a presents our device. Depletion gates on a heterostructure with

a two-dimensional electron gas (2DEG) below the surface are used to define the

four-terminal dot. QPCs are operated as spin-selective contacts, using that the

subbands that carry the ballistic transport can be Zeeman split with a strong

in-plane magnetic field, and that these modes can be opened up one by one by

tuning gate voltages [7, 8]. The conductance of QPCs then increases in steps,

with plateaus at Ne2/h, where N the number of open modes. For odd (even)

N the last opened mode carries only spin-up (spin-down). For the most typical

form of our experiment we tune to the following setting. The QPC to the I+

reservoir has a single open mode, which is only available for spin-up electrons,

while the I− QPC is tuned to carry one mode for spin-up and one for spin-down,

and we apply here a current Ibias. The contact resistance for electrons entering

the dot via I− is equal for spin-up and spin-down, while the current that leaves

the dot carries only spin-up. Consequently, the chemical potential for spin-down

electrons inside the dot will become higher than that for spin-up, up to a level

that is limited by spin relaxation. This difference in chemical potential ∆µ↑↓ can
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(a) (b)

Figure 4.1: (a) Electron microscope image of the device, with labels for current and
voltage contacts, and depletion gates Vgi and Vpi. Gate Vp1 is a shape distorting gate.
Fully switching gate Vp2a or gates Vp2b on or off sets the overall size of the dot, but
fine tuning these gates is also used for controlling small shape distortions. (b) Resistor
model for the most typical experiment (see text), for the case of ideal spin polarization
of the contacts to the I+ and V + reservoirs. The spin-up (top) and spin-down (bottom)
populations inside the dot are contained within the dashed line. The spin-flip resistance
Rsf represents spin relaxation inside the dot.

be measured as a voltage: with the V + QPC tuned to have only one open mode

for spin-up and the V− QPC tuned to have one open mode for spin-up and one

for spin-down, the voltage is V = ∆µ↑↓/2e, which is for linear response expressed

as a non-local resistance Rnl = V/Ibias.

4.2 Resistor Model

The resistor model in Fig. 4.1b is useful for analyzing how spin-relaxation mech-

anisms influence the measured signal in the above experiment. Each open mode

for spin-up in a QPC is modeled as a resistor with value RK = h/e2 to the

spin-up population in the dot, and similar for spin-down (we assume first perfect

polarization of QPCs tuned to be spin selective). Spin-relaxation inside the dot

is modeled as a resistor Rsf that carries a current from the spin-up to the spin-

down population. Figure 1b illustrates that the contacts to the I− and the V−
reservoir provide additional current paths for relaxation parallel to Rsf (spins

rapidly mix in reservoirs, and reservoirs always have zero spin-accumulation).
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This mechanism for spin relaxation outside the dot causes that in the limit of

Rsf → ∞ (no relaxation inside the dot), Rnl is limited to RK/4. The voltage

that is driving the relaxation inside the dot is ∆µ↑↓/e, while the current through

Rsf is Isf = e∆µ↑↓/2∆mτsf , such that the spin-flip time τsf dictates Rsf accord-

ing to Rsf = 2τsf∆m/e2 [9]. Here ∆m = 2π~2/m∗A is the mean energy spacing

between spin-degenerate levels in a dot of area A. Consequently, measuring Rnl

and deriving Rsf from its value can be used for determining τsf . While this resis-

tor model does not account for various mesoscopic effects that occur in ballistic

chaotic quantum dot systems, a theoretical study of an equivalent two-terminal

spintronic dot [6] showed that it is valid in the regime that applies to our exper-

iment (no influence of weak-localization and Coulomb blockade effects), and we

indeed find that it is consistent with the measured spin signals that we report.

4.3 Experimental realization

The dot was realized in a GaAs/Al0.32Ga0.68As heterostructure with the 2DEG

at 114 nm depth. At 4.2 K, the mobility was µ = 159 m2/Vs and the electron

density ns = (1.5± 0.1) · 1015 m−2. For gates we used electron-beam lithography

and lift-off techniques, and deposition of 15 nm of Au on a Ti sticking layer. The

reservoirs were connected to wiring via Ohmic contacts, which were realized by

annealing Au/Ge/Ni from the surface. All measurements were performed in a

dilution refrigerator at an effective electron temperature Teff ≈ 100 mK. For

measuring Rnl we used lock-in techniques at 11 Hz with a current bias, where we

made sure that the associated bias voltage Vbias ≤ 10 µV. We carefully checked

that RC-effects did not influence Rnl results. We used the T-shaped gate Vp2a or

pair of gates Vp2b for setting the overall size of the dot (not to be confused with

tuning small shape distortions for averaging out fluctuations, see below) at either

an area of 1.2 µm2 or 2.9 µm2 (accounting for a depletion width of ∼ 150 nm

around the gates).

4.4 Results of non-local experiments

Before presenting measurements of spin accumulation, we discuss two effects that

make this experiment in practice less straight forward than in the above descrip-

tion. Quantum fluctuations in Rnl due to electron interference inside the dot [10]

have an amplitude that is comparable to the spin signal [11], and Rnl can only be

studied as a spin signal after averaging over a large number of fluctuations. The
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Figure 4.2: (a) Conductance G of the QPC to the I+ reservoir as a function of gate
voltage Vg1, measured at B = +8.5 T. Gray diamonds indicate the values for conduc-
tance that we use in the resistor model, where we assume sharp transitions between
conductance plateaus. (b),(c) Non-local resistance results 〈Rnl〉fc as a function of gate
voltage Vg1 (controlling the number of open modes in the I+ QPC) for the dot with
area 1.2 µm2 (b) , and 2.9 µm2 (c). Gray lines show Rnl values from the resistor
model, with the spin-flip resistance Rsf and polarization P as in the figure labels. The
inset in (b) shows fluctuations of Rnl as a function of shape gate Vp1 with all QPCs at
a conductance of 2e2/h.



52 Chapter 4. Spin Accumulation and Spin Relaxation in a QD

inset of Fig. 4.2b shows such fluctuations in Rnl as a function of the voltage on

Vp1, which causes a small shape distortion of the dot. We discuss results as 〈Rnl〉
when presenting the average of 200 independent Rnl fluctuations, from sweeping

with two different shape-distorting gates. Cross talk effects between gates were

carefully mapped out and compensated for keeping the QPCs at their desired set

points [12].

A second effect which, besides spin accumulation, may result in strong Rnl

values is electron focusing [11]. Our sample was mounted with its plane at 0.73◦

with respect to the direction of the total magnetic field B. Consequently, there

is a small perpendicular field B⊥ and the associated electron cyclotron diameter

equals the I+ to V + contact distance (Fig. 4.1a) at B = ±6 T. We will mainly

present results measured at B = +8.5 T, for which we found that focusing

only weakly influences 〈Rnl〉 results. Further, we use that we can subtract a

background contribution to 〈Rnl〉 from focusing (discussed below), and we present

results where this is applied as 〈Rnl〉fc. B⊥ also breaks time-reversal symmetry

(suppressing weak localization) when |B| > 0.2 T.

Figure 4.2b presents 〈Rnl〉fc as a function of the number of open modes in the

I+ contact (tuned by Vg1), while the other QPCs are tuned as in Fig. 4.1b. On

the left on this Vg1 axis, the I+ QPC carries only one spin-up mode (conductance

GI+ tuned to the e2/h plateau, see also Fig. 4.2a). Here 〈Rnl〉fc ≈ 1.8 kΩ. Tuning

Vg1 to more positive values first adds an open spin-down mode to the I+ QPC

(GI+ at 2e2/h), such that it is no longer spin selective and 〈Rnl〉fc drops here

indeed to values near zero. Further opening of the I+ QPC tunes it to have two

spin-up modes in parallel with one-spin down mode (GI+ = 3e2/h). This causes

again a situation with more spin-up than spin-down current in the I+ QPC,

but less distinct than before and here 〈Rnl〉fc shows again a clear positive signal.

Then, it drops to zero once more when the next spin-down mode is opened in

the QPC. We obtain nominally the same results when the role of the current and

voltage contacts is exchanged. Further, Fig. 4.2c shows that the large dot shows

the same behavior, but with lower 〈Rnl〉fc values. This agrees with a lower value

for Rsf for the large dot. From these measurement we can conclude that 〈Rnl〉fc

is a signal that is proportional to the spin accumulation ∆µ↑↓ in the dot.

The conductance of the I+ QPC, shown in Fig. 4.2a, displays multiple clear

conductance plateaus that appear at the expected conductance values, although

there are several bumps and dips in these plateaus. Especially at the e2/h con-

ductance plateau there is a pronounced resonance. However, a similar feature, a

small peak followed by a dip for going to more positive gate voltages, can be seen
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Figure 4.3: Averaged non-local resistance 〈Rnl〉fc as a function of the conductance
GV− of the V- QPC, for A = 1.2 µm2. Gray lines show Rnl values from the resistor
model, with the spin-flip resistance Rsf and polarization P as labeled.

at the 2e2/h plateau. In zero magnetic field also similar features appear for the

first three conductance plateaus (not shown). Because the conductance plateaus

do appear around the expected values, and the resonant feature appears in the

same way for different plateaus, we think that the opening-up of subbands is not

influenced significantly and our analysis as presented above is correct.

Figure 4.3 shows results from a similar experiment on the small dot (but also

here the large dot showed the same behavior). Now 〈Rnl〉fc is measured as a

function of the number of open modes in the V− QPC (tuned by Vg3), while all

other QPCs are again tuned as in Fig. 4.1b. Here we observe a signal close to zero

when the V− QPC carries only one spin-up mode (GV− = e2/h) since it then

probes the same chemical potential as the V + QPC. Opening it to GV− = 2e2/h

immediately results in a strong signal. Further opening this QPC then causes

the signal to go up and down, qualitatively in reasonable agreement with the

resistor model that assumes perfect polarization (P = 1) of each spin-selective

mode in a QPC (see theory traces in Fig. 4.3, these go up and down in a step-

like manner since we assume sharp transitions between conductance plateaus).
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However, with quantitative agreement at GV− = 2e2/h (for Rsf = 10 kΩ), this

model with P = 1 shows an average slope down with increasing GV− that is too

weak. Instead, we find that the resistor model can show quantitative agreement

over the full GV− range (and with the results in Fig. 4.2) when we account for

imperfect spin polarization of QPCs.

We model imperfect polarization in the resistor model as follows. We assume

it only plays a role for QPCs set to a conductance of Ne2/h, with N an odd integer

(because the energy spacing between pairs of Zeeman-split subbands is large [8]).

Spin-selective transport is then only due to the highest pair of subbands that

contributes to transport, and we define the polarization P only with respect to

this pair. This pair of subbands is then modeled as a resistor R↑ = 2RK/(1 + P )

to the spin-up population in the dot, and a resistor R↓ = 2RK/(1 − P ) to the

spin-down population, which corresponds to P = (R↓ − R↑)/(R↓ + R↑). This

provides a simple model for Rnl with only Rsf and P as fitting parameters if we

assume that all spin-selective QPCs and QPC settings can be modeled with a

single P value. We find then a good fit to all the data in Figs. 4.2 and 4.3 for

P = 0.8± 0.1, with Rsf = 22± 3 kΩ for the small dot and Rsf = 7.5± 1 kΩ for

the large dot. In Fig. 4.2b at GI+ = 3e2/h, the experimental results are higher

than the plotted model values. However, this turns into the opposite situation

when using results obtained with the current and voltage QPCs exchanged. This

indicates that P does not have exactly the same value for all QPCs and QPC

settings. There is, however, always agreement with the model when accounting

for the error bars of P and Rsf .

The values of Rsf correspond to τsf = 295 ± 40 ps for the small dot and

τsf = 245± 35 ps for the large dot. In our type of system spin relaxation in the

dot is probably dominated by Rashba and Dresselhaus spin-orbit coupling. How

this mechanism results in a certain value for τsf then depends on the ballistic

scattering rate at the edge of the dot. We performed numerical simulations of

this mechanism, which yield that relaxation times indeed depend on the size of

the dot, with typical values near 300 ps [5]. In our experiment, however, the error

bars for τsf are too large for studying this dependence on the shape of our dots,

but our method is suited exploring this topic in future work.

Figure 4.4 shows how focusing affects 〈Rnl〉 and 〈Rnl〉fc. For QPCs tuned as

in Fig. 4.1b the signal from spin accumulation drops to zero if either the I+ or

the V + QPC is tuned from e2/h to 2e2/h (no longer spin selective). However,

when sweeping B we also measure large positive and negative 〈Rnl〉 values when

the I+ QPC, the V + QPC or both are at 2e2/h. For these three settings we
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Figure 4.4: (a) Averaged non-local resistance 〈Rnl〉 as a function of B, for I+ and
V + at the e2/h spin-polarized conductance plateau (open symbols), and for I+ at
2e2/h (not spin selective) and only V + at e2/h (closed symbols). The I− and V−
QPCs are at 2e2/h, A = 1.2 µm2. The difference in 〈Rnl〉 for the traces in (a) defines
the focussing corrected non-local resistance 〈Rnl〉fc, shown in (b). The gray line in
(b) is a fit of the model where the polarization P of QPCs (right axis) increases with
Zeeman-splitting (see text). Arrows indicate B that was applied for measuring the
data of Figs. 4.2, 4.3.

observed 〈Rnl〉 traces that are nominally the same (black symbols in Fig. 4.4a).

The peaked structure is due to electron focusing effects [7, 11]. Only the peak at

+6 T corresponds to direct focusing from the I+ into the V + contact without

an intermediate scatter event on the edge of the dot (it has the right B value

and other peaks move to other B values when comparing the small and the large

dot). Note, however, that all 〈Rnl〉 values are significantly higher when both the

I+ and V + QPC are tuned to be spin selective (open symbols in Fig. 4.4a).

This difference between the open and black symbols defines the quantity 〈Rnl〉fc

(Fig. 4.4b) and provides a signal that is mainly due to spin. This 〈Rnl〉fc data also
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shows a peaked structure where 〈Rnl〉 shows strong focusing signals. This agrees

with enhancement of electron focusing signals between spin-selective QPCs [7].

For interpreting 〈Rnl〉fc as a measure for spin accumulation, the experiment

must be performed in a regime with many chaotic scatter events inside the dot

during the electron dwell time. This is clearly not the case at the focusing peaks

in Fig. 4.4b (at −7.5 T and +6 T). We therefore studied spin accumulation at

+8.5 T where focusing from the I+ QPC scatters on the edge of the dot just

before the V + contact and where the signatures of focusing in 〈Rnl〉 are small.

The agreement between the results of both Figs. 4.2 and 4.3, for both the small

and large dot, and the resistor model supports the conclusion that these results

were obtained in a chaotic regime.

As a final point we discuss that the degree of polarization P = 0.8 is in

agreement with independently determined QPC properties. Steps between con-

ductance plateaus are broadened by thermal smearing (a very weak contribution

for our QPCs at 100 mK) and due to tunneling and reflection when the Fermi

level EF is close to the top of the QPC potential barrier for the mode that is

opening. It is mainly this latter effect that causes P < 1 in our experiments. The

role of tunneling and reflection in QPC transport is described with an energy

dependent transmission T (ε) that steps from 0 to 1 when a QPC mode is opened.

We study the effect of this on P by assuming that EF is located exactly between

the bottoms of a pair of Zeeman split subbands. For these two subbands we use

T (ε)↑(↓) = (erf(α(ε−EF −(+)EZ/2))+1)/2, a phenomenological description that

agrees with studies of our QPCs [8]. Here EZ = gµBB is the Zeeman splitting

(for g-factor g and Bohr magneton µB) and α a parameter that sets the width of

the step in T (ε). For eVbias < kBTeff , the contributions of these two subbands

to the QPC conductance are then G↑(↓) = (e2/h)
∫

dε (−df/dε) T (ε)↑(↓), where f

the Fermi function. With P = (G↑ − G↓)/(G↑ + G↓) we now calculate how P

increases with B due to an increasing Zeeman splitting. In the resistor model the

dependence of Rnl on P is close to Rnl ∝ P 2. We therefore plot P 2 in Fig. 4.4b

(gray line, with scaling of the right axis such that it overlaps with the experimen-

tal results) for parameters that give the consistent result P = 0.8 at B = 8.5 T.

For this we use |g| = 0.44 (as for bulk GaAs) and an α value that is derived from

a full-width-half-max of 0.2 meV for the peak in dT (ε)/dε. The latter parameter

agrees with the values 0.20 to 0.35 meV that we found when characterizing this

for our QPCs [8]. Notably, we cannot calculate such a consistent result if we

assume that the many-body effects that we observed in our QPCs [8] enhance

the Zeeman splitting (showing for example |g| ≈ 1.1). This indicates that these
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effects do not play a role for spin injection and detection with QPCs, as was also

found in Ref. [7].

4.5 Signatures of spin transport in the 2-terminal

conductance

We investigate signatures of spin accumulation and spin relaxation in the two-

terminal conductance of our QD, as an alternative to the non-local measurement

geometry [6, 13]. This method should, in principle, make the experiment less

complex since only two QPCs have to be set simultaneously, instead of four in the

non-local experiment. In practice this method is complicated by the additional

requirement that one needs broad, flat (spin-selective) conductance plateaus to

reliably determine the signatures of spin accumulation in the series conductance

of the dot [6, 13].

The system is tuned to the following setting. The QPC to the I+ reservoir is

tuned to have a single open mode, which is only available for spin-up electrons,

while the QPC to the I− reservoir is tuned to carry one mode for spin-up and one

mode for spin-down. Initially all other QPCs are pinched-off. With these settings

the series conductance of the QPCs is 1
4
(2e2/h) if there is no spin relaxation and

1
3
(2e2/h) if there is strong spin relaxation. The measured value of conductance

will typically lie in between these two limits and can be used to extract the spin

relaxation time [13]. Further we can measure the 2-terminal series conductance

while we open a third QPC to a large (floating) electron reservoir. This provides

an additional relaxation mechanism for loss of spin accumulation, and will allow

us to not only extract a value for the spin flip time, but also to identify contri-

butions to spin relaxation from coupling the dot to reservoirs, and the degree of

polarization for spin-selective transport in the contacts.

Here we will present some preliminary data on this type of experiment. We

have corrected for quantum fluctuations in G due to electron interference inside

the dot by averaging over 200 independent fluctuations. The measurements were

done at B = 9 T, but we have not studied the effects of focussing carefully.

Fig. 4.5a presents 〈G〉 as a function of the number of open modes in the I+

contact (tuned by Vg1). The I− contact was tuned to have one spin-up and one

spin-down mode. When the I+ QPC is tuned to a spin degenerate plateau we

measure the same two-terminal conductance for each of the three different dot

areas. We do expect to measure a difference in conductance when the I+ QPC
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Figure 4.5: (a) Average two-terminal conductance 〈G〉 as a function of gate voltage
Vg1 (controlling the number of open modes in the I+ QPC), for the dot with area 1.2
µm2, 2.9 µm2, and 10000 µm2 measured at B = 9 T. The I− QPC is set to 2e2/h. The
dashed lines indicate conductance values where both QPCs are set to spin degenerate
plateaus. (b) Enlarged view of the data in (a) at the gate voltage range where the
conductance of the I+ QPC is around e2/h. Dashed lines indicate the two limits for
spin relaxation. Dotted lines and arrows on the left indicate the difference between
current experiment and expected values using results of the non-local experiment.
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is at a spin selective plateau. Indeed, when the I+ QPC is tuned to the e2/h

plateau we observe a clear difference between the three traces, we find a smaller

value for the conductance for a decrease in dot area. When the I+ QPC is tuned

to 3e2/h we do not observe any significant difference.

We now focus on the situation where the I+ is tuned to e2/h. We then expect

to measure plateau heights that are in between the two limits of 1
4
(2e2/h) and

1
3
(2e2/h). However, as shown in Fig. 4.5a, the conductance plateau is far from

a broad, flat plateau. This is a result of the resonance in the e2/h plateau of

the I+ QPC shown in the inset of Fig. 4.5a (and in Fig. 4.2a for B = 8.5 T).

The question is therefore what value of the conductance we should use as plateau

height. We choose to use the value of the conductance at the small peak near Vg1

= -1.23 V, for two reasons. Firstly, in the measured conductance of the QPC to

the I+ reservoir, the conductance value at the peak is exactly equal to 0.5(2e2/h).

Secondly, at the peak in the series conductance for the largest dot with area ∼
10000 µm2, the value of the conductance is, as expected, equal to 1

3
(2e2/h), the

limit where all spins can relax. The reason why we did not choose any other

combination of QPCs for this experiment is that none of the other QPCs had a

broad, flat e2/h plateau, or, in other words, a plateau that would allow easier

determining of the exact value of the conductance at the plateau.

Earlier in this chapter we have measured the relaxation time for the two

smallest dots and, using the resistor model, we can use these times to calculate

the two-terminal conductance that we expect to measure. Here we have used

τsf = 295 ps for a dot of 1.2 µm2 and τsf = 245 ps for a dot of 2.9 µm2. We

also used polarization P = 0.8 for the contacts. If we compare these calculated

values to the values we measure here, we find that we observe here in both cases

a lower value for conductance (also if we include error bars of τsf and P ). This

could mean we measure much longer relaxation times in this experiment, however

we believe that these measured conductances are not reflecting properties of the

spin accumulation in the dot, but are determined by the same phenomenon that

causes the resonant-like feature to appear. Therefore we decided not to continue

with this type of experiment on this particular device.

4.6 Conclusions

In conclusion, we have observed spin accumulation in a large open quantum dot

in a non-local measurement and extracted values for τsf and P . We find values

of τsf = 295 ± 40 ps for a dot of 1.2 µm2 and τsf = 245 ± 35 ps for a dot
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of 2.9 µm2. These values are much lower than reported values from studies on

large high-mobility 2DEG areas. This is probably due to enhanced dephasing

by spin-orbit effects which results from frequent scattering on the edge of the

dot. We can reproduce this effect qualitatively with Monte-Carlo simulations,

presented in Chapter 5 of this thesis. The values of P = 0.8 ± 0.1 that we find,

are consistent with the short length (∼100 nm) of our QPCs. The short length

causes a broad energy window where the onset of the transmission of each QPC

mode builds up, such that two Zeeman split modes still overlap considerably in

a field of 9 T. Notably, our data set is consistent with a Zeeman energy that is

simply gµBB with g = 0.44, indicating that many-body effects in QPC that can

enhance Zeeman splittings do not play a role in our type of experiment. We have

been made aware of related results obtained by S. M. Frolov et al. [14] with a

narrow Hall bar.

We have presented a method for extracting spin relaxation times from the

two-terminal conductance of a quantum dot, inspired by experimental results of

Zumbühl et al. [13] and theory paper by Beenakker [6]. We have studied this

two-terminal conductance for dots with three different areas, but unfortunately

the spin-resolved plateau at e2/h for one of the contacts was disturbed by a

pronounced resonance. Therefore we could not extract reliable numbers for spin

relaxation time or polarization using this method.

We thank A. I. Lerescu, B. H. J. Wolfs and D. M. Zumbühl for useful discus-

sions, and the Dutch Foundation for Fundamental Research on Matter (FOM)

and the Netherlands Organization for Scientific Research (NWO) for funding.
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Chapter 5

Confinement-enhanced spin relaxation

for electron ensembles in large quantum

dots

We present a numerical study of spin relaxation in a semiclassical
electron ensemble in a large ballistic quantum dot. The dot is defined
in a GaAs/AlGaAs heterojunction system with a two-dimensional
electron gas, and relaxation occurs due to Dresselhaus and Rashba
spin orbit interaction. We find that confinement in a micronscale
dot can result in strongly enhanced relaxation with respect to a free
two-dimensional electron ensemble, contrary to the established result
that strong confinement or frequent momentum scattering reduces
relaxation. This effect occurs when the size of the system is on the
order of the spin precession length, but smaller than the mean free
path.

This chapter is based on Ref. 4 on p. 131.
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5.1 Introduction

Due to spin-orbit interaction (SOI), the state of electron spins is influenced by

electron transport in electronic devices. This has been recognized as a source for

dephasing and relaxation for spins [1, 2], as well as a means for controlled spin

manipulation [3] in research that aims at developing spintronic devices [2, 4, 5]. In

this article we present a numerical study of spin relaxation in an electron ensemble

that is scattering inside a micronscale device structure. We are interested in the

case where devices are made of clean semiconductor heterostructures and studied

at low temperatures. For our studies we assume realistic material parameters

for a system with a two-dimensional electron gas (2DEG) at a GaAs/AlGaAs

heterojunction. For a free 2DEG in these materials, a well established result

is that the average spin orientation of an ensemble decays due to precession

in spin-orbit fields. For moderate electron mobilities, this so-called D’yakonov-

Perel’ (DP) mechanism for spin relaxation [6, 7] has the property that the spin

relaxation time T1 increases when the mobility (and thereby the time scale τs for

elastic momentum scattering) decreases, as T1 ∝ τ−1
s .

A similar trend is observed when the degree of electron confinement in a device

structure is increased. Stronger confinement gives more frequent scattering on

the boundaries of the system, and hence reduces the relaxation. This has been

recognized in the increase of T1 on the transition from 2D to 1D systems [8]. In

the limit quantum confinement in extremely small devices (much smaller systems

than we consider for the present study), relaxation and dephasing due to SOI is

then strongly reduced, and other relaxation mechanisms can become dominant.

This applies for example to spin dephasing in few-electron quantum dots, which

can be mainly due to interaction with nuclear spins [10, 11, 9]. Although more

frequent scattering due to stronger confinement thus seems similar to reducing

the mobility in bulk materials, the results that we present here show that frequent

scattering due to confinement can also result in the opposite, namely confinement-

enhanced relaxation.

The key result of the present study is well presented by the traces for spin re-

laxation time T1 as a function of the size L of a square quantum dot in Fig. 5.1a.

The trace for the case that an external magnetic field Bext = 0 T and 2DEG

mobility µ = 100 m2/Vs, shows that T1 is constant for L > 10 µm. Here L is

so large that the electron ensemble behaves as in a free 2DEG. When decreas-

ing L below 10 µm, T1 increases because spin relaxation in suppressed by more

frequent scattering on the edge of the system. The trace for Bext = 10 T and
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Figure 5.1: (a) Spin ensemble relaxation in a quantum dot system of size L. The
relaxation time T1 is calculated as a function the size L for a square system. For mobility
µ = 100 m2/Vs we plot T1 for zero external magnetic field (filled black symbols) and for
Bext = 10 T (open symbols). The gray symbols show T1 for zero external magnetic field
and µ = 1000 m2/Vs. (b) Relaxation time as a function of L for a system with only
Rashba SOI. Calculations for specular and non-specular reflections give qualitatively
the same results, but the magnitude of the resonant structure in the traces of T1 as a
function of L is larger in the case of specular reflections.
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Figure 5.2: (a) Schematic representation of the direction and magnitude of the SOI
fields. Since we assume all electrons move with the same magnitude for k-vector kF ,
we can represent the motion of electrons in all directions as a circle in the (kx,ky)-
plane. The arrows that are sketched at certain points on this Fermi circle, represent
the strength and direction of the SO field BSO for that k-vector. (b) Magnitude and
direction of the total effective magnetic field when an external field Bext = 1.5 T is
applied along the [100]-direction. (c) Idem for an external field Bext = 10 T. In this
plot the length of all arrows has been scaled down by a factor 5 as compared to (a)
and (b).

2DEG mobility µ = 100 m2/Vs (typical parameters for research on spin effects in

micronscale quantum dots [13] and wires [14]), however, shows radically different

behavior. Now T1 first slowly decreases when decreasing L from the 2D regime

(very large L), and shows a pronounced dip for L ≈ 1 µm. Confinement now

strongly enhances relaxation, instead of the more familiar result that confinement

reduces relaxation. Moreover, in the range with 1 µm < L < 10 µm, T1 has a

highly structured dependence on L. Only when decreasing L below L ≈ 1 µm, T1

shows again a strong and monotonic increase as for the confinement-suppressed
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relaxation in Bext = 0 T.

We obtain these results with a numerical Monte Carlo approach. This has

the advantage that we can study precessional relaxation for realistic conditions,

where the total magnetic field is the sum of several spin-orbit contributions and

an external field. In reality, samples typically have both Rashba and Dresselhaus

SOI that are comparable in magnitude [15], and in experiments one often needs to

apply strong external magnetic fields for realizing spin transport in non-magnetic

semiconductors [16, 13, 14]. The combination of spin-orbit contributions and

external magnetic fields may strongly influence the relaxation behavior in these

type of devices [17, 18]. Earlier studies of these relaxation phenomena were

often restricted to more tractable cases, as for example with only Rashba SOI

[19] (no Dresselhaus SOI), and no external fields. Below, we will summarize

our numerical method, and then focus on studying the dependence of T1 on the

degree of confinement in micronscale quantum dots. We will also show that in

regimes and for parameters that were studied before, our simulations give the

conventional results.

5.2 Spin-orbit coupling

We use a description where spin-orbit (SO) coupling acts as a k-vector dependent

effective magnetic field on the electron spins. In a 2DEG it is dominated by two

sources [15]. The first arises due to the inversion asymmetry in the potential

profile of the heterostructure and results in an effective Rashba magnetic field

BR [20]. The second effect arises due to the lack of inversion symmetry in the

GaAs crystal lattice, which is of the zinc-blende type, and yields for a 2DEG

the linear and cubic Dresselhaus fields BD1 and BD3 [21, 1]. The effective SO

field BSO in a 2DEG can thus be described as the vector sum of these three

components, given by [15, 1]

BR = CR(x̂ky − ŷkx), (5.1)

BD1 = CD1(−x̂kx + ŷky), (5.2)

BD3 = CD3(x̂kxk
2
y − ŷkyk

2
x), (5.3)

where CR, CD1 and CD3 are the coupling parameters, x̂ is the unit vector in the

[100]-direction, and ŷ in the [010]-direction. Our results are calculated using the

SO parameters that were reported by Miller et al. [15], CR = −1.96 · 10−8 Tm,

CD1 = −1.57 · 10−8 Tm, and CD3 = −1.18 · 10−24 Tm3.
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The total SO field is then anisotropic in momentum space as is shown in

Fig. 5.2a. Each time an electron scatters and its direction of motion changes it

will precess around a different axis set by BSO. For our set of SO parameters these

fields BSO lie more or less parallel to the [110]-direction for almost all k-directions.

Figures 5.2b,c show the effect of adding an external magnetic field Bext, which

is independent of momentum direction. We consider here the situation that

Bext ‖ x̂. The total effective magnetic field Btot is then the vector sum of the

SO fields and the external magnetic field. When the magnitude Bext of Bext is

comparable to that of the SO fields, as shown in Fig. 5.2b for Bext = 1.5 T, the

total effective magnetic fields are no longer mainly parallel to the [110]-direction

and there is larger spread in the directions of the precession axes Btot. Figure 5.2c

shows that for very large external magnetic fields, shown here for Bext = 10 T,

the total effective magnetic fields Btot align with Bext along the [100]-direction.

This again reduces the spread in the direction of the precession axes Btot.

5.3 Method

In our numerical approach we use a classical description of the electron motion,

and a quantum mechanical description of the dynamics of the electron spin. We

thus assume that electrons have at all times a well-defined k-vector, and electrons

move along classical trajectories with specular scattering on the boundaries of the

system, and scattering in a random direction on static potential fluctuations due

to impurities. Electrons never escape from the system. Although in micronscale

quantum dots the motion of electrons is confined, the mean level spacing is much

smaller than temperature, ∆m ¿ kBT , and this allows for this semiclassical

description. Further, we consider the case that all the electrons that carry the spin

orientation are near the Fermi level. Thus, we assume that all electron always

move with the Fermi velocity (k-vectors with magnitude kF ), independent of

the momentum direction. This is a valid approximation for kBT, ∆EZ,SO ¿ EF

(with respect to the bottom of the conduction band), where ∆EZ,SO is the Zeeman

splitting due to the SO field alone. Obviously, the validity of our approach breaks

down in the limit of very small dots, where electrons are highly localized due to

quantum confinement. In practice, this occurs for quantum dots with size L below

∼ 400 nm, but our results for this regime always show a very strong suppression

of precessional relaxation, which is the semiclassical equivalent for suppressed

relaxation for quantum confined electrons [10, 11].

Our simulation then works as follows. It starts at t = 0 with each electron
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at a random position in a square shaped dot of size L, and with a k-vector in

a random direction. We always consider the case that at t = 0 the spin state

is prepared in the positive x̂-direction. For each electron, we follow its state in

time, and its momentum direction will change at each scattering event. During

each ballistic trajectory between scatter events, the electron has a well-defined

k-vector, and we calculate the effective spin-orbit field during this trajectory with

Eqs. 5.1-5.3. The precession angle αi during a single trajectory is then given by

αi =
gµBBtot

~
· ti, (5.4)

where ti is the traveling time ti = li/|v|. The rotation operator working on the

initial spin state to determine the new spin state is a function of αi and of the

unit vector Ui = Btot/|Btot| = (uxi
, uyi

, uzi
) around which the spin is precessing

and is given for a single trajectory by [12]

Ri =

(
cos(αi

2
)− iuzi

sin(αi

2
) (−iuxi

− uyi
) sin(αi

2
)

(−iuxi
+ uyi

) sin(αi

2
) cos(αi

2
) + iuzi

sin(αi

2
)

)
. (5.5)

After each scattering event the electron will precess around a new effective mag-

netic field, and we follow the quantum mechanical spin evolution in the total

effective magnetic field during each ballistic trajectory. The rotation operator

along the entire trajectory can be represented as the product of the individual

operators along the n straight sections of the trajectory

R = Rn · · ·R2R1. (5.6)

We thus find the spin state of each electron as a function of time.

The spin evolution is calculated for an ensemble of (at least) 103 electrons.

This mimics the averaging over many electrons in an electron transport exper-

iment, since large quantum dots behave in practice as a chaotic ballistic cavity

[13]. In our model the magnitude of the average spin orientation for the ensemble

decays to zero because each electron has its own scattering trajectory, such that

the relative difference between the precessional dynamics of individual electrons

increases in time. We will always refer to this as spin relaxation for the ensemble

(with decay time T1), rather than dephasing, because we concentrate on the loss

of average spin orientation in the direction of the external magnetic field that

we apply. Note however, that in our description each individual electron always

keeps precessing coherently in its particular spin-orbit field. Consequently, the

underlying mechanism is equivalent to that of spin dephasing for an ensemble,
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and in particular for our simulations with Bext = 0 T one could argue that the

loss of spin orientation should be named dephasing.

The average spin orientation is calculated for the whole ensemble as a function

of time, independent of the position of the individual electrons. In this study we

concentrate on the average spin polarization 〈Sx〉 in the x̂-direction. We find in all

cases that we consider here that the decay time for 〈Sx〉 equals that of 〈S〉, where

〈S〉 =
√〈Sx〉2 + 〈Sy〉2 + 〈Sz〉2, because no significant polarization develops in the

ŷ or ẑ-direction. The relaxation time T1 is then defined as the time when 〈Sx〉 is

reduced to 1/e of its initial value at t = 0. We used electron density 1.0 ·1015 m−2

and mobility 100 m2/Vs, unless stated otherwise. We neglect inelastic scattering

mechanisms and electron-electron interactions.

The momentum direction for an electron changes after specular scattering on

the boundary of the system. This process we will refer to as edge scattering and

the typical length scale involved here is L, where the area of the quantum dot

system is A = L2. A second effect causing a change in momentum direction is

scattering on static fluctuations in the potential due to impurities. Here, a scatter

event changes the momentum into a random direction. We incorporate this into

our modeling as follows. When an electron is moving ballistically through the

system, the probability that it did not scatter due to impurities decreases as

e−t/τs (where τs is the average impurity scatter time) and this probability is

reset to 1 after each impurity scatter event. We thus define the mean free path

Lmfp = |vF |τs as the length in between scatter events when only considering

impurity scattering.

Another important length scale in our system is the so-called precession length

〈Lpr〉. This is defined as the length of the trajectory where a spin has precessed

over an angle π. In our system this length scale is k-vector dependent due to the

anisotropy of SO fields. Therefore, we define 〈Lpr〉 as the length of the trajectory

for precession over an angle π around the average total effective magnetic field

〈|Btot|〉, where we average over all k-directions to account for the anisotropy for

the SO contribution to the total field.

Evaluating the relative size of these three length scales, L, Lmfp, and 〈Lpr〉,
for a specific system helps to understand many properties of the relaxation time.

Before discussing results for quantum dots, it is instructive to discuss two regimes

that occur for a free 2DEG (L very large). For such systems, Fig. 5.3 presents

traces with T1 as a function of Lmfp. We first focus on the case with Bext = 0 T,

for which 〈Lpr〉 = 8 µm. If Lmfp ¿ 〈Lpr〉, the precession angle in between scatter

events is small. Consequently, the spin state only slowly diffuses away from
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Figure 5.3: Relaxation time T1 as a function of the mean free path Lmfp for a free
2DEG. The top axis shows the corresponding value for mobility µ. Calculations for
zero external field and Bext = 10 T.

its initial direction in a random walk-like process. Here scattering suppresses

relaxation. This regime is known as the motional narrowing regime [22], and the

relaxation time is inversely proportional to the scatter time, T1 ∝ τ−1
s . When

Lmfp À 〈Lpr〉, the spins will coherently precess over at least one full rotation

between scatter events. Without momentum scattering, the ensemble shows spin

relaxation since each electrons precesses in a different field, but each electron will

maintain its component in the direction of its precession axis. Only when a scatter

event occurs this coherent precession is disturbed, such that further relaxation

for the ensemble can occur. In this regime T1 ∝ τs. The crossover between these

two regimes (where T1 shows a minimum) occurs for Lmfp ≈ 〈Lpr〉. Switching on

an external magnetic field of 10 T for this system, reduces the length scale 〈Lpr〉
to 1.1 µm. For T1 as a function of Lmfp, this only results in a shift of the entire

curve, with the minimum now occurring at the new value where Lmfp ≈ 〈Lpr〉.
We conclude here that our calculations for Fig. 5.3 reproduce the conventional

result [2].
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5.4 Results

We now turn to discussing results for quantum dots, for which L can be smaller

than 〈Lpr〉 and Lmfp. Figure 5.1a shows simulations of the relaxation time as

a function of dot size L. We first discuss the result for zero external magnetic

field (which gives 〈Lpr〉 = 8 µm) and mobility µ = 100 m2/Vs (corresponding to

Lmfp = 5 µm). For this system, a decrease of L in the regime with L < 〈Lpr〉
results in higher T1 values. We will refer to this regime as the quasi-0D regime.

Here frequent scattering suppresses precession, as for motional narrowing in the

2D regime. Here, we observe that T1 ∝ L−2, a dependence on L that was also

found for studies on the suppressed relaxation in long quasi-1D channels of width

L [8, 23]. For L > 〈Lpr〉 we do not observe any change in T1. This will be denoted

as the 2D regime, for which L À 〈Lpr〉, Lmfp.

For Bext = 10 T (and again µ = 100 m2/Vs) the behavior is dramatically

different (also shown in Fig. 5.1a). When coming from the 2D regime, there is

no longer simply an increase in T1 when lowering L towards the regime where

L ¿ 〈Lpr〉, Lmfp. Instead, there is a regime, here for 0.6 µm < L < 10 µm, where

T1 is strongly suppressed. Moreover, the decrease in T1 when lowering L from 10

µm to 1 µm shows a structured pattern. For this value of the external magnetic

field the precession length is reduced to 〈Lpr〉 = 1.1 µm. The mean free path

is still Lmfp = 5 µm, such that switching on a strong field opens up a regime

with 〈Lpr〉 / L < Lmfp in between the 2D and the quasi-0D regimes. Notably,

switching on a strong magnetic field for a system in the 2D regime increases T1

by about one order of magnitude. However, switching on a field for a system in

the same material with L ≈ 1 µm causes T1 to go down more than 2 orders of

magnitude. Now confinement enhances relaxation.

For Bext = 0 T and µ = 100 m2/Vs we do not see a dependence of T1 on L in

the regime where L > 〈Lpr〉, because for that system Lmfp ≈ 〈Lpr〉. However, also

in zero external magnetic field we can open up a regime where 〈Lpr〉 / L < Lmfp

by choosing a higher value for mobility. This is demonstrated for µ = 1000 m2/Vs

(which gives Lmfp = 50 µm) in Fig. 5.1a. Now for 7 µm < L < 100 µm the

relaxation time decreases when decreasing L, and again T1 shows a structured

pattern (i.e. the structure on this trace here is not noise from averaging over a

finite ensemble).

The reduction in T1 due to stronger confinement is thus a general effect and

appears whenever 〈Lpr〉 / L < Lmfp. These are typical conditions for micronscale

quantum dots when large external magnetic fields are applied. Notably, the values
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that we obtain here for T1 are very close to the values that we recently observed

in spin accumulation experiments in micronscale quantum dots [13]. We found

T1 ≈ 300 ps for a quantum dot with L ≈ 1.1 µm and Bext = 8.5 T. This indicates

that our simulations generate realistic numbers.

We will now analyze the relaxation mechanism for this confinement-enhanced

relaxation. To study why there is strong dip and structure in the dependence

of T1 on L, we choose a simplified model system where we only consider the

Rashba SOI and an external magnetic field Bext = 10 T. Both Dresselhaus SOI

contributions have been set to zero. Using only Rashba has the advantage that

the magnitude for the SO fields is identical for all k-vectors. The structure in T1

appears more regular here (see Fig. 5.1b). This proves that the effects that we

present here do not only occur for very particular SO parameters.

We have repeated this calculation where we programmed non-specular re-

flections on the walls of the quantum dot, such that after hitting a side of the

quantum dot the electron is reflected with random angle back into the quantum

dot (open symbols in Fig. 5.1b). The structure on T1 still appears, which con-

firms that self-repeating patterns are not the origin of this effect. We observe,

however, that the amplitude of the structure on T1 is reduced for this setting.

This is caused by an increased variation in the length of trajectories in between

scatter events for non-specular reflections. We checked this by making histograms

of the trajectory lengths for specular and non-specular reflections (not shown).

For both traces in Fig. 5.1b, we find that the minimums in T1 appear at odd

multiples of the average precession length 〈Lpr〉, and local maximums occur at

even multiples of 〈Lpr〉. This means that for systems with a size equal to an

odd multiple of 〈Lpr〉 the electrons scatter (on average) after precessing (again,

on average) over an angle of exactly π (mod 2π) between scatter events, furthest

away from their original state. This causes fast relaxation. For systems with a size

equal to an even multiple of 〈Lpr〉, the electrons scatter on average after precessing

2π (mod 2π), so when they are back in their original state. Then relaxation is

slower as compared to the local minimums. However, note that for these local

maximums there is overall still a reduction of T1 due to confinement as compared

to free 2DEG: in this regime, more frequent scattering on the edge of the system

always enhances relaxation. The character of the relaxation mechanism itself is

thus similar to the regime with 〈Lpr〉 ¿ Lmfp for 2D systems, where T1 ∝ τs. The

additional feature here is the structure on T1 as a function of L, which signals

that the overall relaxation mechanism is either somewhat resonantly enhanced or

suppressed when the time-of-flight across the dot matches even or odd multiples



74 Chapter 5. Confinement-enhanced spin relaxation in large QDs

of the spin precession time for an angle π. Notably, the results for free 2DEG in

the regime with T1 ∝ τs (Fig. 5.3) do not show structure on T1 because there is

a larger spread in the scatter times τs. We checked that when we program that

impurity scattering in a random direction always occurs after a fixed time τs (no

spread), we also observe structure on T1 as a function of Lmfp for a free 2DEG

(not shown).

The most extreme suppression of T1 due to confinement is in ballistic quantum

dots (L ¿ Lmfp) when the size of the system L = 〈Lpr〉. Figure 5.2c indicates

that this is a counter-intuitive result when this condition is met in strong external

fields. The various precession axes get more and more aligned when the external

field is increased to 10 T in x̂-direction, while the spins are prepared in this

direction. Nevertheless, the lowest T1 value that occurs for the various traces in

Fig. 5.1a is for a quantum dot system of L = 1.1 µm in a field of Bext = 10 T.

Due to the initial spin state in the x̂-direction, spins are initially precessing

with relatively small cone angles around these effective magnetic fields, and all

electrons will maintain a large component in the x̂-direction. This results only in a

small reduction of 〈Sx〉. Further relaxation for the ensemble only progresses when

spins hop onto wider precession cone angles, which only occurs at a scatter event.

Thus, more scattering leads to more rapid relaxation, in particular when L is an

odd multiple of 〈Lpr〉, and most rapidly when L = 〈Lpr〉. The reason that this

results in a very fast relaxation mechanism for small systems in strong magnetic

fields is that the precession and scatter times that underlie this mechanism are

then very short.

5.5 Conclusions

In conclusion, we have shown that the relaxation time T1 for a spin population

in a certain 2DEG material can be strongly decreased when bringing the size of

the system from free 2DEG down to micronscale quantum dots. The strongest

suppression is found for ballistic systems of a size L that equals the precession

length 〈Lpr〉. Here, frequent scattering on the edge of the dot rapidly drives

precession onto wider and wider cone angles, and this effect is resonantly enhanced

in all systems where L equals an odd multiple of 〈Lpr〉. We believe our results are

very useful for comparison to experimental results on this type of systems, since

we can use realistic device and SO parameters. Furthermore, the T1 values that

we calculate match very well with our recent experimental results on micronscale

quantum dots as presented in Chapter 4 of this thesis [13].
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Chapter 6

Non-local detection of resistance

fluctuations of an open quantum dot

Abstract

We investigate quantum fluctuations in the non-local resistance of
an open quantum dot which is connected to four reservoirs via quan-
tum point contacts. In this four-terminal quantum dot the voltage
path can be separated from the current path. We measured non-
local resistance fluctuations of several hundreds of Ohms, which have
been characterized as a function of bias voltage, gate voltage and
perpendicular magnetic field. The amplitude of the resistance fluc-
tuations is strongly reduced when the coupling between the voltage
probes and the dot is enhanced. Along with experimental results, we
present a theoretical analysis based on the Landauer-Büttiker for-
malism. While this theory predicts non-local resistance fluctuations
of about 20 times larger amplitude than what has been observed,
agreement with theory is very good if it is scaled with a factor that
accounts for the influence of orbital dephasing inside the dot. This
latter case is in reasonable agreement with an independently deter-
mined time scale for orbital dephasing in the dot.

This chapter is based on Ref. 8 on p. 131.
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6.1 Introduction

When a conducting solid-state system is smaller than the phase coherence length

of the electrons, its electrical conductance is significantly influenced by quantum

interference. For diffusive thin films this results in phenomena known as universal

conductance fluctuations and weak localization [1, 2, 3, 4]. Similar conductance

fluctuations and localization phenomena are observed in micron-scale ballistic

quantum dots, since these behave in practice as chaotic cavities due to small shape

irregularities in the potential that defines the dot. These conductance fluctuations

have been extensively studied for two-terminal quantum dots [5, 6, 7, 8], i.e.

systems with only a source and a drain contact. However, for quantum dots

this two-terminal conductance is often influenced by Coulomb blockade and weak

localization effects, which complicate an analysis when one aims at studying other

effects.

We present here a study of fluctuations in electron transport in a four -terminal

ballistic quantum dot. The dot is coupled to four reservoirs via quantum point

contacts (QPC). In such a system, the voltage path (with probes at voltage V+

and V−) can be separated from the path that is used for applying a bias current

I (see Fig. 6.1). Consequently, one can measure so-called non-local [9, 10, 11,

12] voltage signals that are purely due to quantum fluctuations of the chemical

potential [13] inside the dot, and for which a naive classical analysis predicts a

signal very close to zero. For linear response, this is expressed as a non-local

resistance Rnl = (V+ − V−)/I (this non-local resistance will fluctuate around

a value that is very close to zero Ohm, and is therefore studied in terms of

resistance rather than conductance). Increasing the number of open channels in

the voltage probes will result in enhanced dephasing for the electronic interference

effects. With a four-terminal system, one can study this directly since it results

in a reduction of the amplitude of the non-local resistance fluctuations. Notably,

such a reduction of the fluctuation amplitude does not occur upon increasing

the number of open channels in a two-terminal system [14]. Furthermore, such

a four-terminal systems could be used for studying signals that are due to spin.

In a strong magnetic field QPCs can be operated as spin-selective injectors or

voltage probes [15]. This can be used to generate and detect an imbalance in the

chemical potential for spin-up and spin-down electrons [16], similar to non-local

spin-valve effects observed in metallic nanodevices [17]. Also here, a four-terminal

dot is an interesting alternative to work on spin physics in dots with two-terminal

devices [18, 19, 20]. However, if such a system is smaller than the electron phase
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Figure 6.1: Electron microscope image of the device studied in this article. The
position of the reservoirs used for current biasing (I+ and I−) and voltage probes (V+

and V−) is indicated, as well as the numbering of the gates labeled g1-g6. Unless
stated otherwise, all results presented in this article were obtained in this non-local
configuration.

coherence length, the non-local signals with information about spin will also show

fluctuations that result from interference of electron trajectories [21].

In this chapter, we focus on our first experiments with such a four-terminal

quantum dot. We aimed at characterizing the non-local resistance fluctuations,

and studying the influence of the voltage probes on the typical amplitude of

these fluctuations. As a comparison with our experimental results we present a

numerical simulation of the non-local resistance, based on the Landauer-Büttiker

formalism [9, 22] and the kicked rotator [23, 24].

The outline of the chapter is as follows: Section 6.2 presents the experimental

realization. In section 6.3, we present measurements of the non-local resistance as

a function of bias voltage, gate voltage, and magnetic field, and confirm that the

observed fluctuations in the non-local resistance are the four-terminal equivalent

of universal conductance fluctuations in two-terminal systems. In section 6.4, we

analyze how the typical amplitude of the measured non-local resistance fluctua-

tions depends on the number of open channels in the voltage probes. Section 6.5

presents our theoretical analysis with a comparison to the experimental results,

before ending with conclusions.
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6.2 Experimental realization

Our device was fabricated using a GaAs/AlxGa1−xAs heterostructure containing

a two dimensional electron gas (2DEG) 75 nm below the surface, purchased from

Sumitomo Electric Co. At 4.2 K, the mobility was µ = 86 m2/Vs and the

electron density was ns = 2.4 · 1015 m−2. The dot was designed with an area of

2 × 2 µm2. Figure 6.1 shows and electron microscope image of the device. Six

depletion gates were deposited on the surface (15 nm of Au with a Ti sticking

layer) and were used for defining the dot in the 2DEG. We estimate that the

depletion width around the gates was about 100 nm, such that the electron gas

area Adot inside the dot was about 3.2 µm2. With these six gates the dot could be

coupled to the four reservoirs via QPCs in a controllable manner. All four QPCs

showed clear quantized conductance steps [25, 26] in measurements where only the

corresponding pair of gates were depleting the 2DEG. Note that throughout this

article we use that a QPC with a conductance of 2e2/h is defined as having one

open channel (denoted as N = 1), i.e. we neglect spin when counting channels.

The four reservoirs were connected to macroscopic leads via Ohmic contacts,

which were realized by annealing a thin Au/Ge/Ni layer that was deposited on

the surface.

All the measurements were performed with the sample at a temperature of

130 mK. However, the temperature dependence of our data saturated when cool-

ing below ≈ 400 mK, so we will assume this value for the effective electron

temperature. We used a current bias I with standard ac lock-in techniques at 13

Hz. Unless stated otherwise, we used I = 1 nA. The non-local resistance Rnl was

then recorded as the zero-bias differential resistance dV/dI, with V defined as

V ≡ V+− V−. We used a floating voltmeter to measure V , thus being insensitive

to the voltage across the dot along the current path, and thereby insensitive to

Coulomb blockade and weak localization effects. On the current path, only the

I− reservoir was connected to the grounded shielding of our setup, and all gate

voltages were applied with respect to this ground.

A magnetic field could be applied, with an angle of 7o with respect to the

2DEG plane (determined from standard Hall measurements and electron focusing

effects, discussed below). The perpendicular component of this field was used for

studying the dependence of the non-local resistance on perpendicular magnetic

field. The component of the magnetic field parallel with the 2DEG plane was

oriented perpendicular to the current path. While this parallel field was about

ten times stronger than the perpendicular field, the orbital effects associated
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Figure 6.2: Gray scale plot of the non-local resistance Rnl as a function the voltages
applied to gates g1 and g6. The axes also show the corresponding number of open
channels for the V+ and V− probes. The gray scale shows Rnl at a scale from −500 Ω
(black) to 500 Ω (white). The value of Rnl fluctuates around zero Ohm, with a typical
amplitude that decreases when the number of open channels in the V+ and V− probes
increases. The QPCs formed by gates g2 and g3, as well as g4 and g5 (defining the
current path) had a fixed conductance of 2e2/h each. Data taken in zero magnetic field
at 130 mK.

with this parallel field are negligibly small, and it can be disregarded for all of

the experimental results presented here (and weak enough to not significantly

reduce the amplitude of resistance fluctuations [27, 28, 29]).

6.3 Non-local resistance fluctuations

Figure 6.2 shows the non-local resistance Rnl as a function of the voltage applied

to gate g1 and gate g6. The other four gate voltages were kept constant during

this measurement, with the QPCs in the current path at a conductance of 2e2/h

each (one open channel, N = 1). The range of gate voltage for g1 and g6 used

here corresponds to opening the voltage-probe QPCs from nearly pinched off
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(N = 0) up to about N = 8 open channels. As a function of these gate voltages,

the non-local resistance shows a random pattern of fluctuations around zero Ohm,

with maximums and minimums up to about ±500 Ω. Notably, the change in gate

voltage needed to change Rnl significantly (one fluctuation), is very similar to the

change in gate voltage needed for increasing the number of open channels in a

QPC by one. This corresponds to changing the shape of the potential that forms

the dot by a distance of about half a Fermi wavelength, which is consistent with

the length scale needed for significantly changing a random interference pattern of

electron trajectories. These non-local resistance fluctuations as a function of the

gate voltage on g1 and g6 were highly reproducible, and indeed a so-called finger

print of the sample. The identical measurement repeated after 4 days (during

which we performed strong magnetic field sweeps and a temperature cycle up to

4.2 K) showed nominally the same fluctuation pattern as in Fig. 6.2.

In Fig. 6.3 we present results of studying the dependence of the amplitude of

the non-local resistance fluctuations on the amplitude of the applied bias current

I. The figure shows measurements of Rnl as a function of the gate voltage Vg1.

The results show several fluctuations that are reproducible, but decreasing in

amplitude upon increasing the amplitude of the bias current. In this experiment,

the conductance of the other three QPCs was fixed at 2e2/h. The amplitude

of the fluctuations reduces when the measurement averages over contributions

of electrons in uncorrelated orbitals, that is, averaging over electrons that differ

in energy by more than the Thouless energy [3, 4]. When the current bias is

increased, the corresponding voltage bias Vbias increases as well (see labels in the

Fig. 6.3), and this is used to experimentally estimate the Thouless energy ETh

for our system. The amplitude of the fluctuations starts to decrease significantly

around Vbias ≈ 125 µV. This is close to a theoretical estimate [30, 31] for ETh =
~vF

L
≈ 80 µeV, where vF the Fermi velocity and L the effective width of the dot.

We now turn to measurements of the non-local resistance as a function of

perpendicular magnetic field, presented in Fig. 6.4a. Here the conductance of

all four QPCs was fixed at 2e2/h. The trace of Rnl shows random fluctuations

of similar amplitude as observed in the gate voltage dependence. For estimat-

ing the typical magnetic field scale that significantly changes the value of Rnl

(the correlation field ∆Bc), we apply an established method from such studies

on similar two-terminal quantum dot systems (following Refs. [32, 33]). For this,

we took the averaged power spectrum SB(fB) of traces as in Fig. 6.4a (only

using the low-field data in the range ±140 mT, see below). On a logarithmic

scale, SB(fB) closely resembles a straight line with negative slope in the fre-
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Figure 6.3: The non-local resistance Rnl as a function of the voltage Vg1 applied to
gate g1, taken for different amplitudes of the bias current I in the lock-in detection
scheme (from 1 nA up to 50 nA). The legend shows the corresponding values for
the voltage drop across the quantum dot along the current path, obtained as Vbias ≈
I × 2

2e2/h
. The curves show a reduction of the amplitude of the non-local resistance

fluctuations with increasing Vbias. The conductance of the QPC formed by g5 and
g6 (defining the V− probe) is set at 2e2/h. For further experimental parameters see
Fig. 6.2.

quency range between fB = 0.05 and 0.5 cycles per mT (and then levels off),

very similar to the results from the studies with two-terminal dots [32, 33]. We

fit this part of the spectrum to the form predicted by semiclassical theory [32, 33],

SB(fB) = SB(0)(1 + 2παφ0fB) · exp (−2παφ0fB), where φ0 = h/e the flux quan-

tum, and α the inverse of an effective area for orbitals in the dot which defines

∆Bc = αφ0. This yields ∆Bc = 2.1 ± 0.8mT (the large error bar must be as-

sumed since we could only measure a small number of independent fluctuations

for this analysis). This is in good agreement with theory for universal conduc-

tance fluctuations [3], which predicts ∆Bc ≈ φ0

Adot
= 1.3 mT (simply expressing

the magnetic field needed for adding one flux quantum φ0 through the area of

the dot). It is commonly observed that ∆Bc is enhanced by a factor up to about
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∼ 2 due to flux cancelation effects for electrons that move ballistically between

the edges of the dot [34, 2, 30]. The measured value for ∆Bc is also in agreement

with the observation of a weak-localization peak around zero magnetic field [3]

observed in the two-terminal resistance (breaking the time-reversal symmetry),

which has a width of the same order of magnitude as ∆Bc.

For confirming that changing the field by more than ∆Bc gives access to

a statistically independent set of fluctuations, we studied fluctuations in Rnl

as a function of gate voltage Vg1, for different values of the perpendicular field

(Fig. 6.4b). This data confirms that changing the perpendicular magnetic field in

steps of 14 mT gives access to completely different patterns of random fluctuations

in Rnl.

The inset of Fig. 6.4a shows the appearance of much higher peaks in Rnl

(up to 3 kΩ) for perpendicular magnetic fields stronger than ±140 mT. We

could confirm that these peaks are due to electron focusing and skipping orbit

effects. With only the three gates g1, g2 and g3 depleting the 2DEG, our device

is identical to devices used for electron focusing experiments by Van Houten et

al. [35], and we observe very similar focusing peaks as in this work at only one

polarity of the magnetic field. With the dot formed, these effects cause peaks in

Rnl at both polarities of the magnetic field. The onset of these effects at ±140 mT

agrees with a focusing radius of about 1 µm.

6.4 Influence of voltage probes

The presence of additional voltage probes on a quantum dot system will act as

source of dephasing for the electrons in the dot, and this effect should increase

when the coupling between the dot and the probe reservoirs is enhanced. Earlier

work recognized that non-local voltage probes on a mesoscopic system are a

source of dephasing [36, 37], and in theoretical work an additional voltage probe

is often used to model a source of dephasing [38, 39]. This can be directly studied

with our system. The amplitude of the non-local resistance fluctuations (which

result from electron phase coherence) should decrease when the voltage probes

are tuned to carry more open channels. To study this effect we used data sets

of the type presented in Fig. 6.2. We concentrate on the case where the time-

reversal symmetry is broken (β = 2) by applying weak magnetic fields, since this

allows us to get statistics from a larger set of data.

For a data set as in Fig. 6.2, the total number of open channels in the voltage

probes (NV + +NV−) is lowest in the bottom left corner of the graph, and highest
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Figure 6.4: (a) The non-local resistance Rnl as a function of magnetic field. The
magnetic field is given on the scale of the perpendicular component of the total applied
field. For this measurement all four QPCs are defined to have a conductance of 2e2/h.
The inset presents the same data for a wider range of the magnetic field, showing the
onset of electron focusing effects for perpendicular fields larger than ± 140 mT. The
curves in (b) show the non-local resistance as a function of the voltage applied to gate
g1 at different values of the perpendicular magnetic field. The conductance of the QPC
formed by g5 and g6 (defining the V− probe) is kept at 2e2/h. For further experimental
parameters see Fig. 6.2.
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in the top right corner. Inspection of Rnl in Fig. 6.2 confirms that the typical

amplitude of the fluctuations decreases when the voltage probes get more open

channels. For a more quantitative analysis of this observation, we determined

the mean 〈Rnl〉 and root-mean-square (rms) standard deviation ∆Rnl of the non-

local resistance for traces recorded at a fixed number of channels in the voltage

probes. This can be obtained by following Rnl along lines with constant NV + +

NV−. The theory in the next section shows that, on such a line, ∆Rnl should

also show a weak dependence on NV + - NV−. However, we do not have sufficient

data to study this, and simply average along lines with constant NV + + NV−.

The results of this analysis are presented in Fig. 6.5. The large error bars for

〈Rnl〉 and ∆Rnl in Fig. 6.5 are due to the fact that we could only record a finite

number of independent data sets with fluctuations in Rnl (see Ref. [40] for further

details).

The results in Fig. 6.5 confirm that 〈Rnl〉 is very close to zero, for all values of

NV + + NV−. More interestingly, ∆Rnl smoothly decreases as a function NV + +
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NV−, demonstrating directly the dephasing influence of the voltage probes for

the electrons in the quantum dot. The typical fluctuation amplitude approaches

zero when the dot becomes fully open (very strong coupling to a reservoir). For

a quantitative evaluation of this observation, we will first present a theoretical

model in the next Section.

6.5 Theoretical analysis and discussion

For our theoretical modeling we consider a ballistic chaotic cavity connected to

four reservoirs through quantum point contacts. A net current I flows between

two of the contacts (from I+ to I−), while there is no net current flowing into

two contacts used as voltage probes (contacts V+ and V−). We use the Landauer-

Büttiker formalism to derive the relations between the current I and the voltages

of the four contacts [21],

I =
1

2

(
2e2

h

)
[((N1 − T11) + (N2 − T22) + T12 + T21)

Vbias

2

+(T23 − T13)V3 + (T24 − T14)V4], (6.1a)

V3 =
Vbias

2

(N4 − T44)(T31 − T32) + T34(T41 − T42)

(N3 − T33)(N4 − T44)− T34T43

, (6.1b)

V4 =
Vbias

2

(N3 − T33)(T41 − T42) + T43(T31 − T32)

(N3 − T33)(N4 − T44)− T34T43

, (6.1c)

where we used (for concise labeling) notation according to

I+ ↔ 1,

I− ↔ 2,

V+ ↔ 3,

V− ↔ 4.

Here the Tij are the transmission probabilities from contact i to j, while the Ni

are the number of open channels in contact i. The voltages Vi are all defined

with respect to a ground [41] which is defined such that V1 = +Vbias/2 and

V2 = −Vbias/2, where Vbias = V1 − V2 is the voltage across the dot in the current

path that is consistent with a bias current I. The measured voltage V in the

experiments corresponds to the quantity V = V3−V4, and the non-local resistance

is then

Rnl =
V3 − V4

I
. (6.2)
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We obtain the mean and root-mean-square (rms) of the Rnl by generating a set

of random scattering matrices with the kicked rotator [23, 24]. The kicked rotator

gives a stroboscopic description of the dynamics in the quantum dot, which is

a good approximation of the real dynamics for time scales larger then the time

of flight across the dot. The particular implementation we used is described in

detail in Ref. [42]. In a certain parameter range, this model gives results which

are equivalent to random matrix theory [3]. In our simulations we use parameters

in this range, the details of which can be found in Ref. [42].

Figure 6.6 presents the results from these numerical simulations. We focus

on analysis of the fluctuations in Rnl, since the mean values of Rnl simply always

gave zero, in agreement with the experimental results [21]. Figure 6.6a shows the

dependence of the fluctuations in Rnl on the total number of open channels in the

voltage probes NV + + NV−, for systems with time-reversal symmetry (β = 1)

and broken time-reversal symmetry (β = 2). The results in Fig. 6.6b show that

the fluctuations in Rnl have (besides a strong dependence on NV + + NV− as in

Fig. 6.6a) a weak dependence on the difference NV + - NV− (presented only for

the case β = 2). This is not further studied in detail, and the results in Fig. 6.6a

present values that are averaged over all the possible combinations NV + - NV−,

as in the analysis of the experimental results.

Qualitatively, the theoretical results of Fig. 6.6a agree very well with the ex-

perimental results of Fig. 6.5. However, while the model system gives non-local

resistance Rnl values that fluctuate with an rms value of a few kΩ, the experi-

mental values (β = 2) are only of order 200 Ω. The numerical and experimental

values differ by a factor of about 20, as illustrated by the fit in Fig. 6.5: Fitting

the theoretical data points of Fig. 6.6 on the experimental values, using a simple

pre-factor that scales the theoretical values as fitting parameter, gives 0.05 ≈ 1
20

for this pre-factor.

The discrepancy between the numerical and the experimental results is most

likely due to orbital dephasing for electrons inside the quantum dot. Moreover,

such dephasing is possibly consistent with the simple scaling that was needed

to obtain agreement between theory and experiment. Theory for two-terminal

quantum dots gives that the influence of dephasing on the amplitude of conduc-

tance fluctuations is that it scales the amplitude down by a factor (1 + τd/τφ),

where τd is the mean dwell time in the dot and τφ is the dephasing time [43, 38].

Assuming a similar approach for our system, then gives (1 + τd/τφ) ≈ 20. How-

ever, it is at this stage not clear whether this theory work for two-terminal dots

can be applied to our system, and we can also not rule out that the effective
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Figure 6.6: (a) Theoretical rms values of fluctuations in the non-local resistance
(∆Rnl), as a function of the total number open of channels in the voltage probes
NV + + NV−. The two curves present results for a system with (β = 1) and without
(β = 2) time-reversal symmetry. The QPCs for the current path were assumed to have
a conductance of 2e2/h. The data is obtained from a Landauer-Büttiker description of
the quantum dot system and numerical simulations based on random matrix theory.
(b) Theoretical rms values of fluctuations in Rnl, as a function of the difference in
number open of channels in the two voltage probes, NV + − NV−, at fixed values of
NV + + NV−. The data in a) presents ∆Rnl values for NV + + NV−, that have been
averaged over all possible combinations of NV + −NV−.
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electron temperature of about 400 mK plays a role in reducing the fluctuation

amplitude. Nevertheless, it is interesting to compare the factor (1 + τd/τφ) that

we need to use here to independently determined values for τd and τφ.

For the dwell time we use the expression[32] τd = h/NΣ∆m, where NΣ the

total number of open modes in the contacts to the dot, and ∆m = 2π~2/m∗Adot

the mean spacing between energy levels in the dot. This gives τd ≈ 470 ps for

our system tuned to have all four QPCs at N = 1. The most reliable method

for estimating the dephasing time τφ is based on a measurement of the depth

of the weak localization dip in the two-terminal conductance [30, 5]. In such

measurements on our system (with all four QPCs tuned to N = 1) we observed

a weak localization dip of δg = 0.045± 0.01(e2/h) in a background of 0.88(e2/h)

(the large error bar is again due to the fact that we could only average over a few

independent fluctuations in the two-terminal conductance). Following Refs. [30,

5], we derive the dephasing time using δg = (e2/h) · N/(2N + Nφ) and τφ =

h/Nφ∆m. Here Nφ is the number of open modes to a fictitious voltage probe that

is responsible for dephasing in the dot, and N is now the number of modes per

lead for a two-terminal dot, so we set it to N = 2 for our system with four QPCs

tuned to N = 1. This yields Nφ ≈ 40 and τφ = 46 ± 12 ps for our system at

∼ 400 mK, in reasonable agreement with earlier two-terminal studies on similar

systems [30, 5, 31].

The independently determined values for τd and τφ give for the factor (1 +

τd/τφ) ≈ 11, which differs only by a factor ∼ 2 from the value 20 that we ob-

tained from the scaling. This supports the assumption that the reduction in the

fluctuation amplitude ∆Rnl is due to orbital dephasing inside the dot. However,

the above analysis is only valid for all QPCs of the dot tuned to N = 1. While

we can apply a single scaling factor for all values of NV + + NV− in Fig. 6.5,

τd decreases in fact significantly with increasing NV + + NV−. Moreover, it is

tempting to consider that the reduction in ∆Rnl can be understood by assuming

that dephasing in the dot increases the value of NV + + NV− to an effective value

of NV + + NV−+Nφ. However, this is clearly not in agreement with the observed

drop in ∆Rnl over the interval NV + + NV− in Fig. 6.5. This indicates that new

theoretical work specific for the role of dephasing for a four-terminal dot is needed

for a complete understanding of the data in Fig. 6.5.
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6.6 Conclusions

We investigated quantum fluctuations in electron transport with a ballistic, chaotic

quantum dot that was strongly coupled to four reservoirs via quantum point

contacts. The four-terminal geometry allowed for studying fluctuations in the

non-local resistance. We used the dependence of the non-local resistance fluctua-

tions on bias voltage, gate voltage and magnetic field to show that these are the

equivalent of universal conductance fluctuations in two-terminal systems, and

we showed that with a four-terminal system these fluctuations can be studied

without being hindered by Coulomb-blockade and weak-localization effects. Fur-

thermore, the four-terminal geometry was used to demonstrate directly that the

amplitude of fluctuations in electron transport is reduced when the coupling be-

tween a quantum dot system and voltage probes is enhanced. Here, we obtain

good qualitative agreement with a model based on Landauer-Büttiker formalism

and random matrix theory, but a quantitative evaluation indicates that there

is an intrinsic orbital dephasing mechanism that reduces the amplitude of the

non-local resistance fluctuations. Our results are of importance for further work

with four-terminal quantum dots on dephasing and electron-spin dynamics in

such systems, where the electron-transport signals of interest will always have

fluctuations of the type that is reported here.

We thank Dominik Zumbühl and Carlo Beenakker for discussions, and the

Dutch Foundation for Fundamental Research on Matter (FOM) for financial sup-

port.
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Chapter 7

The annealing mechanism of

AuGe/Ni/Au ohmic contacts to a

two-dimensional electron gas

Ohmic contacts to a two-dimensional electron gas (2DEG) in GaAs
heterostructures are often realized by annealing of AuGe/Ni/Au that
is deposited on its surface. We studied how the quality of this type
of ohmic contact depends on the annealing time and temperature,
and how these parameters depend on the depth of the 2DEG below
the surface. Combined with transmission electron microscopy and
energy-dispersive X-ray spectrometry studies of the annealed con-
tacts, our results allow for identifying the annealing mechanism and
describing a model that can predict optimal annealing parameters for
a certain heterostructure.

This chapter is based on Ref. 3 on p. 131.
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7.1 Introduction

Epitaxially grown GaAs/AlGaAs heterostructures that contain a two-dimensional

electron gas (2DEG) are widely used for electron transport studies in low-dimen-

sional systems [1]. Establishing electrical contacts to the 2DEG is a crucial step in

device fabrication with these heterostructures. A commonly used recipe for mak-

ing ohmic contacts is annealing of a AuGe/Ni/Au alloy that has been deposited

on the heterostructure surface [2]. High-quality heterostructures are often only

available in a limited quantity, and it is desirable to minimize the heating that

is needed for annealing the contacts to avoid damaging the heterostructure. A

model that predicts optimal annealing times and temperatures for a heterostruc-

ture with the 2DEG at a certain depth is therefore very valuable.

We present here a study of the annealing mechanism for this type of ohmic

contact, and a model that can predict optimal annealing parameters for a cer-

tain heterostructure. We used electron transport experiments to study how the

quality of AuGe/Ni/Au based ohmic contacts depends on annealing time and

temperature, and how these parameters change with the depth of the 2DEG be-

low the surface. These results confirm that the annealing mechanism cannot be

described by a single simple diffusion process. Cross-sectional studies of annealed

contacts with Transmission Electron Microscope (TEM) and Energy Dispersive

X-ray (EDX) techniques were used for identifying a more complex annealing

mechanism, that is in agreement with the results from our electron transport

studies.

The AuGe/Ni/Au contact was first introduced by Braslau et al. [3] to contact

n-GaAs, and several studies aimed at understanding the contact mechanism for

this type of contact [4, 5, 6, 7, 8, 9]. Later studies focussed on the formation

of an ohmic contact to a 2DEG in a GaAs/AlGaAs heterostructure [10, 11, 12],

but do not report how the optimal annealing parameters depend on the depth of

the 2DEG below the surface. A number of these studies suggest that a contact

is formed because a pattern of Au/Ni/Ge spikes that originate from the metal-

lization penetrate the heterostructure, just beyond the depth of the 2DEG. We

observe, instead, a mechanism where metal-rich phases only penetrate the het-

erostructure over a distance that is shorter than the depth of the 2DEG. The

mechanism that results in a good contact is then similar to a process that has

been described [5] for contacts to n-GaAs: during annealing, the AuGe/Ni/Au on

the surface segregates in Ni and Au domains, where the Ni domains contain most

of the Ge. These domains penetrate the heterostructure and grow towards the
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2DEG in large grains rather than narrow spikes. For optimal electrical contact

conditions the Au and Ni grains do not reach the 2DEG. The contact resistance

decreases and the contact becomes ohmic because Ge diffuses deeper, forming

a highly doped AlGaAs region between the 2DEG layer and metal-rich phases

at the surface [3]. Recently Sai Saravanan et al. found that also Ni and Au

diffuse deeper into the heterostructure in comparable concentrations as Ge [12].

Nevertheless, we find that even for very long annealing times, when the contact

resistance has significantly increased compared to the optimal contact, the Au

and Ni-rich phases still do not penetrate the 2DEG.

7.2 Fabrication

We studied annealed AuGe/Ni/Au contacts to three GaAs/AlGaAs heterostruc-

tures with the 2DEG at a heterojunction at 70 nm (wafer A), 114 nm (wafer B),

and 180 nm (wafer C) below the surface of the wafer. These wafers have similar

values for the 2DEG electron density ns and mobility µ (around 2 · 1015 m−2 and

100m2/Vs, respectively, results for 4.2 K and samples kept in the dark during cool

down). For all three wafers the layer structure (from the surface down) is very

similar besides the depth of the 2DEG. The top layer is a ∼ 5 nm n-GaAs capping

layer, then a AlxGa1−xAs doping layer (Si at ∼ 1 · 1018 cm−3) with x ≈ 0.32, of

thickness 30 nm (A), 72 nm (B) or 140 nm (C). After this follows an undoped

AlxGa1−xAs buffer layer (∼ 35 nm thick). The 2DEG is located at the interface

with the next layer, which is a thick undoped GaAs layer.

We studied 200 x 200 µm2 contacts that were defined by optical lithography

on a 1 mm wide and 2 mm long etched mesa. An electron-beam evaporator was

used for deposition of subsequently 150 nm AuGe of eutectic composition (12

wt% Ge), 30 nm of Ni and 20 nm of Au. Subsequent annealing took place in a

pre-heated quartz furnace tube in a N2 flow to prevent oxidation. We have used

three different annealing temperatures, 400 ◦C, 450 ◦C and 500 ◦C (all higher than

the AuGe eutectic melting temperature of 363 ◦C). The samples were placed on

a quartz boat and then moved into the center of the oven for a various annealing

times. Figure 7.1a shows the temperature of the surface of the quartz boat as a

function of time for an oven temperature of 450 ◦C. We assume that the sample

temperature closely follows the temperature of the quartz boat, since we assured

a good thermal contact over the full surface of the sample.

We measured the current-voltage (IV) characteristics of all contacts to de-

termine optimal annealing parameters. We found that a suitable and sufficient
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definition for an optimal ohmic contact is a contact with the lowest zero-bias

resistance at 4.2 K. The typical resistance for such a contact is ∼ 20 Ω, but we

have observed resistances as low as 5 Ω. All contacts defined as optimal in this

manner showed highly linear IVs up to at least 1 mV (over and under annealed

contacts did show non-linear IVs due to effects like Schottky or tunnel barriers in

the contacts). Further, all these optimal contacts showed a strong monotonous

reduction of the contact resistance upon lowering the sample temperature from

300 K to 4.2 K. Highly over and under annealed contacts showed an increase of

the contact resistance upon cooling to 4.2 K.

7.3 Electrical measurements

We used a current-biased 4-terminal configuration to measure the voltage drop

across a single contact, with two terminals attached to the metal bond wire to

the ohmic contact, and two others attached via the 2DEG (this allowed us to

use a standard sample design in our fabrication facility). We are aware that

the Transmission Line Method (TLM) [13] is a better method for determining

the exact value of a contact resistance, but this is not needed for our approach.

We compare resistances of various annealed contacts that were fabricated under

identical conditions besides the variation in annealing time and temperature.

Within such a set, we determine which contacts have the lowest contact resistance.

When reproducing our results with contacts that were fabricated in a different

batch (using the same electron-beam evaporator, but after replenishing the AuGe

target), we find that the values of the lowest contact resistance can be different

up to a factor 2 around the typical result. We attribute these batch-to-batch

fluctuations to variations in the exact composition of the AuGe/Ni/Au layer

that we deposit. The optimal annealing times, however, show batch-to-batch

fluctuations of only 10%. Thus, our approach for determining optimal annealing

conditions does not depend on the absolute value of the contact resistance.

Figure 7.1b shows a typical result, from which we determine the optimal an-

nealing time for contacts to wafer C for the case of annealing with the oven at

450 ◦C. Contact resistance data that is denoted as 〈R〉 is the average resistance

measured on a set of 8 identical contacts, the error bar is an indication for the

standard deviation. The results in Fig. 7.1b show a clear minimum in contact

resistance for annealing times near 5 minutes. We fit a parabola (phenomeno-

logical ansatz) to the log〈R〉 values of these data points, and define the optimal

annealing time as the time coordinate of the minimum of the parabola. In this
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Figure 7.1: (a) Temperature of the quartz boat as a function of time for an oven
temperature of 450 ◦C. Horizontal dashed line indicates the AuGe melting temperature
T = 363 ◦C. The vertical dashed line indicates our definition of the annealing time tA,
the time at which the boat is taken out of the oven. (b) Average contact resistance
〈R〉 as a function of annealing time tA for contacts on wafer C, annealed at 450 ◦C.
A parabolic fit is made to estimate the annealing time where the resistance has a
minimum. (c) Overview of optimal annealing times tA,Opt as a function of depth d of
the 2DEG beneath the wafer surface for T = 400, 450 and 500 ◦C. The three gray lines
(bottom to top for 400, 450 and 500 ◦C) are results of fitting a simple diffusion model
to the experimental data (see text), which does not yield good fits.
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manner, the optimal annealing times tA,Opt are obtained for contacts on wafers

A, B and C, annealed at each of the temperatures.

Figure 7.1c presents these optimal annealing times. As expected, the optimal

annealing time increases as the temperature is decreased, and increases as the

depth d of the 2DEG increases. While it is known that several simultaneous

diffusion processes play a role in contact formation [5], we will, for the sake of

argument, show that a simple diffusion model has little value for predicting how

optimal annealing times depend on the depth d and the annealing temperature.

For this simple diffusion model, we assume that a certain dopant (with fixed

concentration C0 at the surface) diffuses into the heterostructure. The relevant

solution to Fick’s second law is then

C = C0 erfc
x√
4Dt

. (7.1)

Here C is the doping concentration at time t and depth x into the heterostructure,

and D is the diffusion constant (erfc is complementary error function). Since

the temperature of our sample is not constant (see Fig. 7.1a) we will use the

measured temperature profile T (t) to integrate the diffusion constant over time,

and use in Eq. 7.1
∫

D(t)dt instead of Dt, where

D(t) = D0 exp(− Ea

kBT (t)
), (7.2)

where Ea is an activation energy. We assume that an optimal contact then always

occurs for a certain value for C/C0 at the depth of the 2DEG (x = d). We define

the annealing time as the time from start to the moment when the boat is taken

out of the oven, but integrate over the entire time span that the sample is at

elevated temperatures, (as shown in Fig. 7.1a, fully including the cooling down).

This gives a model with the activation energy Ea, diffusion constant D0 and

concentration C/C0 as fitting parameters.

The gray lines Fig. 7.1c shows the best fitting result that reasonably covers

all 9 data points in a single fit. Besides the fact that the shape of the traces only

poorly matches the trend in the data, the parameter values give unreasonable

results. The temperature dependence alone governs the fitting result for Ea,

giving here 0.15 eV. This is on the low side for typical values for diffusion in

GaAs materials (∼ 1 eV) [7]. For fixed Ea, various combinations of C/C0 and

D0 give identical results. When assuming a typical value D0 ∼ 3 · 10−7 m2/s (for

diffusion of Au in GaAs [7]), this fit yields C/C0 very close to 1, i.e. completely

saturated diffusion. This is in contradiction with the clear dependence on depth
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that we observe (and this remains the case when allowing for Ea up to ∼ 1 eV,

but then the fit does not cover all 9 data points at all). Thus, we find that

predicting optimal annealing times with simple diffusion (according to tA,Opt ∝ d2

at fixed temperature) does not work and that a more complex model needs to be

considered.

7.4 Cross-sectional TEM imaging

We have studied the contact formation using cross-sectional TEM imaging of con-

tacts at several stages during the annealing process. The samples were prepared

for TEM imaging by using a Focussed Ion Beam (FIB) to slice out a microme-

ter thin piece of the measured contact. By further thinning using the FIB, the

thickness was reduced to 100 nm.

Figure 7.2a shows an overview of an optimally annealed contact on wafer C

which was annealed for 5 minutes at 450 ◦C. The composition of the various

phases has been determined by Energy Dispersive X-ray (EDX) analysis and is

illustrated in Fig. 7.2b. From bottom to top we recognize the GaAs substrate,

and an AlAs/GaAs superlattice to smoothen the surface of the substrate. On top

of that we find another layer of epitaxially grown GaAs and a layer of AlGaAs.

The 2DEG is at the interface of these two layers. The GaAs capping layer that

was originally on top of the AlGaAs layer is no longer visible. Instead we see

large grains of Au and Ni that have penetrated below the original wafer surface.

Both of these phases contain some out-diffused Ga and As, and the Ni forms a

new phase absorbing most of the Ge. We find that the Au grains do not contain

any Ge, consistent with the findings of Kuan et al. [5]. The wide and curved

dark lines going over all the heterostructure layers (most clearly visible in the

GaAs layers) are due to strain induced by the FIB sample preparation and are

not related to the diffusion process.

We find that the Au and Ni grains do not have to penetrate the 2DEG in

order to establish a good electrical contact. We can rule out that we do not see

grains reaching the 2DEG due to the small thickness of the sample slice, since we

observed no substantial variation in the penetration depth of a large number of

Au and Ni grains going along the sample slice. We examined two slices from two

different samples, both with a length of 100 µm, after electrical measurements

confirmed that these contacts were indeed optimally annealed.

The TEM image in Fig. 7.2c shows a larger region of an optimally annealed

contact. Large Au and Ni grains that have penetrated the AlGaAs layer can
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be identified. Figure 7.2d shows an over annealed contact on wafer C, that was

annealed for 7 minutes at 450 ◦C. Remarkably, the Au and Ni grains did not

penetrate much further into the AlGaAs, and do still not reach the 2DEG. The

most significant change with respect to Fig. 7.2c is that Au is diffusing underneath

the Ni grains, reducing the total Ni–AlGaAs interface area. The results of Kuan

et al. [5] indicate that this process is mainly responsible for the increase in contact

resistance when a sample is being over annealed.

Kuan et al. [5] report that the contact resistance is sensitive to the ratio of

the total contact area between Au regions and AlGaAs, and that of Ni regions.

The Au–AlGaAs interface is considered a region of poor conductance because the

Au grains (in contrast to Ni grains) do not contain any Ge, such that it cannot

act as a source for diffusion of Ge into the heterostructure. However, it is to our

knowledge not yet understood why the diffusion of Au underneath the Ni grains

at later stages of annealing (when a large amount of Ge already diffused out of

Ni) results in a strong increase of the contact resistance.

7.5 Diffusion model

Our qualitative picture of the formation of an ohmic contact is then as follows. In

the initial stages of the diffusion process Au and Ge separate, and most Ge forms

a new phase with the Ni. At the same time, these Ge-rich Ni grains move to the

wafer surface due to a wetting effect, which results in the situation that the wafer

surface is covered with neighboring Au and Ni grains. Next, both the Au and Ni

grains penetrate into the heterostructure, which is compensated by a back flow of

As and Ga into the Au and Ni grains. Meanwhile, Ge diffuses out of the Ni grains

into the AlGaAs layer, and a good ohmic contact is formed when the AlGaAs

layers are sufficiently doped with Ge al the way up to the 2DEG. In between the

metal-rich phases and the 2DEG also some diffused Ni and Au can be found. At

the same time Au is diffusing underneath the Ni grains, which have the lowest

contact resistance with the doped AlGaAs layer. This increases the interface

resistance between the metallization on the surface and the doped AlGaAs layer.

Thus, the formation of an optimal contact is a competition between these two

processes.

We use the above description to construct a model that predicts the optimal

annealing time for a given annealing temperature and 2DEG depth d. The contact

resistance is then the series resistance of the resistance of the Ge-doped AlGaAs

region (RGe) and the interface resistance between the surface metallization and
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Figure 7.2: (a) Cross-section TEM image of a contact on wafer C, annealed for the
optimal annealing time at 450 ◦C. (b) A sketch of the TEM image in (a) to specify
the various layers and phases. (c) Larger area TEM image of the same contact as in
(a) showing large Au (black) and Ni grains (dark gray) contacting the AlGaAs. (d)
Similar image for a highly over annealed contact. The Au and Ni grains still do not
penetrate the 2DEG, but Au has diffused underneath the Ni grains, which increases
the contact resistance.

this Ge-doped AlGaAs layer (Rif ). We will first assume an anneal temperature T

that is constant in time. We model the resistance of the Ge-doped AlGaAs region

using the result from work on n-GaAs that the contact resistance is inversely

proportional to the doping concentration [8]. Thus, we assume that

RGe ∝
∫

1

C(x)/C0

dx, (7.3)

where C(x)/C0 is the local Ge concentration at depth x as in Eq. 7.1, and where

the integral runs from the depth of the Au and Ni grains to the depth of the
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Figure 7.3: (a) Model for the resistance of an ohmic contact as a function of annealing
time at constant temperature. The resistance RGe of the AlGaAs layers (dashed line)
decreases in time due to increased Ge doping. The interface resistance Rif between
the surface metallization and the Ge-doped AlGaAs layers (solid black line) increases
in time due to a decreasing Ni–AlGaAs interface area. The time where the sum of
these two resistances (gray solid line) shows a minimum defines the optimum annealing
time tA,Opt. (b) Effective velocity of optimal contact formation vocf as a function of
temperature (Eq. 7.6), plotted for parameters that give the best fit in (c). (c) Change
in optimal annealing time as the 2DEG depth is (same experimental data as in Fig. 7.3.
The solid gray lines (left to right for 500, 450 and 400 ◦C) represent fits using the model
of Eqs. 7.5 and 7.6 (see text for details).
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2DEG. The behavior of this equation is that RGe first rapidly decreases, and

then curves off to saturate at a level that is proportional to d (dashed curve in

Fig. 7.3a).

To model Rif , we assume that the increase in resistance for over annealed

contacts is related to the decrease in Ni–AlGaAs interface area. Imagine, for

simplicity, a single, square shaped Ni grain with area ANi = L2
Ni. We model

the reduction of this area as a sideways diffusion process of Au, again with a

time-dependence as simple diffusion analogues to Eq. 7.1. The length of a side is

then reduced as LNi(t) ∼ L0 − 2
√

4DAut, where L0 is the initial grain size, and

DAu the diffusion constant for this process, such that

Rif ∝ 1

(L0 − 2
√

4DAut )2
. (7.4)

For a very wide parameter range, this model gives that Rif increases more or less

linearly in time (solid black curve in Fig. 7.3a). A resistance increase that is much

stronger than linear only sets in when the total interface area approaches zero,

when the contact is already strongly over annealed. The total contact resistance

is the sum of RGe and Rif (gray solid curve Fig. 7.3a), and the optimal annealing

time is then defined as the time where this sum shows a minimum value.

We can reduce the number of fitting parameters for this modeling to only two

with the following approach. For RGe in Eq. 7.3, we assume parameters where

RGe saturates at a value below, but on the order of the optimal contact resistance

Ropt. We also assume that this saturation occurs in a time scale on the order of a

few times the optimal annealing time. For Rif in Eq. 7.4, we assume that it has

a value below Ropt for t = 0, and that it increases more or less in a linear fashion

to a value of order Ropt. This increase should take place in a time scale on the

order of the optimal annealing time. Numerically investigating this model then

shows that it has for a very wide parameter range the behavior that the increase

of optimal annealing time tA,Opt with increasing 2DEG depth d is close to linear.

We can express this using an effective velocity for optimal contact formation vocf ,

tA,Opt = d/vocf . (7.5)

Furthermore, numerical investigation of the temperature dependence shows that

vocf behaves according to

vocf (T ) = v0 exp(− Ea

kBT
) (7.6)

when the diffusion processes that underlie Eq. 7.3 and Eq. 7.4 are both thermally

activated with a similar activation energy Ea. We can now fit this model to our
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experimental data only using Eq. 7.5 and Eq. 7.6, such that we only have v0

and Ea as fitting parameters. In doing so, we take again into account that the

temperature T (t) is not constant during annealing, and use again profiles as in

Fig 7.1a.

The results of this fitting are presented in Fig. 7.3c, and vocf as a function of

temperature for these fitting parameters (Ea = 0.6 eV and v0 = 7.6 ·10−5 m/s) is

plotted in Fig. 7.3b. While it is a crude model, the fits are very reasonable, show-

ing that the model is useful for predicting optimal annealing times. Furthermore,

the value for Ea is a realistic number [7]. Our model also predicts that the mini-

mum value of the resistance that can be achieved for optimally annealed contacts

increases with increasing 2DEG depth. We did not observe such a clear trend,

probably because the resistance of optimal contacts is so low that one needs to

include contributions from 2DEG square resistance around and underneath the

contact when evaluating absolute values (further discussed below).

Our model for the annealing mechanism implies that optimal contacts have

a rather uniform Ge concentration throughout the AlGaAs layers, which results

in a value for RGe of about 10 Ω. This implies that the bulk resistivity in the

doped Ge-doped AlGaAs layer is around 4 Ωm. In turn, this implies that in-plane

electron transport under an optimal contact from the metallization on the surface

to 2DEG on the side of the contact still mainly takes place in the original 2DEG

layer. If the square resistance R¤ for transport in the the original 2DEG layer

does not strongly increase during annealing (R¤ for 2DEG before annealing is

typically 5 Ω), this also implies that the resistance of optimal contacts should be

inversely proportional to the contact area. Thus, measuring whether the contact

resistance depends on contact area or on the circumference of a contact can give

further insight in the annealing mechanism.

We carried out such a study, by varying the shape of contacts. All results

that we discussed up to here were obtained with square contacts with an area A

of 0.04 mm2 and a circumference CL = 4L of 0.8 mm. For the dependence on

contact shape, we measured various sets where we varied the circumference CL

while keeping the area constant at 0.04 mm2, and various sets where we varied

the area while keeping the circumference constant at 0.8 mm. We varied the

shape from smooth circular shape to square shapes with a zig-zag edge at the

50 micronscale, to avoid getting too much resistance contribution from square

resistance of 2DEG right next to a contact (for these devices we used electron-

beam lithography). All contacts were fabricated and annealed in one single batch

to ensure that it is meaningful to compare the values of contact resistance.
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Figure 7.4: Contact resistance 〈R〉 as a function of (a) contact area A for constant
circumference 4L and (b) contact circumference C for constant area A. The error bars
here represent the standard deviation from measuring R on 8 identical contacts. The
dashed line in (a) is a fit using 〈R〉 ∝ 1/A.

On contacts that are not annealed, we can observe a tunnel current, as ex-

pected for Schottky barriers. Here, the effective resistance is inversely propor-

tional to area. For optimally annealed contacts on wafer A, we found that the

contact resistance was independent on circumference, while only showing a very

weak dependence on area (much weaker than inversely proportional to area), see

Fig. 7.4. The fact that the dependence on shape does here not show a clear de-

pendence as 〈R〉 ∝ 1/A agrees with the fact that the 〈R〉 values are comparable to

the square resistance of the 2DEG, such that the latter gives a significant contri-

bution to the total contact resistance. Fully understanding the contact resistance

then requires incorporating all square resistance contributions from underneath

and around the 2DEG. Since we found it impossible to estimate these effects with

a small error bar, we turned to measuring under annealed contacts instead.

On two sets of under annealed contacts on wafer A, where we used a different

anneal time tA (average contact resistance of 30 Ω and 500 Ω), we found (within

error bar) no dependence on area or circumference. We can only explain this

result if we assume that the 2DEG square resistance underneath the contact is

significantly increased (to values comparable to the total observed contact resis-

tance) for under annealed contacts. This probably results from the in-diffusing

Ge, which already introduces strain and scatter centers in the 2DEG layer be-

fore optimal contact conditions are reached. For optimal annealed contacts (here
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with total resistance of typically 7 Ω, independent of circumference), the square

resistance underneath a contact must have returned to a value of less than 10 Ω.

Apparently, the resistance increase due to strain and scatter centers is overcom-

pensated by increased Ge doping near the 2DEG layer.

The summary of this study is that we never obtain a clear dependence on

circumference, and only a weak dependence on area for optimal contacts. We

can, nevertheless, draw the following conclusions. For an optimal ohmic contact,

it is not the case that electron transport between the surface metallization and

the surrounding 2DEG mainly occurs at the edge of a contact. Instead, the

full contact area plays a role, and in-plane electron transport under an optimal

contact mainly takes place in the original plane of the 2DEG. In addition, we

find it impossible to evaluate the absolute values of the contact resistance of our

devices with an accuracy within a factor 2, since the resistance of an optimal

contact has a contribution from the square resistance underneath the contact,

and its value is influenced by the annealing process. We can therefore not study

the property of our model that the optimal contact resistance value should be

proportional to d. Instead, we should evaluate whether the enhanced square

resistance underneath a contact needs to be incorporated in our model. We find

that this is not needed for the following reasons: for over annealing it does not

play a role, since we observe the same over-annealing mechanism as observed

on bulk n-GaAs. Optimally annealed contacts occur when the square resistance

underneath the contacts has again values well below 10 Ω. Here we observe a

weak area dependence and no dependence on circumference, such that we can rule

out that the effect dominates the contact resistance here. Thus, the only effect

is that it temporarily enhances the total contact resistance by about a factor 2

while the annealing progresses towards optimal contact conditions. Note that it

does not change the fact that lowering the contact resistance in this phase still

fully depends on further Ge diffusion towards the 2DEG layer. Therefore, it only

slightly modifies how RGe in Eq. 7.3 decreases towards low values.

7.6 Conclusions

Summarizing, we have measured the zero-bias resistance of annealed AuGe/Ni/Au

contacts to a 2DEG as a function of annealing time and temperature. We have

thus obtained optimal annealing parameters for three different heterostructures

where the 2DEG lies at a different depth with respect to the surface of the wafer.

TEM images of several annealed contacts provided further insight into the an-
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nealing mechanism and the formation of a good ohmic contact. Combining this

information we have developed a model that can predict the optimal annealing

parameters for contacting a 2DEG at a certain depth in a GaAs/AlGaAs het-

erostructure. This model should have predictive value for many heterostructures,

as long the temperature of the samples as a function of time during the annealing

process is known. Our model may become invalid for systems with a very deep

2DEG, since Rif (Eq. 7.4) is expected to increase more rapidly at long annealing

times, possibly resulting in non-ohmic behavior. Our model suggests that for

solving this problem the focus should be at maintaining sufficient contact area

between Ni grains and the Ge-doped AlGaAs layer at long annealing times. This

can possibly be engineered by changing the layer thickness, order and composition

of the initial AuGe/Ni/Au metallization.

We thank B. H. J. Wolfs, M. Sladkov and S. J. van der Molen for help and

valuable discussions, and the Dutch Foundation for Fundamental Research on

Matter (FOM) and the Netherlands Organization for Scientific Research (NWO)
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Wafer inventory

In this Appendix we present the various heterostructures used in this thesis. All

values for density and mobility were measured at 4.2 K with samples cooled down

in the dark. We present the layer structure from top down.

A.1 WSUMI301612

This wafer was purchased from Sumitomo Electric Industries, Ltd. Devices from

this wafer were used for experiments on quantum fluctuations in the non-local

resistance in Chapter 6 and for studies on ohmic contact formation to a 2DEG in

Chapter 7. Quantum point contacts fabricated on this wafer never showed any

sign of spin splitting in a large in-plane magnetic field.

• 2DEG depth: 75 nm

• Density: ∼ 3× 1015 m−2

• Mobility: ∼ 100 m2/Vs

• Layer structure:

– 5 nm GaAs

– 40 nm Al0.27Ga0.73As (n-doped with Si at 2× 1018 cm−3)

– 30 nm Al0.27Ga0.73As

– 800 nm GaAs

111
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A.2 WREUT1098

This wafer was grown in the group of D. Reuter and A. D. Wieck at the Ruhr-

Universität in Bochum, Germany. Devices from this wafer were used for experi-

ments on point contacts and quantum dots in Chapters 3 and 4, and for studies

on ohmic contact formation to a 2DEG in Chapter 7.

• 2DEG Depth: 114 nm

• Density: 1.5× 1015 m−2

• Mobility: 159 m2/Vs

• Layer structure:

– 5.5 nm GaAs

– 71.9 nm Al0.32Ga0.68As (n-doped with Si at 1× 1018 cm−3)

– 36.8 nm Al0.32Ga0.68As

– 933 nm GaAs

A.3 WREUT12570

This wafer was grown in the group of D. Reuter and A. D. Wieck at the Ruhr-

Universität in Bochum, Germany. Devices from this wafer were used only for

studies on ohmic contact formation to a 2DEG in Chapter 7.

• 2DEG Depth: 180 nm

• Density: ∼ 3× 1015 m−2

• Mobility: ∼ 100 m2/Vs

• Layer structure:

– 5 nm GaAs

– 70 nm Al0.35Ga0.65As

– 70 nm Al0.35Ga0.65As (n-doped with Si at 1× 1018 cm−3)

– 35 nm Al0.35Ga0.65As

– 650 nm GaAs
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Device fabrication

In this Appendix we will describe the fabrication procedure for the devices that

were used in this thesis.

B.1 Alignment markers

• Preparation:

– Clean in boiling acetone (10’)

– Rinse in IPA (30”)

– Spin dry

• Resist:

– Spin 250 nm 950K PMMA (4% in Chlorobenzene) - 4000 rpm (60”)

– Bake at 180 oC (15’)

• Exposure:

– Beam voltage: 10 keV

– Aperture: 10 µm

– Working area: 200 x 200 µm

– E-beam dose: 200 µC/cm2

• Developing:

– Develop in 1:3 MIBK / IPA (60”)

– Rinse in IPA (30”)

113
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– Spin dry

• Evaporation:

– 5 nm Ti

– 50 nm Au

• Lift-off:

– Lift-off in acetone (several hours) / acetone spray

– Rinse in IPA (30”)

– Spin dry

B.2 Mesa etching

• Preparation:

– Clean in boiling acetone (10’)

– Rinse in IPA (30”)

– Spin dry

• Resist:

– Spin 70 nm 950K PMMA (2% in Ethyl lactate) - 4000 rpm (60”)

– Bake at 180 oC (15’)

• Exposure:

– Beam voltage: 10 keV

– Aperture: 120 µm

– Working area: 2000 x 2000 µm

– E-beam dose: 150 µC/cm2

• Developing:

– Develop in 1:3 MIBK / IPA (35”)

– Rinse in IPA (30”)

– Spin dry
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• Etching:

– Etch in a 1:1:50 solution of H2SO4 / H2O2 / H2O (50”). The etching

rate is approximately 2 nm/s

– Rinse in H2O (30”)

– Spin dry

• Cleaning:

– Clean in boiling acetone (10’)

– Rinse in IPA (30”)

– Spin dry

B.3 Ohmic contacts

• Preparation:

– Clean in boiling acetone (10’)

– Rinse in IPA (30”)

– Spin dry

• Resist:

– Spin 400 nm 50K PMMA (9% in Chlorobenzene) - 4000 rpm (60”)

– Bake at 180 oC (15’)

– Spin 70 nm 950K PMMA (2% in Ethyl lactate) - 4000 rpm (60”)

– Bake at 180 oC (15’)

• Exposure:

– Beam voltage: 10 keV

– Aperture: 120 µm

– Working area: 2000 x 2000 µm

– E-beam dose: 200 µC/cm2

• Developing:

– Develop in 1:3 MIBK / IPA (60”)
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– Rinse in IPA (30”)

– Spin dry

• Evaporation:

– 120nm AuGe

– 30nm Ni

– 20nm Au

• Lift-off:

– Lift-off in acetone (several hours) / acetone spray

– Rinse in IPA (30”)

– Spin dry

• Annealing:

– Anneal in N2 atmosphere (50 ml/s) in the oven at 450 oC for typically

5 minutes (see Chapter 7 for more details)

B.4 Fine gates

• Preparation:

– Clean in boiling acetone (10’)

– Rinse in IPA (30”)

– Spin dry

• Resist:

– Spin 70 nm 950K PMMA (2% in Ethyl lactate) - 4000 rpm (60”)

– Bake at 180 oC (15’)

• Exposure:

– Beam voltage: 30 keV

– Aperture: 10 µm

– Working area: 200 x 200 µm
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– E-beam dose: 450 µC/cm2

• Developing:

– Develop in 1:3 MIBK / IPA (35”)

– Rinse in IPA (30”)

– Spin dry

• Evaporation:

– 5 nm Ti

– 15 nm Au

• Lift-off:

– Lift-off in acetone (overnight) / acetone spray

– Rinse in IPA (30”)

– Spin dry

B.5 Large gates

• Preparation:

– Clean in boiling acetone (10’)

– Rinse in IPA (30”)

– Spin dry

• Resist:

– Spin 400 nm 50K PMMA (9% in Chlorobenzene) - 4000 rpm (60”)

– Bake at 180 oC (15’)

– Spin 70 nm 950K PMMA (2% in Ethyl lactate) - 4000 rpm (60”)

– Bake at 180 oC (15’)

• Exposure:

– Beam voltage: 10 keV

– Aperture: 120 µm
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– Working area: 2000 x 2000 µm

– E-beam dose: 200 µC/cm2

• Developing:

– Develop in 1:3 MIBK / IPA (60”)

– Rinse in IPA (30”)

– Spin dry

• Evaporation:

– 5 nm Ti

– 150 nm Au

• Lift-off:

– Lift-off in acetone (several hours) / acetone spray

– Rinse in IPA (30”)

– Spin dry



Summary

This thesis presents research that contributes to the understanding of funda-

mental properties of electrons and electron spin in quantum point contacts and

quantum dots. These nanodevices are fabricated with ultra-clean non-magnetic

semiconductors, using state-of-the-art nanofabrication techniques. Furthermore,

the experiments are done at very low temperatures. This allows for a study

of how fundamental interactions in materials influence electron and spin states.

Although this work has a fundamental character, it is also motivated by open

questions in the field of spintronics regarding the ability to generate, transport,

and detect electron spin in a controlled manner. We report research on two types

of devices, the quantum point contact and the quantum dot. Both type of devices

are defined with electrostatic gating techniques in a two-dimensional electron gas

(2DEG) on a GaAs/AlGaAs heterostructure.

The first part of this thesis presents experimental work on Quantum Point

Contacts (QPCs). A QPC can be though of as a short one-dimensional transport

channel in which the electron transport is ballistic. Due to the transverse confine-

ment, the conductance of a QPC is quantized in steps of 2e2/h in zero magnetic

field, where e is the electron charge and h Planck’s constant. Furthermore, the

electron emission from QPCs can be spin-polarized when a strong in-plane mag-

netic field is applied. Besides this well understood conductance quantization there

are also several features in the conductance of a QPC due to many-body effects

that still cannot be fully explained. In particular, the 0.7 anomaly, a shoulder

in the conductance around 0.7(2e2/h) in zero magnetic field, has been a topic of

debate for more than a decade now. Other many-body effects in QPCs include

the enhancement of the electron g-factor, and the zero-bias anomaly, a feature

in the QPC conductance that shows similarities with transport though a Kondo

impurity.

Since a QPC is one of the most fundamental electronic systems, it makes

an ideal model system for studying the consequences of many-body effects for

transport of spin-polarized electrons and spin coherence in nanodevices. We per-
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formed electron transport measurements to study how these many-body effects in

QPCs depend on the QPC geometry. We studied the energy spacing between the

one-dimensional subbands and spin-splittings within one-dimensional subbands,

both in zero field and high magnetic fields, for a set of 12 QPCs with identical

material parameters. We found a clear relation between the subband spacing and

the enhancement of the effective electron g-factor. These parameters depend on

geometry in a regular manner that we can understand from electrostatic model-

ing of the QPC potential. The appearance of the 0.7 anomaly does not show a

regular dependence on QPC geometry. However, we do find that in high magnetic

fields there is a field-independent exchange contribution to the spin-splitting for

the lowest one-dimensional subband in addition to the regular Zeeman splitting,

and this exchange contribution is clearly correlated with the apparent zero-field

splitting of the 0.7 anomaly. This suggests that the splitting of the 0.7 anomaly

is dominated by this exchange contribution. Also for the zero-bias anomaly we

do not find a clear dependence on QPC geometry, but our data suggests that it is

worthwhile to further study its correlation with the splitting of the 0.7 anomaly.

At this time, our analysis of experimental data is very phenomenological, present-

ing parameters and correlations for which it is not possible to make quantitative

comparison with theory, since no analytical models are available. However, the

trends allow for conclusions about the qualitative behavior.

The second part of this thesis reports experimental and numerical work on

electron spin relaxation in large open Quantum Dots (QDs). We studied spin

accumulation and relaxation of an electron spin ensemble that is confined to a

micronscale QD. Our system is thus best described as an electron ensemble that

is ballistically scattering inside a chaotic cavity. Such systems allow for studying

spin relaxation in a regime in between bulk samples and ultra small dots, and in

this regime spin-orbit effects have a dominant role. Therefore the scattering rate

at the edge of the dot has an important influence on the relaxation time.

We have developed a non-local measurement geometry, using QPCs to op-

erate a four-terminal quantum dot system. We demonstrated that this can be

exploited to determine for a single device the spin relaxation rate inside the dot

(τsf ≈ 300 ps), contributions to spin relaxation from coupling the dot to reser-

voirs, and the degree of polarization for spin-selective transport in the contacts

(P ≈ 0.8). We can reproduce the spin relaxation in large quantum dots quali-

tatively with Monte-Carlo simulations. The values of polarization that we find,

are consistent with the short length of our QPCs.

In the Monte-Carlo simulations we used an approach where the relaxation
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was simulated with semiclassical electron trajectories in 2D and confined systems

using realistic device parameters. This approach allows for fully including three

SO effects that occur in realistic 2DEG materials. We calculate values for spin

relaxation in micronscale dots with frequent scattering on the edge of the dot,

and these values are much lower than calculated values for large high-mobility

2DEG areas, contrary to the established result that strong confinement or fre-

quent momentum scattering reduces relaxation. In this regime of confinement

enhanced relaxation, the relaxation time can decrease by more than two orders

of magnitude by applying a strong external magnetic field parallel to the initial

spin direction. An analogue to confinement enhanced relaxation was also found

for large 2D systems with extremely high mobilities.

We also investigated quantum fluctuations in the non-local resistance of the

four-terminal quantum dot. In practice, transport in large open QDs always

shows mesoscopic fluctuations of the conductance, a characteristic that results

from the interference of multiple transport paths through the sample. The am-

plitude of these fluctuations is strongly reduced when the coupling between the

voltage probes and the dot is enhanced. Along with experimental results, we

present a theoretical analysis based on the Landauer-Büttiker formalism. Agree-

ment with theory is very good if it is scaled with a factor that accounts for the

influence of orbital dephasing inside the dot.

Finally, we report on the annealing mechanism of ohmic contacts to a two-

dimensional electron gas (2DEG) in GaAs/AlGaAs heterostructures. These con-

tacts are often realized by annealing of AuGe/Ni/Au that is deposited on its

surface. We have obtained optimal annealing parameters for three different het-

erostructures where the 2DEG lies at a different depth with respect to the sur-

face of the wafer. TEM images of several annealed contacts provided further

insight into the annealing mechanism and the formation of a good ohmic con-

tact. Combining this information we have developed a model that can predict

the optimal annealing parameters for contacting a 2DEG at a certain depth in

a GaAs/AlGaAs heterostructure. This model should have predictive value for

many heterostructures, as long the temperature of the samples as a function of

time during the annealing process is known.
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Samenvatting

Dit proefschrift presenteert onderzoek dat bijdraagt aan het begrijpen van fun-

damentele eigenschappen van elektronen en elektronenspin in quantum puntcon-

tacten en quantum dots. Deze nanodevices worden gemaakt met ultra-schone

niet-magnetische halfgeleiders, met behulp van geavanceerde nanofabricage tech-

nieken. Bovendien worden de experimenten gedaan bij extreem lage tempera-

turen. Daardoor kunnen we bestuderen hoe fundamentele interacties in materi-

alen de elektron- en spintoestanden bëınvloeden. Alhoewel het voornamelijk fun-

damenteel onderzoek betreft, wordt dit werk ook gemotiveerd door openstaande

vragen in het vakgebied spintronica met betrekking tot het gecontroleerd gener-

eren, transporteren en detecteren van elektronenspin. Wij presenteren onderzoek

naar twee types devices, het quantum puntcontact (QPC) en de quantum dot

(QD). Beide worden gedefinieerd in een tweedimensionaal elektronengas (2DEG)

in een GaAs/AlGaAs heterostructuur, door negatieve spanningen aan te brengen

op metalen elektroden bovenop de heterostructuur.

Het eerste gedeelte van dit proefschrift presenteert experimenten aan quan-

tum puntcontacten (QPC’s). Een QPC kan beschouwd worden als kort eendi-

mensionaal kanaaltje waarin het elektron transport ballistisch is. Als gevolg van

de opsluitingspotentiaal in de richting loodrecht op de richting van het transport,

is de geleiding van een QPC in nul magneetveld gekwantiseerd in discrete stappen

van 2e2/h, waarbij e de lading van het elektron en h de constante van Planck is.

Bovendien kan de elektron emissie vanuit een QPC spin gepolariseerd zijn wan-

neer een sterk magneetveld wordt aangelegd in het vlak van het 2DEG. Behalve

deze gekwantiseerde geleiding, die volledig wordt begrepen, zijn er nog enkele an-

dere distinctieve kenmerken in de geleiding van een QPC als gevolg van many-body

effecten, die nog steeds niet volledig verklaard kunnen worden. In het bijzonder

is de 0.7 anomalie, een knik in de geleiding rond 0.7(2e2/h) in nul magneetveld,

al meer dan 10 jaar een onderwerp van discussie. Andere many-body effecten in

QPC’s zijn de versterking van de elektron g-factor en de nul-bias anomalie, een

karakteristiek in de geleiding van een QPC dat sterke overeenkomsten vertoont
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met het transport door een Kondo onzuiverheid.

Aangezien een QPC één van de meest fundamentele elektronische systemen is,

is het een ideaal modelsysteem om de gevolgen te bestuderen van many-body ef-

fecten op het transport van spin gepolariseerde elektronen en op spin coherentie in

nanodevices. We hebben elektrische transportmetingen gedaan om te bestuderen

hoe deze effecten afhangen van de geometrie van de puntcontacten. We hebben

de energiesplitsing tussen de eendimensionale subbanden bestudeerd, zowel in nul

magneetveld als in een sterk magneetveld, voor een serie van 12 QPC’s met iden-

tieke materiaaleigenschappen. Daarbij hebben we een duidelijke afhankelijkheid

gevonden tussen de grootte van de subband splitsing en de versterking van de

effectieve elektron g-factor. Deze parameters hangen op een reguliere manier af

van de geometrie van de QPC’s en deze afhankelijkheid kunnen we snappen als

we een elektrostatisch model van de potentiaal van het puntcontact beschouwen.

De kenmerken van de 0.7 anomalie laten geen reguliere afhankelijkheid van de

QPC geometrie zien. Echter vinden we wel dat er in sterke magneetvelden

een magneetveld-onafhankelijke exchange bijdrage is aan de spin-splitsing van

de laagste eendimensionale subband, naast de reguliere Zeeman splitsing. Deze

exchange bijdrage is duidelijk gecorreleerd met de ogenschijn-lijke subband splits-

ing van de 0.7 anomalie in nul magneetveld. Dat suggereert dat de splitsing van

de 0.7 anomalie wordt bepaald door deze exchange bijdrage. Ook voor de nul-bias

anomalie vinden we geen duidelijke afhankelijkheid van de QPC geometrie, maar

onze data laat zien dat het waardevol kan zijn om de correlatie met de splitsing

van de 0.7 anomalie verder te onderzoeken. Op dit moment is onze analyse van

de experimentele data erg fenomenologisch, waarbij we parameters en correlaties

presenteren waarvoor het niet mogelijk is om een kwantitatieve vergelijking met

de theorie te maken, aangezien er geen analytische modellen beschikbaar zijn.

Desondanks kunnen we op basis van trends in de data conclusies trekken over

het kwalitatieve gedrag.

Het tweede gedeelte van dit proefschrift presenteert experimenteel en nu-

meriek werk over elektron spin accumulatie in zogenaamde grote open quan-

tum dots (QD’s). We hebben spin accumulatie en relaxatie bestudeerd van een

elektronenverzameling die was opgesloten in een micronschaal QD. Ons systeem

kan het beste worden omschreven als een elektronenverzameling die ballistisch

rondbotst in een kleine chaotische ruimte. Met behulp van dergelijke systemen

kunnen we spin relaxatie bestuderen in een regime tussen 2D samples en extreem

kleine QD’s en in dit regime wordt de spin relaxatie gedomineerd door de spin-

baan-koppeling. Daarom heeft de botsingsfrequentie met de rand van de dot een
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belangrijke invloed op de relaxatietijd.

We hebben een niet-lokale meettechniek ontwikkeld, waarbij we QPC’s ge-

bruiken om een 4-punts meting aan een quantum dot te doen. We laten zien dat

dit gebruikt kan worden om voor een enkel device de spin relaxatietijd binnen

in de dot te bepalen (τsf ≈ 300 ps), maar tegelijkertijd ook de bijdrage aan

de spin relaxatie door koppeling van de dot aan grote elektron reservoirs en de

mate van polarisatie van het spin-selectieve transport in de contacten (P ≈ 0.8).

We kunnen de spin relaxatie in grote quantum dots kwalitatief reproduceren met

behulp van Monte-Carlo simulaties. De waarden voor polarisatie die we vinden

zijn consistent met de korte lengte van onze QPC’s.

In deze Monte-Carlo simulaties hebben we voor een aanpak gekozen waarbij

de relaxatie wordt gesimuleerd met behulp van semi-klassieke elektronenbanen in

2D en opgesloten systemen waarbij we gebruik maken van realistische device pa-

rameters. Door deze aanpak kunnen we alle drie de spin-baan effecten meenemen

die in realistische 2DEG materialen voorkomen. We berekenen waarden voor spin

relaxatie in micronschaal dots met frequente botsingen met de rand van de dot, en

deze waarden zijn veel lager dan de berekende waarden voor grote 2DEG gebieden

met een hoge mobiliteit. Dit is tegenstrijdig met het gebruikelijke resultaat dat

sterkere opsluiting of meer frequente botsingen de relaxatie verzwakken. In dit

regime van confinement enhanced relaxation, kan de relaxatietijd tot wel 2 or-

des van grootte afnemen wanneer een sterk extern magneetveld wordt aangelegd

parallel met de initiele spin richting. Een analoog van confinement enhanced

relaxation hebben we ook gevonden voor grote 2D systemen met extreem hoge

mobiliteiten.

Met behulp van de 4-punts meting hebben we ook quantum fluctuaties in

de niet-lokale weerstand van de quantum dot bestudeerd. In de praktijk zijn

er altijd mesoscopische fluctuaties van de geleiding wanneer elektron transport

in grote open QD’s wordt gemeten. Deze fluctuaties zijn het gevolg van inter-

ferentie van verschillende transportpaden door de dot. De amplitude van deze

fluctuaties neemt sterk af wanneer de koppeling tussen de spanningsprobes en

de dot versterkt wordt. Naast de experimentele resultaten presenteren we ook

een theoretische analyse gebaseerd op het Landauer-Büttiker formalisme. De

overeenkomst met de theorie is erg goed wanneer het geschaald wordt met een

factor die rekening houdt met de invloed van orbitale dephasing in de dot.

Tenslotte rapporteren we over het annealing mechanisme van ohmse contacten

aan een tweedimensionaal elektronengas (2DEG) in GaAs/AlGaAs heterostruc-

turen. Deze contacten worden vaak gerealiseerd door AuGe/Ni/Au, dat op het
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oppervlak is opgedampt, te annealen. We hebben de optimale anneal parame-

ters gevonden voor drie verschillende heterostructuren waarbij het 2DEG op een

andere diepte ligt onder het oppervlak van de wafer. TEM plaatjes van verschil-

lende geannealde contacten geven verder inzicht in het anneal mechanisme en

het ontstaan van een goed ohms contact. Met al deze informatie hebben we een

model ontwikkeld waarmee we de optimale anneal parameters kunnen voorspellen

om een 2DEG op een willekeurige diepte in een GaAs/AlGaAs heterostructuur

te contacteren. Dit model zal een voorspellende waarde hebben voor veel hetero-

structuren, zolang de temperatuur van de samples bekend is gedurende het anneal

proces.



Epilogue

The work presented in this thesis was carried out in the Physics of Nanodevices

group at the University of Groningen, between April 2004 and June 2008. Only

about half a year before the start of this project, during my master’s research and

research internship, I realized that I really enjoyed doing experimental work, and

decided I wanted to do a PhD. Looking back now, I have never regretted that

choice, although things did not go quite as planned (as if they ever). From my

interviews before the start of the project, it seemed that it was simply a matter

of measuring spin accumulation and then the real work would start. How wrong

were we... Clearly we had underestimated the amount of issues (mainly technical)

that had to be solved, I seriously think the lock-in amplifier is the only item of

the entire set-up that made it to the end unchanged. Nevertheless, it is really an

undescribable feeling to finally succeed in what you have been working for, and

when you are, at that moment, running your long-anticipated experiment and it

works!

The results I presented in this thesis are the result of work that I did together

with students, technicians and other colleagues. Therefore I want to use this

opportunity to thank a number of people, some for directly contributing to this

work, others simply for creating a pleasant environment to live and work.

First and foremost, I want to thank Caspar van der Wal for being the best

supervisor I could have wished for. I really enjoyed working together and owe

you lots of thanks for everything that you have taught me and for all your hard

work that made you much more than just a supervisor. Your critical view and

perseverance made all of my work and, in fact, my whole working style so much

better, that I am sure I will profit from that my entire career. That you have not

always made my life easier, could not have been illustrated better than in the

cartoon entitled ”Erik and Caspar in Dilbertland” in our coffee room, about the

seemingly infinite loops of making changes to conference abstracts, papers, and

(of course) this thesis.

Also, I want to thank Bart van Wees, not only for giving me the opportunity

127



128 Epilogue

to do this project, but also because it was your course on mesoscopic physics that

inspired me to do a PhD your group. I am impressed by your physical insight and

intuition, and your ability as a ”devil’s advocate” to always ask the questions I

was hoping to avoid, or find weak points in any line of reasoning.

Further, I would like to thank Josh Folk, Yigal Meir and Dominik Zumbühl, I
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