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Summary

Quantum information technology allows us to process information differently than
classical information processing and could enable fundamentally secure communi-
cation. The basic building block for the implementation of quantum applications
is a qubit, a processing unit whose state is determined by the laws of quantum me-
chanics. Long-distance remote operation of qubits can be achieved using photons,
such that one of the big challenges in the field is to findmaterials that will efficiently
hold onto their quantum information and transfer it into light particles on demand.
Some of themajor contenders in the field are color centers present in crystallinema-
terials like diamond or silicon. These color centers behave like artificial molecules
trapped in the crystals: they vibrate and interact with light as amolecule would, but
the shape of these molecule-like systems is determined by the crystal around them.
The spin of electrons or nuclei in these color centers can be used to store quantum
information efficiently. A photon emitted by such a color center can provide in-
formation about the quantum mechanical state of the color center electron spins,
offering a pathway for light-matter entanglement protocols necessary for quantum
communication.

Of particular relevance arematerial platforms and color centers that are compat-
ible with existing technological infrastructure. Silicon carbide is a semiconductor
that is widely used for high-power, high-temperature electronic applications, and
has well-established growth and processing techniques that grant it great versatility
with respect to doping and device engineering. Additionally, it hosts a wide range
of color centers that are optically active at (or close to) telecom-compatible wave-
lengths. The variety of color centers present in SiC materials, both extrinsic and
intrinsic, provide a huge scope for the exploration of different defect centers. In-
vestigation of the optical and spin-related properties of these color centers is often
done on a defect-by-defect basis, and a generalized insight into how different mi-
croscopic features (like symmetry, coupling between electronic spins and other de-
grees of freedom, etc.) systematically influence experimental parameters relevant
for quantum-optical operation is still lacking. Such insight could lead to a situation
where defects can be designed on demand with particular applications in mind. In
chapters 3-6 of this thesis, we explore ensembles of transition metal impurity de-
fects in SiC with respect to their optical and spin-related properties, and gradually
relate their experimental features to an analysis of their spatial and electronic con-
figuration. Additionally, we generalize our observations for different localized and
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Summary

delocalized electronic states (chapter 7) with similar symmetries in SiC and related
materials.

For quantum-optical operation, some parameters are particularly important.
Firstly, understanding how a defect’s energy eigenstates depend on its environment
may lead to defects especially suited for specific sensing applications, or to the en-
gineering of devices and operation geometries with optimal spin-coherence prop-
erties. In chapter 3, we show that the electronic spins of Mo defects in SiC are in-
sensitive (up to our measurement accuracy) to magnetic fields perpendicular to the
SiC crystal c-axis. This axial anisotropy arises when the electronic eigenstates asso-
ciated with the defect have a non-zero orbital angular momentum projection along
this axis and spin and orbital degrees of freedom are strongly coupled via spin-orbit
coupling. In this chapter, we use this insight to determine the microscopic geom-
etry and charge state of this defect center. Defects with anisotropies of this type,
where the electronic spin is only sensitive to magnetic fields in one particular direc-
tion, form ensembles with defects whose effective spins are all quantized in a highly
homogeneous direction.

Secondly, a defect center must have ground-state spins that are relatively well
isolated from the lattice. The timescales at which the localized spins exchange en-
ergy with the lattice (that is, the spin-relaxation time) and at which their quan-
tum state evolution is disturbed by dynamic changes of their environment (that is,
the decoherence time) must be long for reliable quantum-state storage and long-
distance entanglement protocols. In chapters 4 and 6, we experimentally investi-
gate how the spin-relaxation times of the transition metal defects studied here de-
pend on their environment and the presence of thermally accessible excited states.
In general, the coupling between spin and orbital degrees of freedom via spin-orbit
coupling is thought to be detrimental to the stability of color-center spins. We show
however in chapter 4 that in the particular case of a defect containing a single elec-
tron in double degenerate orbital states, spin-orbit coupling gives rise to isolated
effective-spin-1/2 doublets that are partially symmetry-protected from direct spin
relaxation and environment-induced spin precession. In this particular configura-
tion, spin-orbit coupling in fact stabilizes the electronic spin in the defect center,
leading to surprisingly long spin-relaxation times for Mo defects in SiC, above sec-
onds below 3 K. In chapters 5 and 6, we show that this picture changes in the case
of V defects in SiC due to the presence of a central nuclear spin-7/2 with 99% natu-
ral abundance. Although the electronic part of the eigenstates of Mo and V defects
are very similar, the additional presence of the nuclear spin for V defects opens up
pathways formagnetic and electric-dipole spin transitions that are forbidden for de-
fects with nuclear spin zero. These additional transitions lead to a situation where
the spin-relaxation rate of V defects is strongly dependent on the hyperfine-induced
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mixing of electronic spin sublevels. Nonetheless, they also enable microwave con-
trol with both electric and magnetic fields, with a favorable ratio for the trade-off
between control and isolation of the quantumdefects. In chapter 7, we show that the
same physics responsible for stabilizing the localized electronic eigenstates of Mo
defects in SiC leads to differences between electrons and holes in two-dimensional
transition metal dichalcogenides with respect to their spin-scattering properties.

Lastly, optical operation of these localized spins relies on the optical initializa-
tion, control, and read-out of the spin state. To achieve this, the defects must emit
photons preferably into the zero-phonon line (ZPL). The inhomogeneous broad-
ening observed in the ZPL due to interactions between the defects and the crys-
talline environment must be small (such that two defects can emit photons that are
indistinguishable from each other), and we must be able to initialize the ground-
state spin via resonant driving of the optical transitions. Throughout this thesis, we
demonstrate some of these requirements for ensembles of Mo and V defects in SiC.
In chapters 3 and 4, we demonstrate thatwe can initializeMo spins in SiC and detect
them optically at cryogenic temperatures. Additionally, we show that we can drive
the ensemble of Mo defects into a coherent superposition of ground-state sublevels
all-optically via two-laser optical driving (coherent population trapping). In chap-
ter 6, we show that the large number of hyperfine-coupled states, combined with
the relatively fast spin-relaxation time limits the degree to which an ensemble of
V defects can be optically initialized (when compared to ensembles of Mo defects),
and achieving this remains a challenge for the implementation of these defect cen-
ters for quantum-communication applications. In this chapter, we also show that
the inhomogeneous broadening of the optical transition lines depends strongly on
the symmetry of the particular eigenstates involved in the transition, even in defect
centers that lack inversion symmetry. In this way, the same defect center can have
different optical transitions with varying robustness with respect to environmental
broadening. This insight should be taken into account when determining optimal
operation geometries.

With these results, we show that color centers in solids offer much more engi-
neering choices and spread of performance (with respect to the relevant parameters
for quantum-optical operation) than typically expected, even after 20 years of work
on related systems. Relating themicroscopic structure of these defect centers to the
various observed figures of merit for quantum technological applications allows us
to understand seemingly unintuitive results, and to predict how related systemswill
behave. In the fast-growing quantum technological environment, these approaches
may open up pathways for the engineering of novel defect centers with particular
applications in mind.
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Samenvatting

Kwantum-informatietechnologie stelt ons in staat om informatie op een anderema-
nier te verwerken dan op de klassieke wijze en om informatie te versturen op een
fundamenteel veilige manier. Het aansturen van qubits op lange afstand kan met
fotonen, waardoor één van de grote uitdagingen in dit veld het vinden van mate-
rialen is die efficiënt kwantuminformatie kunnen opslaan, maar die tegelijkertijd
op afroep deze informatie kunnen afgeven in de vorm van licht. Goede kandidaten
hiervoor zijn onder andere atomaire onzuiverheden in kristallijne materialen zoals
diamant en silicium. De kleurencentra gedragen zich als kunstmatige moleculen
die gevangen zitten in het kristal: ze trillen en reageren op licht op dezelfde manier
als een molecuul, maar de vorm van deze molecuulachtige systemen wordt bepaald
door het kristal rondomde centra. De elektron- of kernspin in de kleurencentra kan
worden gebruikt om kwantuminformatie efficiënt op te slaan. Een foton dat wordt
uitgezonden door zo’n centrumbevat informatie over de kwantummechanische toe-
stand van de spin van het kleurencentrum, en biedt daarmee de mogelijkheid om
licht en materie te verstrengelen zoals dat nodig is voor kwantumcommunicatie.

Met name de materialen en kleurencentra die inpasbaar zijn in de bestaande
telecominfrastructuur zijn interessant. Siliciumcarbide is een halfgeleider die veel
wordt gebruikt in toepassingenmet hoog vermogen en hoge temperaturen. De pro-
cessen om SiC te fabriceren en te bewerken zijn goed ontwikkeld, waardoor er veel
mogelijk is met betrekking tot dotering en het ontwerpen van devices. Bovendien
kan het een grote verscheidenheid aan kleurencentra huisvesten die optisch actief
zijn bij golflengtes vlak bij of in de telecomband. De verscheidenheid aan kleuren-
centra, zowel intrinsieke als extrinsieke, die voorkomen in SiC biedt een grote hoe-
veelheid mogelijkheden om deze defecten nader te bestuderen. Onderzoek naar
de optische- en spin-gerelateerde eigenschappen van deze kleurencentra gebeurt
vaak per defect, waardoor overkoepelende inzichten over hoe de verschillende mi-
croscopische eigenschappen (zoals symmetrie, de koppeling tussen elektronspin en
andere vrijheidsgraden, enz.) de experimentele parameters, die relevant zijn voor
kwantum-optisch aansturing systematisch beïnvloeden, ontbreken. Zulke inzich-
ten zouden de mogelijkheid kunnen bieden om op basis van de beoogde toepas-
sing de meest geschikte defecten uit te kiezen. In hoofdstukken 3-6 van dit proef-
schrift bestuderen we de optische- en spin-gerelateerde eigenschappen van ensem-
bles van defecten van overgangsmetalen, waarna we geleidelijk de experimentele
kenmerken kunnen koppelen aan groepentheoretisch begrip van de elektronische
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Samenvatting

structuur. Bovendien veralgemenen we onze waarnemingen voor verschillende ge-
lokaliseerde en gedelokaliseerde elektronische toestandenmet gelijke symmetrie in
zowel SiC als in soortgelijke materialen.

Voor kwantum-optische aansturing zijn een aantal zaken in het bijzonder be-
langrijk. Ten eerste kan het begrip van hoe de energetische eigentoestanden van
een defect afhankelijk zijn van zijn omgeving, ons naar defecten leiden die zeer ge-
schikt zijn voor bepaalde toepassingen als sensor, maar ons ook devices of systemen
laten ontwerpen voor optimale coherente eigenschappen van de spin. In hoofd-
stuk 3 tonen we aan dat de elektronenspin vanMo defecten in SiC niet gevoelig zijn
(binnen onze meetnauwkeurigheid) voor magneetvelden die loodrecht staan op de
c-as van het SiC kristal. Deze axiale anisotropie kan ontstaan wanneer de projec-
tie van het orbitale impulsmoment van de elektronische eigentoestanden van het
defect langs deze as niet-nul is en zowel de spin als andere vrijheidsgraden sterk
gekoppeld zijn door spin-baankoppeling. In dit hoofdstuk gebruiken we dit inzicht
om de microscopische geometrie en de ladingstoestand van dit defect te bepalen.
Defecten met soortgelijke anisotropie, waar de elektronspin alleen gevoelig is voor
magneetvelden in een zekere richting, vormen ensembles van defecten waarin de
effectieve spins allen gekwantiseerd zijn in een zeer homogene richting.

Ten tweede moet een defect de eigenschap hebben dat de spin in de grond-
toestand relatief goed is afgeschermd van het kristalrooster, zodat deze stabiel is
en meerdere keren kan worden gebruikt voordat de kwantuminformatie verloren
raakt. De tijdschaal waarmee gelokaliseerde spins energie uitwisselen (de spin-
vervaltijd) enwaarmeede voortgang vande kwantumtoestandwordt verstoorddoor
dynamische veranderingen in hun omgeving (de decoherentietijd) moet lang zijn,
zodat betrouwbare opslag van kwantumtoestanden mogelijk is en langeafstands-
verstrengelingsprotocollen toegepast kunnen worden. In hoofdstuk 4 en 6 bepalen
we experimenteel hoe de spin-vervaltijd van de overgangsmetaaldefecten die hier
onderzocht worden afhankelijk zijn van hun omgeving en van de aanwezigheid van
thermisch toegankelijke aangeslagen toestanden. Over het algemeen wordt aan-
genomen dat de koppeling tussen spin en orbitale vrijheidsgraden afbreuk doet
aan de stabiliteit van spins in kleurencentra. In hoofdstuk 4 laten we echter zien
dat in het specifieke geval waarin een defect een enkel elektron in een tweevou-
dig ontaarde orbitale toestand bevat, de spin-baan koppeling effectieve spin-1/2
doubletten veroorzaakt die gedeeltelijk door symmetrie worden afgeschermd van
direct spin-verval en door de omgeving veroorzaakte spinprecessie. In deze speci-
fieke configuratie stabiliseert de spin-baankoppeling juist de elektronische spin in
het defect, waardoor verassend lange spin-vervaltijden mogelijk zijn in Mo defec-
ten: meer dan enkele seconden onder de 3 K. In hoofdstuk 5 en 6 laten we zien dat
dit beeld veranderd in het geval van V defecten in SiC door de aanwezigheid van een
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centrale kernspin-7/2, dat van naturemet een aandeel van 99% voorkom. Alhoewel
het elektronische deel van de eigentoestand vanMo en V defecten heel erg op elkaar
lijkt, zorgt de aanwezigheid van kernspin in V defecten ervoor dat magnetische- en
elektrische-dipoolspinovergangen die verboden zijn in defecten zonder kernspin,
nu wel zijn toegestaan. Deze extra overgangen leiden tot een situatie waarin de
spin-halfwaardetijd sterk afhankelijk is van de menging tussen de subniveau’s van
de elektronspin die wordt veroorzaakt de hyperfijnstructuur. Tegelijkertijd zorgt
dit er ook voor dat aansturing met microgolven mogelijk is met zowel elektrische-
als magneetvelden, met een gunstige verhouding tussen de aanstuurbaarheid en
afscherming van het kwantumdefect. In hoofdstuk 7 tonen we aan dat dezelfde na-
tuurkunde die zorgt voor stabilisatie van de gelokaliseerde elektronische eigentoe-
standen vanMo defecten in SiC, ook de verschillen in spinverstrooiingseigenschap-
pen tussen elektronen en gaten veroorzaakt in tweedimensionale overgangsmetaal-
dichalcogeniden.

Ten slotte hangt de optische aansturing af van de optische initialisatie, aanstu-
ring en uitlezing van de spintoestand. Om zulke aansturingmogelijk temakenmoe-
ten de defecten fotonen uitzenden, bij voorkeur in de zero-phonon line (ZPL). De
inhomogene verbreding van de ZPL, die wordt veroorzaakt door de wisselwerking
tussen de defecten en de kristallijne omgeving, moet klein zijn, zodat als twee defec-
ten elk een foton uitzenden deze niet van elkaar te onderscheiden zijn. Daarnaast
moet het mogelijk zijn om de spin van de grondtoestand te initialiseren door de op-
tische overgang resonant aan te slaan. Het werk in dit proefschrift laat zien dat we
kunnen voldoen aan enkele van deze eisen met ensembles van Mo en V defecten in
SiC. In hoofdstuk 3 en 4 laten we zien dat we Mo spins in SiC kunnen initialiseren
en ze optisch kunnen detecteren op cryogene temperaturen. Bovendien tonen we
aan dat we een ensemble vanMo defecten in een coherente superpositie van grond-
toestandsubniveau’s kunnen brengen met een volledig optische methode, namelijk
twee-laseraandrijving (coherent population trapping). In hoofdstuk 6 latenwe zien
dat het grote aantal hyperfijn-gekoppelde toestanden, gecombineerd met de rela-
tief snelle spin-vervaltijd, de mate waarin een ensemble van V defecten optisch kan
worden geïnitialiseerd beperkt is in vergelijking met Mo defecten. Het blijft voor-
alsnog een uitdaging om dit te verbeteren voordat deze defecten kunnen worden
toegepast in de kwantumcommunicatie. Daarnaast laten we in dit hoofdstuk zien
dat de inhomogene verbreding van de optische overgangslijnen sterk afhankelijk is
van de symmetrie van de specifieke eigentoestanden die betrokken zijn bij de over-
gang, zelfs in defecten zonder inversiesymmetrie. Op deze manier kan één en het
zelfde defect verschillende optische overgangenhebbenmet elk een andere robuust-
heid ten opzichte van verbreding door omgevingsinvloeden. Dit inzicht moet mee
worden genomen bij het bepalen van een optimale geometrie voor de aansturing.
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Samenvatting

Met deze resultaten tonen we aan dat kleurencentra in vaste stoffen veel meer
ontwerpkeuzes bieden en een veel groter prestatiebereik hebben (wat betreft de
relevante parameters voor kwantumoptische aansturing) dan waar normaal van-
uit wordt gegaan, zelfs na meer dan 20 jaar onderzoek naar soortgelijke systemen.
Door de microscopische structuur van deze defecten te verbinden aan de verschei-
dene factoren die belangrijk zijn voor toepassingen in de kwantumtechnologie kun-
nen we in eerste instantie onlogische resultaten beter begrijpen en voorspellen hoe
soortgelijke systemen zich gedragen. In het snel groeiende veld van de kwantum-
technologie kan deze benadering de weg vrijmaken om nieuwe defectcentra te ont-
werpen met specifieke toepassingen in het achterhoofd.
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Resumo

A tecnologia da informação quântica nos permite processar informação demaneira
diferente à tecnologia da informação clássica e poderá, por isso, proporcionar vias
de comunicação fundamentalmente seguras. Os blocos básicos para a implementa-
ção da comunicação quântica são chamados qubits, uma unidade de processamento
cujo estado é determinado pelas leis da Mecânica Quântica. As operações em longa
distância desses qubits podem ser mediadas por fótons. Desse modo, um dos gran-
des desafios da área está na busca de materiais que podem guardar a informação
quântica de seus estados eficientemente, e transferí-la às partículas de luz (fótons)
quando necessário. Alguns dos melhores candidatos são os assim chamados color
centers, presentes em cristais como diamante ou silício. Esses color centers funcio-
nam comomoléculas artificiais presas nesses cristais: eles vibram e interagem com
luz como uma molécula, mas a sua forma é determinada pelo cristal à sua volta. O
spin dos elétrons e núcleos nesses color centers pode ser usado para guardar a infor-
mação quântica eficientemente. Os fótons emitidos por esses color centers podem
now informar sobre o estado quântico dos spins eletrônicos contidos neles. Isso
possibilita protocolos de emaranhamento entre matéria e luz que são necessários
para a implementação da comunicação quântica.

Nesse contexto, materiais e color centers compatíveis com a infraestrutura in-
dustrial já existente se tornam particularmente relevantes. Carbeto de silício é um
semicondutor amplamente utilizado na indústria em circuitos eletrônicos de alta
potência. As já estabelecidas técnicas de crescimento e processamento de SiC tor-
nam esse material muito versátil do ponto de vista da engenharia micro-eletrônica.
Além disso, esse semicondutor pode hospedar vários defeitos em sua estrutura cris-
talina, dando origem a vários color centers com atividade ótica em regiões do es-
pectro compatíveis com a, ou próximas da, infraestrutura de telecomunicações. A
investigação das propriedades óticas e de spin destes color centers é típicamente
feita individualmente, defeito a defeito. Assim, esta área do conhecimento ainda
carece de uma generalização sobre como a estruturamicroscópica dos defeitos cris-
talinos (tal como simetria, acoplamento entre o spin e outros graus de liberdade,
etc.) influencia os parâmetros experimentais de relevância para aplicações em tec-
nologias quânticas. Tal generalização poderia levar a uma situação em que novos
defeitos são projetados de antemão para aplicações específicas. Nos capítulos 3-6
desta tese, nós exploramos as propriedades óticas e de spin de ensemblesde defeitos
contendo metais de transição em SiC. Gradualmente, nós relacionamos suas carac-
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terísticas experimentais a uma análise de sua configuração espacial e seus estados
eletrônicos. Além disso, nós generalizamos nossas observações para diferentes es-
tados localizados e delocalizados com simetrias semelhantes em outros materiais
(capítulo 7).

Para operação quântica, alguns parâmetros são particularmente importantes.
Primeiramente, a compreensão sobre como os estados eletrônicos de um defeito
dependem da sua vizinhança pode levar a defeitos especialmente projetados para
certas aplicações emmetrologia, ou à engenharia de dispositivos ou geometrias ope-
racionais com alta coerência quântica. No capítulo 3, nós mostramos que defeitos
formados por impurezas deMo no SiC contêm spins que não são sensíveis a campos
magnéticos ortogonais ao eixo-c do SiC (até a nossa precisão instrumental). Essa
anisotropia axial acontece quando os estados eletrônicos associados com esse de-
feito possuem um momento angular orbital finito na direção do eixo-c, e os graus
de liberdade de spin e espaciais estão fortemente acoplados devido ao acoplamento
spin-órbita. Neste capítulo, nós utilizamos essa informação para determinar a es-
trutura microscópica e a carga eletrônica destes defeitos. Color centers com aniso-
tropias deste tipo formam ensembles com defeitos que têm seus spins alinhados em
uma direção homogênea.

Em segundo lugar, um defeito deve ter seus spins relativamente isolados do
resto da rede cristalina. Dois tempos característicos são de importância: o tempo
em que um defeito com estados eletrônicos localizados troca energia com a rede
cristalina (isto é, seu tempo de relaxação), e o tempo no qual a evolução quântica
destes estados é influenciada por mudanças dinâmicas do seu ambiente (o tempo
de coerência). Ambos devem ser suficientemente longos para que a informação
quântica seja guardada eficientemente e para a execução de protocolos de emara-
nhamento a distância. Nos capítulos 4 e 6, nós investigamos experimentalmente
comoo tempode relaxação dos defeitos estudados nesta tese dependemdapresença
de estados excitados acessíveis. Em geral, o acoplamento entre graus de liberade
de spin e orbitais é prejudicial à estabilidade de spins eletrônicos. Entretanto, nós
mostramos no capítulo 4 que no caso particular de defeitos que contém um único
elétron em estados orbitais duplamente degenerados, o acoplamento spin-órbita dá
origem a estados eletrônicos caracterizados por dubletos de spin-efetivo-1/2. Nes-
ses dubletos, transições de spin diretas e precessão do spin eletrônico são proibidas
devido às suas simetrias. Nessa configuração, o acoplamento spin-órbita estabiliza
o spin eletrônico e é parcialmente responsável pelo tempo de relaxação surpreen-
dentemente longo de defeitos contendo Mo, acima de 1 segundo em temperaturas
abaixo de 3 K. Nos capítulos 5 e 6, nósmostramos que esse cenáriomuda no caso de
defeitos contendo V em SiC devido à presença de um núcleo com spin-7/2 com 99%
de abundância. As estruturas eletrônicas de defeitos contendo Mo e V são análo-
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gas. Entretanto, a presença do spin nuclear no caso de defeitos contendo V permite
o controle de transições eletrônicas com campos de microondas elétricos e magné-
ticos, proibidos na ausência do spin nuclear. Essas transições eletrônicas adicionais
fazem com que o tempo de relaxação de defeitos contendo V dependa fortemente
do acoplamento hiperfino entre o spin do elétron e do núcleo central. No capítulo 7,
nósmostramos que osmesmos processos responsáveis por estabilizar o spin dos es-
tados eletrônicos de defeitos contendo Mo em SiC podem ser usados para explicar
a diferença entre elétrons e buracos em calcogenetos de metais de transição quanto
aos seus processos de relaxação.

Finalmente, o controle dos estados de spin por meio de campos óticos depende
da possibilidade de inicializar, controlar e ler o estado eletrônico óticamente. Para
alcançar estes objetivos, os defeitos devem emitir fótons preferencialmente na li-
nha de zero fônons (ZPL, acrônimo do termo em inglês Zero Phonon Line). A ZPL
observa um alargamento inomogêneo de sua largura de linha devido à interação
entre os defeitos e seu ambiente. Esse alargamento deve ser pequeno, tal que os
fótons emitidos por dois defeitos diferentes sejam indistinguíveis. Além disso, nós
devemos ser capazes de inicializar o spin do estado fundamental via transições óti-
cas. Ao decorrer desta tese, nós demonstramos alguns destes requerimentos para
defeitos contendo Mo e V em SiC. Nos capítulos 3 e 4, nós mostramos que o spin
de defeitos contendo Mo podem ser inicializados e detectados óticamente quando
a amostra está em temperaturas criogênicas. Adicionalmente, nós mostramos que
ensembles de defeitos contendo Mo podem ser preparadas em uma superposição
coerente de spins na presença de dois lasers (coherent population trapping). No
capítulo 6, nós mostramos que a combinação entre o grande número de estados hi-
perfinos e o tempo de relaxação reduzido de defeitos contendo V limita a eficiência
da inicialização de spin para estes defeitos (quando comparado a defeitos contendo
Mo). A otimização deste processo de inicialização ainda é um dos grandes obtácu-
los para a implementação destes defeitos em tecnologias quânticas. Neste capítulo,
nós ainda mostramos que a largura de linha inomogênea das transições óticas de-
pende fortemente do caráter de simetria dos estados eletrônicos envolvidos, mesmo
em defeitos que não têm simetria de inversão. Assim, um mesmo defeito pode ter
transições óticas que respondem diferentemente a perturbações de seu ambiente.
Isso deve ser levado em consideração ao determinar as geometrias operacionais que
otimizam a performance desses defeitos.

Com estes resultados, nós mostramos que defeitos em semicondutores ofere-
cem mais oportunidades de engenharia e variabilidade de performance com res-
peito aos parâmetros relevantes para operação quântica do que típicamente espe-
rado, mesmo depois de mais de 20 anos de pesquisa nestes sistemas. Relacionar
a estrutura microscópica destes defeitos às figuras de mérito para aplicações em
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tecnologias quânticas nos permite compreender resultados aparentemente surpre-
endentes, e fazer previsões sobre o comportamento de sistemas relacionados. Em
um ambiente de tecnologias quânticas que está crescendo rapidamente, essas ini-
ciativas podem levar à engenharia de novos defeitos com aplicações específicas.

xx



chapter 1
Quantum technologies and their material
platforms: the potential of SiC

Q uantum technologies (quantumcomputing, sensing, and communication) have
had a prominent place in news outlets in the past years. These technologies

gain advantage from or are made possible by the quantum-mechanical (i.e. non-
classical) states of its physical components. From proof-of-principle experiments
demonstrating some of the most widely debated physical concepts of the last cen-
tury [1–3], to engineering feats delivering ever bigger quantum processors [4–9],
the past decade has seen rapid and important steps towards functional quantum
technologies.

The sight of commercial parties taking an increasingly important role in the de-
velopment of these technologies might lead to the belief that the time for funda-
mental exploration of platforms for their implementation is past. This view is short-
sighted and overlooks the complexity of the quantum-technological milieu. On the
one hand, characterization of novel and existing quantum systems for quantum-
technology applications is still unraveling exciting and surprising quantum me-
chanical behavior [1, 10–18]. On the other hand, the discussion of which material
platform to use when developing quantum technologies is not a simple one, and
several arguments must be considered [19–21]. It is likely that different platforms
will fulfill specific needs for different applications, and that several of these systems
will coexist in a larger quantum-technological context.

This thesis is focused on the characterization of several quantum systems in a
semiconductor platform (SiC) for quantum-communication applications. To mo-
tivate this effort, in this chapter we discuss some of the potential outcomes of the
various quantum technologies and the material platforms currently being consid-
ered for their implementation, along with their benefits and limitations. Finally,
we show how SiC and its color centers overcome some of the limitations of other
systems and are thus interesting platforms to explore.

1.1. The promises of quantum technologies
As was the case in the early development of classical computational technologies, it
is hard to fully envision the future capabilities of quantum-based technologies and
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their related algorithms. Nevertheless, in some areas, we can already identify future
and present applications that promise to revolutionize various fields.

Quantum computing relies on the quantum-mechanical properties of qubits to
enhance computational speeds and access problems that are currently intractable
to classical computers [22, 23]. Whereas a classical bit can only be in 2 states (0 or 1
fromhere on), a quantumbit (qubit)may be in any superposition of these states (see
Fig. 1.1(a)). Thus, in order to describe the configuration of a single qubit, we need to
know how this particular superposition looks like and evolves, which is translated
into the phase and probability amplitudes associated with this superposition. Fur-
thermore, a collection of interacting qubits can be entangled in such away that their
states are quantum-mechanically intertwined. When this happens, the state of each
qubit cannot be described independently, and the description of the full quantum-
mechanical state depends on the collective evolution of the entire set of qubits. It is
in these quantum mechanical properties – superposition and entanglement – that
lies the great advantage of quantum systems over their classical counterparts when
considering some specific computational tasks. Algorithms mapping search and
optimization protocols into the evolution of the phase of a collective quantum state,
for example, undeniably show that large-scale quantum computers could represent
a huge leap for fields related to optimization and logistics [7, 24, 25]. Finally, pro-
cesses that are fundamentally quantum in their nature – such asmaterial formation
and molecular interactions – can be more effectively simulated in quantum, rather
than classical processing units [4, 26–29]. Thus, fields like pharmacy and materi-
als design will benefit from operational quantum computers, with possible conse-
quences for the development of new drugs, or energy-transition friendly materials,
for example.

The phase information of a (collective) quantum state is very fragile and thus
constitutes both the hidden weapon of quantum systems and their Achilles’ heal.
This phase is extremely sensitive to environmental perturbations, and its informa-
tion is effectively lost as the quantum system interacts with its environment. Quan-
tum sensing relies on this enhanced sensitivity of quantum systems to their environ-
ment to provide detailed information on local properties such as electromagnetic
fields, temperature, and pressure with nanoscale resolution [30–36]. These tech-
niques are already currently used to investigate material properties and biological
processes, for example [33, 37].

Finally, quantumcommunication technologies aimat establishing long-distance
distribution of entangled states through so-called flying qubits. This type of network
would enable the distribution of cryptographic keys fundamentally secured by the
laws of quantum mechanics [38–40]. The entangled states associated with these
quantum passwords cannot be intercepted without being disturbed. Therefore, any
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attempt to eavesdrop on the password would be known to the party sharing the
key. These quantum key distribution protocols would represent a large advance-
ment in the field of cryptography and are especially important in light of the fact
that a functional quantum computer will enable fast factorization of large prime
numbers, rendering some of the most important classical cryptography protocols
obsolete [24].

The natural choice for these flying qubits for the implementation of quantum
networks is optical pulses since we know that photons can hold onto their coher-
ent properties while traveling over long distances through optical fibers. Espe-
cially photons at the near-infrared regions of the spectrum, at the so-called telecom
bands, can be transmitted through the existing telecommunication infrastructure
with low losses. Nonetheless, the distances covered by photons in optical fibers
before they are absorbed are limited to a few hundreds of kilometers, even in the
highest quality, lowest-loss optical fibers [41]. Expanding the scope of quantum
networks relies, then, onmaterial-based quantummemories that are long-lived and
can be effectively entangled with these flying qubits, such that the quantum infor-
mation can be temporarily stored in a stationary qubit and retrieved on demand
[42]. There is still no consensus on which material platform is ideally suited for
this application. The development of these quantum networks relies on identifying
material platforms with long-lived embedded quantum systems with efficient op-
tical interfaces. This hybrid implementation of stationary and flying qubits would
also largely aid in the effort to scale-up quantum computing architectures since it
would enable us to harness the total power of several small-scale quantum comput-
ers through distributed quantum computing [43].

1.2.Material qubits for communication applications
A qubit is a two-level quantum system that is, in the ideal case, isolated from its
environment but still efficiently addressable. In other words, it takes a long time
for the qubit to lose its phase information to its environment, but we can effec-
tively modify its quantum state via well-controlled quantum gate operations. The
timescale at which the qubit loses its phase information to the environment with-
out the possibility of recovery is called its coherence time 𝑇2. The coherence time is
fundamentally limited by the timescale 𝑇1 (the relaxation time) at which the qubit
exchanges energy with its environment, but 𝑇2 may be much shorter than 𝑇1 (see
Fig. 1.1(b)). In order to be functional as a qubit, a two-level system must have 𝑇2
that is orders of magnitude longer than its operation time, such that many opera-
tions are possible before the quantum information is lost. Thus, some of the most
important figures of merit for all areas of quantum applications are the relaxation,
coherence, and operation times.

1
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Figure 1.1: A quantum bit and its optical interface (a) Whereas a classical bit can be in one of two
states (|0⟩ or |1⟩), a quantum bit can be in any superposition of the two basis states. The space spanned
by the possible superposition states can be represented as points on the Bloch sphere. (b) Besides the
two qubit states |0⟩ and |1⟩, the quantum system may have additional excited states, and the qubit may
interact with these states via optical fields. If this interaction depends on the qubit state, an optical
interface arises for entanglement between the state of the photonic field (|0′⟩ or |1′⟩) and the state of
the stationary qubit (|0⟩ or |1⟩). The quantum superposition of a qubit is lost in a timescale 𝑇2, which is
fundamentally limited by the timescale 𝑇1, at which the qubit exchanges energy with its environment.

A material-based qubit may also have other available (excited) quantum states.
These states may be detrimental for quantum operation, leading to additional de-
phasing and relaxation of the stationary qubit. However, the presence of excited
states may also lead to an interface for entanglement or quantum-state transfer be-
tween photonic states and the stationary qubit, if direct mapping between them is
available [11, 38, 39] (see Fig. 1.1(b)). Thus, isolated quantum systemswith address-
able optically-excited states are very interesting platforms for quantum sensing and
quantum communication applications. When considering such systems, additional
figures of merit play an important role. For quantum communication applications,
for example, creating entanglement between remote stationary nodes at an appre-
ciable rate (such that entanglement can be obtainedmuch faster than the qubit loses
its quantum information, and fast enough to reduce experimental noise accumula-
tion) is an important goal [20, 44, 45]. Thus, the rate at which one can operate
on stationary qubits and associated photons, and how far these photons can then
travel before losing their quantum information are the key parameters, and funda-
mentally limit the operation times of a quantum network.

1.2.1.Current contenders
When considering platforms for the implementation of quantum communication
protocols, one must search for quantum systems whose phase information is ro-
bust (that is, 𝑇1 and 𝑇2 are long), but that also interact with light in such a way that
the stationary qubit state can be mapped onto properties of photonic states (and
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vice-versa). At present, the most widely studied platforms are trapped ions, semi-
conductor quantum dots, and solid-state color centers. All of these systems rely on
storing the quantum information in the spin (a relativistic and quantummechanical
angular momentum) of charged particles (electrons, holes, or nuclei). The consid-
erations of this section are summarized in Fig. 1.2.

In ion trapqubits, the quantum information is stored in the electronic or nuclear-
spin eigenstates of ions, trapped in vacuum due to strong electromagnetic fields
[46–48]. Since the ions are isolated in vacuum, interacting only with the electro-
magnetic fields used for trapping and qubit control, these qubits may live for virtu-
ally infinite times [49]. Their coherence properties are often limited by noise of the
trapping and control electric fields [50, 51]. However, scaling up these systems and
integrating them with other semiconductor device platforms remains a challenge
[19].

Alternatively, semiconductor quantum dots can host isolated and localized elec-
trons or holes. These charge-carrier spins may be long-lived and can thus be used
to store quantum information in these systems [52–54]. The trapping potential re-
sponsible for these quantum dots may arise from lithographically designed electro-
static gates [54], via bottom-up self-assembly of islands during growth of semicon-
ductor materials (zero-dimensional analogs of the two-dimensional electron gas)
[52], or via localization of excitons around lattice impurities [55–57]. Quantumdots
formed in III-V or II-VI semiconductors via self-assembly methods create trapping
potentials for both electrons and holes and thus give rise to localized spins that are
optically addressable [52, 55, 58–60]. These systems may be telecom-compatible
[61], but scaling them up is hindered by the large variability of quantum-dot prop-
erties [62, 63]. Furthermore, III-V semiconductors are composed of elements that
do not have nuclear-spin zero isotopes, and the nuclear-spin bath is an important
source of decoherence for the localized electronic spins [19, 20, 64].

Finally, solid-state color centers arise when defects in the lattice of an insulator
or semiconductor lead to localized electronic states strongly confined around the
defect site [21, 45, 65]. The coupled electronic and spin properties of these defect
centers can be used to store quantum information. When these defects have an ad-
ditional accessible excited state within the bandgap of the host material, the defect
can efficiently interact with light resonant with the transition between ground and
excited states, and this interaction may be spin-dependent [66–69]. The spin and
optical properties of these color centers depend on a wide variety of parameters,
for example the geometry and symmetry of the defect site, their charge state, and
whether or not impurity atoms are present in the defect complex [20, 21, 65, 70,
71].

The investigation of color centers in solids has enabled some ground-breaking
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Figure 1.2: Material platforms for application in quantum communication and their limi-
tations. A list of the current material platforms being developed for quantum communication appli-
cations, classified with respect to some key requirements for technological compatibility. Decoherence
of the functional spin qubit due to interaction between the stationary qubits and neighboring nuclear
spins can be mitigated by having a nuclear-spin-free environment. In trapped ions, this is intrinsically
achieved by the vacuum environment. Insulator or semiconductor spin quantum states require iso-
topic purification of the host material, and this is not always possible. Device engineering may lead to
devices where the quantum system has enhanced optical and spin properties, like strong optical tran-
sitions in photonic cavities, or enhanced spin lifetimes if the electrostatic environment is controlled via
gating. Quantum systems that interact with light at the telecom range will profit from optimal operation
at wavelengths compatible with the existing telecommunication infrastructure

demonstration of the basic requirements for functional quantum networks, such
as long-distance entanglement of remote qubits [1, 72]. For the largest part, these
results were realized on nitrogen-vacancy (NV) complexes in diamond. This lat-
tice defect, comprising a negatively charged nitrogen impurity next to a carbon va-
cancy in the diamond lattice, has a spin-1 with long coherence and long relaxation
times up to room temperature, and can be optically initialized, manipulated, and
read out [67, 73–77]. Although NV centers in diamond have been extremely use-
ful for demonstrating the feasibility of important steps towards quantum networks,
this platform still shows some significant shortcomings that motivate the further
search for solid-state defects with long-lived spins, bright optical interfaces, and
suitable host properties. Firstly, NV centers interact with light in the visible range,
far from the preferred wavelengths for low-loss communication through telecom
fibers. Although there are protocols for up and downconverting photons generated
by these NV centers while preserving the photon coherence [78], these protocols
are technically demanding and incur extra losses that limit the maximum entan-
glement rates achievable. This also represents a challenge for remote bio-sensing
applications due to strong absorption of visible photons by salty water (whereas
near-infrared photons penetrate better into biological media). Secondly, the NV
center suffers from strong coupling to phonon modes in the material, which leads
to predominant emission of photons into a broad phonon band that hinders the en-
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tanglement between the defect spin and the photonic states [65]. This brings us to
the third, and perhaps most important, shortcoming of NV centers and diamond
as a material platform: a clear path towards the improvement of the optical and
spin coherence properties of color centers is embedding them in engineered de-
vices. Photonic cavities, for example, can enhance the coherence properties of the
emitted photons [79], whereas phononic cavities may be engineered to reduce the
population of phonons responsible for limiting the spin-relaxation times [20]. Ad-
ditionally, electrostatic devices may be used to locally stabilize the semiconductor
electrostatic environment [80, 81], suppressing detrimental processes like charg-
ing of defect centers, and device engineering could lead to on-chip integration of
defect centers with electrical control and detection [82, 83]. However, diamond’s
hardness and the difficulty involved in doping itmean that processing diamond into
these types of devices is challenging.

For these reasons, a wide array of defects beyond the NV center in diamond
have been explored in the past years. For example, group-IV impurities in dia-
mond form optically active spin-3/2 defects [84–87]. These defects’ symmetries
lead to outstanding optical properties, including very narrow optical emission lines
(meaning that there is very large coherence between the interacting spin and pho-
tonic states). Furthermore, the systematic study of several different group-IV de-
fects shows that the defect properties are tunable by changing the type of impurity
ion [84, 85]. Although diamond itself hosts a whole zoo of optically active lattice
defects, in order to overcome its limitations as a host material, we must look for
alternative semiconductor platforms that host similar optically active defects. An
intuitive choice is silicon carbide, a wide-bandgap semiconductor that has been ex-
tensively used in the semiconductor industry as an alternative to silicon for high-
power, high-temperature device applications [88].

1.3. SiC and its color centers
Silicon carbide is formed by stacked and alternating carbon and silicon layers and
can be almost seen as a combination of diamond and silicon. It is extremely robust
and has a wide band-gap which makes it transparent for most wavelengths in the
visible and near-infrared ranges of the spectrum (like diamond), yet it can be grown
with extremely high quality and controllable doping, and its processing technolo-
gies have gone through decades of improvement for applications in the semicon-
ductor industry (like silicon). A set of high-quality commercial SiC wafers is shown
in Fig. 1.3(a).

Silicon carbide can host a wide array of defect centers [70, 89–95]. These may
be intrinsic, like vacancy and divacancy complexes, or extrinsic due to impurities
added during or implanted after growth. Furthermore, the material can be grown
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Figure 1.3: Silicon carbide and its defects (a) A series of industrial SiC wafers (photo courtesy of
II-VI Inc.). (b) The crystal is composed of alternating Si and C layers. Stacking these layers in different
orders leads to different SiC polytypes. Depicted here is 6H-SiC, with stacking order ABCACB. Lattice
sites in different layers differ in local symmetries (here denoted by ℎ, 𝑘1 and 𝑘2, see main text for de-
tails). Silicon carbide can host a myriad of different lattice defects. Various examples are depicted here,
circled. From top to bottom, these are a divacancy, a substitutional defect, and an impurity neighboring
a vacancy.

in different polytypes – that is, different crystal forms that vary in how the car-
bon and silicon layers are stacked. These various polytypes have lattice sites with
different local symmetries. In Fig. 1.3(b) we show the crystal structure of 6H-SiC,
characterized by stacking of the type ABCACB. In this particular polytype, C and Si
atoms can occupy lattice sites with quasi-cubic (𝑘1 and 𝑘2 sites) or quasi-hexagonal
(ℎ) symmetries. Since the defect symmetry plays a significant role in determining
its optical and spin-related properties, this feature can be used to engineer defects
with desirable interactions with electromagnetic fields [96]. Combined with the
outstanding list of impurities that are stable in the SiC lattice, this provides a huge
parameter space to explorewhen searching for defects with suitable optical and spin
properties.

Manyof the defects centers present in SiC are optically active in thenear-infrared
range [70, 97], and thus highly interesting for quantum-communication applica-
tions through the existing telecom infrastructure. Some of themhave been explored
to date. Divacancies, for example (complexes with neighboring carbon and silicon
vacancies) are highly analogous to NV centers, with a spin-1 ground state that can
be optically initialized and has long coherence times [64, 98–101]. Their optical
transitions (between 1000 and 1200 nm) are still not fully compatible with current
telecommunication infrastructure (in the intervals 1260 - 1360 nm or 1530 - 1565
nm), but proof-of-principle device integration of these defects demonstrates the po-
tential of SiC as a host material [79, 81, 82]. Other defects, including some that in-

1

8



1.4. This thesis

teract with light at the telecom bands, have not been thoroughly investigated and
still need to be fully characterizedwith respect to their ground and excited-state spin
properties. In particular, understanding how the various energy scales responsible
for a defect’s electronic structure influence their spin and its interaction with the
environment may lead to informed engineering of novel defects that fulfill specific
needs for quantum communication applications. This is the focus of this thesis.
We look at transition metal defect centers in SiC with optical techniques in order
to understand how their microscopic environment leads to their spin and optical
properties, and whether these fulfill the requirements for quantum communication
applications.

1.4. This thesis
In this thesis, we investigate transition-metal defects in SiC with experimental and
theoretical means. We apply optical characterization techniques to determine their
microscopic configuration, whether the spins associated with these defect centers
can be optically initialized, what is the timescale and what physical processes dom-
inate the spin relaxation and inhomogeneous coherence times of these defects. In
the process of doing this, we unravel defect centers with spins that are surprisingly
robust, and whose electronic structure gives rise to behavior that is much richer
than originally anticipated. We show that, in particular geometries, the coupling
between the electronic spin states and its orbital states via spin-orbit coupling can
in fact stabilize these spins, which can have spin-relaxation times up to seconds at
low (few kelvin) temperatures. Furthermore, we theoretically investigate the pos-
sibility of manipulating these defect centers via microwave electromagnetic fields.
The thesis is organized as follows:

• Chapter 2 presents background information on theoretical and experimen-
tal concepts and techniques applied in the subsequent chapters. This includes
a short and didactical recap of group theory concepts and how they lead to
selection rules for transitions between different eigenstates. These concepts
underlinemost of the theoretical arguments presented in this thesis. Further-
more, we describe in this chapter the experimental setup and geometries used
to obtain the experimental results presented in this thesis.

• Chapter3presents group-theoretical arguments that led to the identification
of themicroscopic configuration of a substitutional defect containing aMo im-
purity in SiC, motivated by experimental results within our team. We show
that a model based on group theory encompasses the unusual anisotropic
magneto-optical spectra associated with these defect centers, and this enables
us to determine their lattice site and charge configuration.
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• Chapter 4 presents time-resolved measurements that unravel surprisingly
long spin-relaxation times of the Mo defect in SiC. Based on the temperature
dependence of the spin-relaxation rate and an analysis of the electronic struc-
ture of these defects, we identify the physical mechanisms leading to spin re-
laxation in these defects. We show how the symmetry of the defect, combined
with spin-orbit coupling, leads to specific symmetry-protected selection rules
that are responsible for the long spin lifetimes of these defect centers. Un-
fortunately, these selection rules may hinder microwave control of the defect
spins.

• Chapter 5 presents our theoretical results showing that the presence of a
hyperfine-coupled nuclear spin may be fundamental to enable the control of
the electronic spin of Mo and V defects in SiC via microwave fields in uncon-
ventional geometries. These results indicate that the symmetry-related limi-
tations for microwave control (mentioned in chapter 4) may be overcome in
the presence of a nuclear spin. We show that the interaction with the nu-
clear spin opens up transitions that are originally forbidden, leading to al-
lowed spin resonances due to electric and magnetic microwave fields, with
important technological consequences for the device integration of these de-
fect centers.

• Chapter 6 presents experimental spectroscopic results on ensembles of V de-
fects in SiC.Weuse emission andnovel absorption approaches to demonstrate
high-contrast magneto-spectroscopy of the hyperfine-coupled spin sublevels.
Based on time-resolved experiments, we determine the spin-relaxation time
of these defects. The magnetic-field dependence of the spin-relaxation rate
provides evidence for hyperfine-mediated spin-relaxation mechanisms.

• Chapter 7 presents a group-theoretical derivation of scattering mechanisms
of charge carriers in two-dimensional transitionmetal dichalcogenides. These
results help explain a series of transport experiments in TMDs and are derived
from those presented in chapter 3 for defects in SiC. This shows that the the-
oretical techniques explored in this thesis are very general and can provide
transferable insight into a wide class of physical platforms and phenomena.

References
[1] B. Hensen et al., “Loophole-free bell inequality violation using electron spins separated by 1.3

kilometres”, Nature 526, 682 (2015).

[2] G. Pagano et al., “Quantum approximate optimization of the long-range ising model with a
trapped-ion quantum simulator”, Proc. Natl. Acad. Sci. U S A 117, 25396 (2020).

1

10



References

[3] X. X. Zhang et al., “Magnetic brightening and control of dark excitons inmonolayerWSe2”, Nat.
Nanotechnol. 12, 883 (2017).

[4] A. I. Q. Google and Collaborators, “Hartree-fock on a superconducting qubit quantum com-
puter”, Science 369, 1084 (2020).

[5] A. Kandala, K. Temme, A. D. Corcoles, A. Mezzacapo, J. M. Chow, and J. M. Gambetta, “Error
mitigation extends the computational reach of a noisy quantum processor”, Nature 567, 491
(2019).

[6] P. Jurcevic et al., “Demonstration of quantum volume 64 on a superconducting quantum com-
puting system”, ArXiv 2008.08571v2 (2020).

[7] F. Arute et al., “Quantum supremacy using a programmable superconducting processor”, Nature
574, 505 (2019).

[8] K.Wright et al., “Benchmarking an 11-qubit quantumcomputer”,Nat. Commun. 10, 5464 (2019).

[9] N. Friis et al., “Observation of entangled states of a fully controlled 20-qubit system”, Phys. Rev.
X 8, 021012 (2018).

[10] V. A. Norman, S. Majety, Z.Wang,W. H. Casey, N. Curro, andM. Radulaski, “Novel color center
platforms enabling fundamental scientific discovery”, InfoMat, 1 (2020).

[11] E. Togan et al., “Quantum entanglement between an optical photon and a solid-state spin qubit”,
Nature 466, 730 (2010).

[12] W. Pfaff et al., “Unconditional quantum teleportation between distant solid-state quantumbits”,
Science 345, 532 (2014).

[13] P. W. Anderson, B. I. Halperin, and C. M. Varma, “Anomalous low-temperature thermal prop-
erties of glasses and spin glasses”, The Philos. Mag. 25, 1 (1972).

[14] T. B. Boykin, G. Klimeck, M. A. Eriksson, M. Friesen, S. N. Coppersmith, P. von Allmen, F. Oy-
afuso, and S. Lee, “Valley splitting in strained silicon quantum wells”, Appl. Phys. Lett. 84, 115
(2004).

[15] D. L. Creedon, Y. Reshitnyk, W. Farr, J. M. Martinis, T. L. Duty, and M. E. Tobar, “High q-
factor sapphire whispering gallery mode microwave resonator at single photon energies and
millikelvin temperatures”, Appl. Phys. Lett. 98, 222903 (2011).

[16] M. Harlander, M. Brownnutt, W. Hänsel, and R. Blatt, “Trapped-ion probing of light-induced
charging effects on dielectrics”, New J. of Phys. 12, 093035 (2010).

[17] T. Tanttu et al., “Controlling spin-orbit interactions in silicon quantumdots usingmagnetic field
direction”, Phys. Rev. X 9, 021028 (2019).

[18] G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, and B. Urbaszek, “Col-
loquium: excitons in atomically thin transition metal dichalcogenides”, Rev. of Mod. Phys. 90
(2018).

[19] N. P. de Leon et al., “Materials challenges and opportunities for quantum computing hardware”,
Science 372, eabb2823 (2021).

[20] G. Wolfowicz, F. J. Heremans, C. P. Anderson, S. Kanai, H. Seo, A. Gali, G. Galli, and D. D.
Awschalom, “Qubit guidelines for solid-state spin defects”, Nat. Rev. Mater. (2021).

[21] L. C. Bassett, A. Alkauskas, A. L. Exarhos, andK.-M.C. Fu, “Quantumdefects by design”,Nanopho-
tonics 8, 1867 (2019).

[22] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information: 10th an-
niversary edition (Cambridge University Press, 2010).

1

11



1. Quantum technologies and their material platforms: the potential of SiC

[23] R. P. Feynman, “Simulating physics with computers”, Int. J. of Theor. Phys. 21, 467 (1982).

[24] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer”, SIAM Review 41, 303 (1999).

[25] A. Montanaro, “Quantum algorithms: an overview”, npj Quantum Information 2, 15023 (2016).

[26] C. Kokail et al., “Self-verifying variational quantum simulation of lattice models”, Nature 569,
355 (2019).

[27] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. Yuan, “Quantum computational
chemistry”, Rev. of Mod. Phys. 92, 015003 (2020).

[28] Y. Nam et al., “Ground-state energy estimation of the water molecule on a trapped-ion quantum
computer”, npj Quantum Information 6, 33 (2020).

[29] M. Reiher, N.Wiebe, K. M. Svore, D.Wecker, andM. Troyer, “Elucidating reactionmechanisms
on quantum computers”, Proc. Natl. Acad. Sci. U S A 114, 7555 (2017).

[30] M.H. Abobeih, J. Randall, C. E. Bradley, H. P. Bartling,M. A. Bakker,M. J. Degen,M.Markham,
D. J. Twitchen, and T. H. Taminiau, “Atomic-scale imaging of a 27-nuclear-spin cluster using a
quantum sensor”, Nature 576, 411 (2019).

[31] J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart, L. M. Pham, and R. L. Walsworth,
“Sensitivity optimization forNV-diamondmagnetometry”, Rev. ofMod. Phys.92, 015004 (2020).

[32] J. Bylander et al., “Noise spectroscopy through dynamical decoupling with a superconducting
flux qubit”, Nat. Phys. 7, 565 (2011).

[33] F. Casola, T. van der Sar, and A. Yacoby, “Probing condensedmatter physics withmagnetometry
based on nitrogen-vacancy centres in diamond”, Nat. Rev. Mater. 3, 17088 (2018).

[34] J. C. Jaskula, B. J. Shields, E. Bauch,M.D. Lukin, A. S. Trifonov, andR. L.Walsworth, “Improved
quantum sensing with a single solid-state spin via spin-to-charge conversion”, Phys. Rev. Appl.
11, 064003 (2019).

[35] Y. Romach et al., “Spectroscopy of surface-induced noise using shallow spins in diamond”, Phys.
Rev. Lett. 114, 017601 (2015).

[36] H. Kraus, V. A. Soltamov, F. Fuchs, D. Simin, A. Sperlich, P. G. Baranov, G. V. Astakhov, and
V. Dyakonov, “Magnetic field and temperature sensing with atomic-scale spin defects in silicon
carbide”, Sci. Rep. 4, 5303 (2014).

[37] T. Zhang et al., “Toward quantitative bio-sensing with nitrogen–vacancy center in diamond”,
ACS Sensors 6, 2077 (2021).

[38] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication
with atomic ensembles and linear optics”, Nature 414, 413 (2001).

[39] H. J. Kimble, “The quantum internet”, Nature 453, 1023 (2008).

[40] T. E. Northup and R. Blatt, “Quantum information transfer using photons”, Nat. Photonics 8,
356 (2014).

[41] Y. Colombe, D. H. Slichter, A. C. Wilson, D. Leibfried, and D. J. Wineland, “Single-mode optical
fiber for high-power, low-loss uv transmission”, Optics express 22, 19783 (2014).

[42] D. Awschalom et al., “Development of quantum interconnects (quics) for next-generation infor-
mation technologies”, PRX Quantum 2, 017002 (2021).

[43] K. Nemoto et al., “Photonic architecture for scalable quantum information processing in dia-
mond”, Phys. Rev. X 4, 031022 (2014).

1

12



References

[44] G. Zhang, Y. Cheng, J.-P. Chou, and A. Gali, “Material platforms for defect qubits and single-
photon emitters”, Appl. Phys. Rev. 7, 031308 (2020).

[45] S. Castelletto and A. Boretti, “Silicon carbide color centers for quantum applications”, Journal
of Physics: Photonics 2, 022001 (2020).

[46] C. D. Bruzewicz, J. Chiaverini, R.McConnell, and J.M. Sage, “Trapped-ion quantum computing:
progress and challenges”, Appl. Phys. Rev. 6, 021314 (2019).

[47] M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms”, Rev. of
Mod. Phys. 82, 2313 (2010).

[48] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas, “High-fidelity quantum
logic gates using trapped-ion hyperfine qubits”, Phys. Rev. Lett. 117, 060504 (2016).

[49] P. Wang et al., “Single ion qubit with estimated coherence time exceeding one hour”, Nat. Com-
mun. 12, 233 (2021).

[50] H. Levine et al., “High-fidelity control and entanglement of rydberg-atom qubits”, Phys. Rev.
Lett. 121, 123603 (2018).

[51] J. E. Christensen, D. Hucul, W. C. Campbell, and E. R. Hudson, “High-fidelity manipulation of
a qubit enabled by a manufactured nucleus”, npj Quantum Information 6, 35 (2020).

[52] Y. Kondo, M. Ono, S. Matsuzaka, K. Morita, H. Sanada, Y. Ohno, and H. Ohno, “Multipulse
operation and optical detection of nuclear spin coherence in a gaas/algaas quantumwell”, Phys.
Rev. Lett. 101, 207601 (2008).

[53] K. D. Petersson, J. R. Petta, H. Lu, and A. C. Gossard, “Quantum coherence in a one-electron
semiconductor charge qubit”, Phys. Rev. Lett. 105, 246804 (2010).

[54] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P.
Hanson, and A. C. Gossard, “Coherentmanipulation of coupled electron spins in semiconductor
quantum dots”, Science 309, 2180 (2005).

[55] T. A. Kennedy, J. Whitaker, A. Shabaev, A. S. Bracker, and D. Gammon, “Detection of mag-
netic resonance of donor-bound electrons in GaAs by Kerr rotation”, Phys. Rev. B 74, 161201(R)
(2006).

[56] A. R. Onur, J. P. de Jong, D. O’Shea, D. Reuter, A. D. Wieck, and C. H. van der Wal, “Stabilizing
nuclear spins around semiconductor electrons via the interplay of optical coherent population
trapping and dynamic nuclear polarization”, Phys. Rev. B 93, 161204 (2016).

[57] M. Sladkov, A. U. Chaubal, M. P. Bakker, A. R. Onur, D. Reuter, A. D. Wieck, and C. H. van
derWal, “Electromagnetically induced transparency with an ensemble of donor-bound electron
spins in a semiconductor”, Phys. Rev. B 82, 121308 (2010).

[58] D. Press et al., “Ultrafast optical spin echo in a single quantum dot”, Nat. Photonics 4, 367
(2010).

[59] D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quan-
tum dot spin using ultrafast optical pulses”, Nature 456, 218 (2008).

[60] A. Greilich, A. Shabaev, D. R. Yakovlev, A. L. Efros, I. A. Yugova, D. Reuter, A. D. Wieck, and
M. Bayer, “Nuclei-induced frequency focusing of electron spin coherence”, Science 317, 1896
(2007).

[61] P. Holewa, M. Burakowski, A. Musial, N. Srocka, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzen-
stein, and G. Sek, “Thermal stability of emission from single ingaas/gaas quantum dots at the
telecom o-band”, Sci. Rep. 10, 21816 (2020).

1

13



1. Quantum technologies and their material platforms: the potential of SiC

[62] H. Ollivier et al., “Reproducibility of high-performance quantum dot single-photon sources”,
ACS Photonics 7, 1050 (2020).

[63] L. Zhai, M. C. Lobl, G. N. Nguyen, J. Ritzmann, A. Javadi, C. Spinnler, A. D. Wieck, A. Ludwig,
and R. J. Warburton, “Low-noise GaAs quantum dots for quantum photonics”, Nat. Commun.
11, 4745 (2020).

[64] H. Seo, A. L. Falk, P. V. Klimov, K. C. Miao, G. Galli, and D. D. Awschalom, “Quantum decoher-
ence dynamics of divacancy spins in silicon carbide”, Nat. Commun. 7, 12935 (2016).

[65] F. Jelezko and J. Wrachtrup, “Single defect centres in diamond: a review”, Phys. Stat. Sol. (a)
203, 3207 (2006).

[66] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg,
“The nitrogen-vacancy colour centre in diamond”, Phys. Rep. 528, 1 (2013).

[67] J. R. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. D. Lukin, “Properties of
nitrogen-vacancy centers in diamond: the group theoretic approach”,NewJ. of Phys. 13, 025025
(2011).

[68] D. M. Lukin et al., “4H-silicon-carbide-on-insulator for integrated quantum and nonlinear pho-
tonics”, Nat. Photon. 14, 330 (2019).

[69] D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with opti-
cally interfaced solid-state spins”, Nat. Photonics 12, 516 (2018).

[70] J. Baur,M.Kunzer, and J. Schneider, “Transitionmetals in SiC polytypes, as studied bymagnetic
resonance techniques”, Phys. Stat. Sol. A 162, 153 (1997).

[71] N. T. Son et al., “Developing silicon carbide for quantum spintronics”, Appl. Phys. Lett. 116,
190501 (2020).

[72] M. Pompili et al., “Realization of a multinode quantum network of remote solid-state qubits”,
Science 372, 259 (2021).

[73] L. Childress and R. Hanson, “Diamond NV centers for quantum computing and quantum net-
works”, MRS Bull 38, 134 (2013).

[74] M. W. Doherty, N. B. Manson, P. Delaney, and L. C. L. Hollenberg, “The negatively charged
nitrogen-vacancy centre in diamond: the electronic solution”, New J. of Phys. 13, 025019 (2011).

[75] L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R.
Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in
diamond”, Science 314, 281 (2006).

[76] G. Balasubramanian et al., “Nanoscale imaging magnetometry with diamond spins under am-
bient conditions”, Nature 455, 648 (2008).

[77] X.Rong et al., “Experimental fault-tolerant universal quantumgateswith solid-state spins under
ambient conditions”, Nat. Commun. 6, 8748 (2015).

[78] A. Dréau, A. Tcheborateva, A. El Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency
conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication
wavelengths”, Phys. Rev. Appl. 9, 064031 (2018).

[79] A. L. Crook et al., “Purcell enhancement of a single silicon carbide color center with coherent
spin control”, Nano Lett. 20, 3427 (2020).

[80] M.E. Bathen andL. Vines, “Manipulating single-photon emission frompoint defects in diamond
and silicon carbide”, Adv. Quantum Technol., 2100003 (2021).

1

14



References

[81] C. P. Anderson et al., “Electrical and optical control of single spins integrated in scalable semi-
conductor devices”, Science 366, 1225 (2019).

[82] P. V. Klimov, A. L. Falk, B. B. Buckley, and D. D. Awschalom, “Electrically driven spin resonance
in silicon carbide color centers”, Phys. Rev. Lett. 112, 087601 (2014).

[83] A. L. Falk, P. V. Klimov, B. B. Buckley, V. Ivády, I. A. Abrikosov, G. Calusine,W. F. Koehl, A. Gali,
and D. D. Awschalom, “Electrically and mechanically tunable electron spins in silicon carbide
color centers”, Phys. Rev. Lett. 112, 187601 (2014).

[84] G. Thiering and A. Gali, “Ab Initiomagneto-optical spectrum of group-IV vacancy color centers
in diamond”, Phys. Rev. X 8, 021063 (2018).

[85] A. Sipahigil, K. D. Jahnke, L. J. Rogers, T. Teraji, J. Isoya, A. S. Zibrov, F. Jelezko, and M. D.
Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond”, Phys.
Rev. Lett. 113, 113602 (2014).

[86] C. Bradac, W. Gao, J. Forneris, M. E. Trusheim, and I. Aharonovich, “Quantum nanophotonics
with group IV defects in diamond”, Nat. Commun. 10, 5625 (2019).

[87] C. Hepp et al., “Electronic structure of the silicon vacancy color center in diamond”, Phys. Rev.
Lett. 112, 036405 (2014).

[88] P. Friedrichs, T. Kimoto, L. Ley, and G. Pensl, Silicon carbide, Vol. 1 (Wiley, Weinheim, 2010).

[89] S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon
carbide room-temperature single-photon source”, Nat. Mater. 13, 151 (2014).

[90] K. F. Dombrowski, U. Kaufmann, M. Kunzer, K. Maier, J. Schneider, V. B. Shields, and M. G.
Spencer, “Deep donor state of vanadium in cubic silicon carbide (3C�SiC)”, Appl. Phys. Lett.
65, 1811 (1994).

[91] F. Fuchs, B. Stender, M. Trupke, D. Simin, J. Pflaum, V. Dyakonov, and G. V. Astakhov, “En-
gineering near-infrared single-photon emitters with optically active spins in ultrapure silicon
carbide”, Nat. Commun. 6, 7578 (2015).

[92] W. F. Koehl, B. Diler, S. J. Whiteley, A. Bourassa, N. T. Son, E. Janzén, and D. D. Awschalom,
“Resonant optical spectroscopy and coherent control of Cr4+ spin ensembles in SiC and GaN”,
Phys. Rev. B 95, 035207 (2017).

[93] M. Widmann et al., “Coherent control of single spins in silicon carbide at room temperature”,
Nat. Mater. 14, 164 (2015).

[94] S. A. Zargaleh, S. Hameau, B. Eble, F. Margaillan, H. J. von Bardeleben, J. L. Cantin, and W.
Gao, “Nitrogen vacancy center in cubic silicon carbide: a promising qubit in the 1.5𝜇m spectral
range for photonic quantum networks”, Phys. Rev. B 98, 165203 (2018).

[95] T. Bosma et al., “Identification and tunable optical coherent control of transition-metal spins in
silicon carbide”, npj Quantum Information 4, 48 (2018).

[96] A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. A. Zorman,
P. X.-L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide”, Nat.
Commun. 4, 1819 (2013).

[97] B. Magnusson and E. Janzén, “Optical characterization of deep level defects in SiC”, Mater. Sci.
For. 483, 341 (2005).

[98] D. J. Christle, A. L. Falk, P. Andrich, P. V. Klimov, J. U.Hassan,N. T. Son, E. Janzén, T.Ohshima,
and D. D. Awschalom, “Isolated electron spins in silicon carbide with millisecond coherence
times”, Nat. Mater. 14, 160 (2015).

1

15



1. Quantum technologies and their material platforms: the potential of SiC

[99] D. J. Christle et al., “Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon in-
terface”, Phys. Rev. X 7, 021046 (2017).

[100] P. V. Klimov, A. L. Falk, D. J. Christle, V. V. Dobrovitski, andD.D. Awschalom, “Quantumentan-
glement at ambient conditions in amacroscopic solid-state spin ensemble”, Sci. Adv. 1, e1501015
(2015).

[101] W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temper-
ature coherent control of defect spin qubits in silicon carbide”, Nature 479, 84 (2011).

1

16



chapter 2
Physical concepts and experimental
techniques

Localized defects in crystals can to some degree be seen as molecules embedded
in a solid-state matrix. As such, many of the well-established techniques used to
characterize the behavior of molecules can be extended and applied towards un-
derstanding solid-state defects. Experimentally, optical (e.g. photoluminescence)
and spin-resonance techniques – as well as their hybrids – allow us to charac-
terize many of these defects and identify, in practice, their electronic levels and
the associated selection rules for transitions between them. Theoretically, group-
theoretical analyses of the defects’ symmetries have been of core importance to
identify the solid-state defects via comparison with experiments, and to under-
stand their optical, spin, and thermal properties in terms of their microscopic
environment. In this chapter, we present the theoretical and experimental tool-
boxes we use to investigate and understand the spectra of lattice defects in SiC.
Namely, we present a recap on group theory and how the symmetries of a defect
lead to selection rules that help in determining the defects’ microscopic configura-
tion. Furthermore, we introduce different photoluminescence-based experimental
techniques, and how they allow us to investigate different energy scales with in-
creasing resolution, as well as the time-resolved dynamics of spin relaxation.

I n order to identify suitable spin-active defects for quantum communication ap-
plications, the first step is to determine the defects’ electronic structure (that is,

what are the stable configurations of the quantum system and their energies), and
how these defects interact with external influences (electromagnetic fields, applied
strain, lattice vibrations, etc.) [1]. On the one hand, the relevant energy scales for
optical and electronic transitions are determined by the defects’ electronic struc-
ture. One of our goals in this thesis is thus to understand these different energy
scales, and how they influence the relevant spin-relatedmetrics. Thismay help nar-
rowing down, for instance, temperature ranges where the defect is not disturbed by
phonons in the lattice. On the other hand, identifying possible selection rules for
interaction with electromagnetic fields allows us to identify optimal operation ge-
ometries for qubit control and light-matter entanglement protocols, for example.

17



2. Physical concepts and experimental techniques

Localized defects in a solid-state environment can to some degree be seen as
molecules embedded in a solid-state matrix. Some defects disturb the lattice en-
vironment only slightly (for instance, shallow dopants in semiconductor materi-
als, like nitrogen or boron in SiC). These defects’ electronic eigenstates are strongly
mixedwith the crystalline delocalizedBloch states. Other defects, however, strongly
break the periodicity of the lattice and disturb the crystalline structure enough to
be (partially) decoupled from the lattice, giving rise to strongly localized electronic
eigenstates whose properties arise from electrons at or neighboring the defect site.
These are the defects of interest in this thesis. Many of thewell-established theoreti-
cal (symmetry analysis and first-principle calculations) and experimental (photolu-
minescence, spin-resonance, and their hybrids) techniques used to characterize and
understand the behavior of molecules can be extended and applied towards under-
standing these solid-state defects. Combined, these experimental and theoretical
approaches provide access, in the best-case scenario, to these defects’ microscopic
configuration via their experimental signatures.

In this chapter, we present in a pedagogical way the group theory and experi-
mental techniques that we use in order to study the spectra of defects in SiC, and
how these theoretical and experimental techniques relate to each other. We provide
to the reader a recap of group theory as a way to summarize the set of symmetries
of a certain quantum system. We show how these symmetries result in selection
rules that restrict the possible interactions between the quantum system of inter-
est and its environment. Finally, we introduce the concept of spin and spin-orbit
coupling from a group-theory perspective. We also present different experimental
(time-resolved) spectroscopic techniques, and how each of them allows us to ac-
cess and investigate different energy scales with increasing resolution, as well as
the time-resolved dynamics of spin relaxation.

2.1. Symmetry analysis
Symmetry analysis is a powerful and ubiquitous tool in physics and is used to ex-
plain physical phenomena across all energy scales, from superconductors at mK
temperatures, to high-energy particles. In fact, the conservation laws that govern
classical as well as quantum mechanical behavior (conservation of linear and an-
gular momentum, energy, electrical charge), can each be linked to a different sym-
metry (translation and rotation, time-reversal and global phase invariance, respec-
tively) [2]. The symmetries of a certain physical object consist of the set of opera-
tions that, when acting on this physical object, give a result that cannot be distin-
guished from the original object itself. In the context of molecular and solid-state
systems, the most important symmetries relate to spatial symmetries (translations
and rotations, mirroring operations, space inversion, etc.) or time-reversal symme-
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2.1. Symmetry analysis

tries (if a certain system or physical process remains unchanged if the arrow of time
is reversed) [3–6]. These are the symmetries that we focus on in this section.

The spatial symmetries of lattice defects and molecules determine the orbital
part of their electronic eigenstates, that is, the spatial configuration of electrons
around the core nuclei. Additionally, since electrons are spin-1/2 particles, the full
description of spin-active defects from a symmetry perspective must also take into
account the transformation properties of a spin-1/2. These half-integer spins are
spinors and transform in special ways since, upon a rotation of 360∘ around any
given axis, these spinors go into minus themselves [3].

These special properties of half-integer spins can be included in our symmetry
analysis of the experimental properties of spin-active defects through the formal-
ism of double groups [3, 6]. However, they do not change the steps we have to
go through to obtain, from the symmetry of a certain defect, the degeneracy of its
energy eigenstates, and the corresponding selection rules. For this reason and for
illustration purposes, we will for now ignore half-integer spins, and focus on sim-
ple spinless spatial point groups. Later on, we will also consider the effect of half-
integer spins through the formalism of double groups (Sec. 2.1.3), including how it
encompasses the coupling of spin and orbital degrees of freedom, and how some
special selection rules arise from the concept of time-reversal symmetry.

2.1.1. Point groups: spatial symmetries
In order to visualize the concepts described in this chapter, we focus on two hypo-
thetical molecules with different degrees of symmetry. We name these molecules,
for simplicity, a low symmetry molecule (LS), and a high symmetry molecule (HS)
(Fig. 2.1(a) and (b), respectively), and we name the atoms composing them by their
colors. The low symmetry molecule is composed of a central pink atom, bound to
four different (blue, indigo, green, and yellow) atoms in a tetrahedral geometry.
The high symmetry molecule, instead, is composed of a central pink atom bound to
three green atoms and a single indigo atom, also in a tetrahedral geometry.

Point group and symmetry operations
The spatial distribution of atoms in thesemolecules has certain symmetries. Within
the context of group theory, the concept of a point group allows us to summarize
these symmetries systematically. Beyond a formal mathematical definition [6, 7],
this point group is nothing more than a summary of the closed set of symmetry op-
erations that are applicable to the molecule or solid of interest. For example, it is
clear that there is no operation (besides doing nothing) that will preserve the shape
of LS. Thus, the point group that describes the symmetry of LS is 𝐶1 (in Schönflies
notation), which contains only the identity operation. In contrast, we can operate
on HS in a few different ways and end up with a product that is indistinguishable
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Figure 2.1: Two hypothetical molecules with different symmetries. (a) The LS molecule, with
four different atoms bound to the central atom, has only one symmetry operation – the identity. The
point group describing its symmetries is the 𝐶1. (b) In contrast, the HS molecule has three identical
green atoms and a single indigo atom bound to the central pink atom. Rotating (𝐶3 operation) and
mirroring (𝜎𝑣 operations) this molecule in different ways gives a result that is indistinguishable from
the original molecule. Thus, the symmetries of this hypothetical molecule correspond to point group
𝐶3v. (c) Coordinate convention for the discussion of matrix representations (see text).

from the original molecule. For instance, we can rotate it 120∘ in the clockwise or
counter-clockwise direction around an axis that connects the pink and the indigo
atoms (operations 𝐶1,23 , where 𝐶3 indicates a rotation around the three-fold rota-
tional axis, and the superindices indicates that there are two such rotations pos-
sible), or we can mirror it across any mirror plane that contains the pink, the in-
digo and one of the green atoms (operations 𝜎1,2,3𝑣 , where 𝜎𝑣 indicates a mirroring
operation across a plane containing the high-symmetry rotation axis, and the su-
perindices indicate that there are three equivalent mirror planes). Thus, the point
group containing all of these symmetry operations, 𝐶3v, describes the symmetry of
the hypothetical HS molecule.
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Irreducible representations
The symmetry operations described above correspond to transformations of the
spatial coordinates and, as such, can be represented by matrices [5–7]. For exam-
ple, we can describe the action of the operations of the point group 𝐶3v on a vector
𝑟 = 𝑥𝑥̂ + 𝑦𝑦̂ + 𝑧𝑧̂ (according to the coordinate convention in Fig. 2.1(c)) with the
matrices

𝐷(𝐸) = 𝑅(0∘) =
⎡
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1

⎤
⎥
⎥
⎦
, (2.1)

𝐷(𝐶1,23 ) = 𝑅(±120∘) =
⎡
⎢
⎢
⎣

cos(±120∘) sin(±120∘) 0
− sin(±120∘) cos(±120∘) 0

0 0 1

⎤
⎥
⎥
⎦
, (2.2)

𝐷(𝜎1,2,3𝑣 ) = 𝑅(0∘, ±120∘)
⎡
⎢
⎢
⎣

1 0 0
0 −1 0
0 0 1

⎤
⎥
⎥
⎦
, (2.3)

where 𝐷 stands for the matrix representation of a certain operation, and 𝑅(𝜃) cor-
responds to a rotation of an angle 𝜃 around the symmetry axis. We notice from
these matrix representations that, when subject to the symmetry operations of this
particular point group, vectors along the 𝑧̂ axis behave differently from vectors in
the 𝑥𝑦 plane. The component along the 𝑧̂ axis is unchanged upon any operation of
the group 𝐶3v. In contrast, the components along the 𝑥̂ and 𝑦̂ axes cannot be treated
independently: they are fundamentally connected by the operations 𝐶1,23 and 𝜎1,2,3𝑣 .
Mathematically, this property translates into the fact that the matrices presented
in Eqs. 2.1-2.3 are block-diagonal. They are all formed by a 2 × 2 matrix acting
on the vector projections in the 𝑥𝑦 plane, and a 1 × 1 matrix acting on the vector
projection along the 𝑧̂ axis. These matrices cannot be further reduced: there exists
no similarity transformation that will further diagonalize them. For this reason, we
call them irreducible representations (or irreps, for those who are intimate enough
with them) of the point group 𝐶3v [5–7]. These irreps indicate how different objects
(vectors, pseudovectors, operators, etc.) transform when subject to the symmetry
operation of a certain point group.

Transformation matrices analogous to Eqs. 2.1-2.3 for pseudovectors (that is,
vectors like themagnetic field, that gain a negative sign undermirroring operations)
can be obtained in a similar way. These show that, whereas pseudovectors in the 𝑥𝑦
plane transform similarly to vectors in the 𝑥𝑦 plane, a pseudovector in the 𝑧̂ direc-
tion does not transform as its vectorial counterpart. Instead, this pseudovector gets
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a negative sign upon a reflection on any of the mirror planes 𝜎1,2,3𝑣 (that is, it goes
into minus itself). In this way, the point group 𝐶3v has three different irreducible
representations: objects that transform like a vector in the 𝑧̂ direction belong to ir-
repA1, objects that transformas a pseudovector in the 𝑧̂ direction belong to irrepA2,
and objects that transform as vectors in the 𝑥𝑦 plane belong to irrep E. The irreps
A1 and A2 are non-degenerate, that is, they act on spaces that are one-dimensional.
The irrep E acts on a two-dimensional space, that is, it is doubly degenerate.

In contrast, if we think about the LSmolecule and its corresponding point group
𝐶1, the only available symmetry operation is the identity (𝐸), as seen in Fig. 2.1(a).
The matrix representation of this operation on a three-dimensional vector space is
the identity matrix (Eq. 2.1). This representation is already block-diagonal since it
has the same 1×1matrix repeated across the diagonal entries. Thus, with respect to
the symmetry operations of the point group 𝐶1, vectors along the 𝑥̂, 𝑦̂ or 𝑧̂ directions
transform similarly. This point group has only one irrep, called A1.

The properties of each of these irreps with respect to the point-group opera-
tions are summarized by their characters, or the trace of their matrix representa-
tion, and collected into so-called character tables. These character tables for the
different point groups are extensively tabulated [8], and presented explicitly for
the point group 𝐶3v in Tab. 2.1. Using these character tables, we can easily figure
out how different functions transform when subject to the point-group operations.

Table 2.1: Character table for the
point group 𝐶3v.

𝐶3v 𝐸 𝐶1,23 𝜎1,2,3𝑣

A1 1 1 1
A2 1 1 −1
E 2 −1 0

For example, if we are interested in figuring out how a
function of the product 𝑥𝑧 transforms under the oper-
ations of the point group 𝐶3v, all we have to do is mul-
tiply the irreps A1 (describing how 𝑧 transforms) and
E (which describes how 𝑥 transforms) by multiplying
their characters for each point-group operation. This
product, A1⊗E, gives as a result the irrep E. Thus, the
product 𝑥𝑧 transforms in the same way as a vector in
the 𝑥̂ direction. Finally, the characters of a representa-
tion also allow us to easily decompose reducible representations – representations
that can be further diagonalized into different subspaces that each transform as an
irrep of the group of interest – into its constituting irreps. For example, the product
of irreps E⊗ E is reducible, and can be decomposed into a sum of irreps such that
E⊗ E = A1 ⊕ A2 ⊕ E (see Tab. A.2). The mathematical formalism necessary to
perform this decomposition can be extensively found in group theory books [3–7].

2.1.2. Electronic structure and selection rules
The electronic states of molecules or lattice defects, and their associated energy
levels can, in principle, be self-consistently calculated from the Schrödinger equa-
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Figure 2.2: Transformation prop-
erties of wavefunctions and op-
erators. For the hypothetical HS
molecule, we can construct several
symmetry adapted linear combination
(SALC) of green-atom 𝑝 orbitals. The
wavefunctions are represented by blue
and red shaded regions, where blue
(red) shaded regions correspond to
negative (positive) contributions to the
wavefunctions. Each SALC transforms
as a particular irreducible representa-
tion of the point group 𝐶3v. Operators
can also be classified with respect to
how they transform under the symme-
try operations of the group. An elec-
tric dipole moment in the 𝑧̂ direction
(𝑑⃗𝑧) transforms as irrep A1, whereas a
magnetic dipole in the same direction
(𝜇⃗𝑧) transforms as the irrep A2. Elec-
tric and magnetic dipole moments in
the 𝑥𝑦 plane transform according to ir-
rep E.

tion through first-principles quantum-chemical calculations based onHartree-Fock
and density functional theory [4, 9, 10]. These calculations provide valuable in-
formation about the microscopic configuration (spatial distribution of core nuclei,
number of paired and unpaired electrons, etc.) of molecules or defects. They may,
however, be computationally demanding (especially if we are also interested in ex-
cited state properties [11]). Especially at the stage when the particular geometry
and charge state of a defect is not yet known, calculating the electronic structure
of all possible configurations to narrow down which ones have the experimentally
observed fingerprints may be impossible. In contrast, group theory allows us to
quickly analyze awide array of possible defect configurations based on their symme-
tries. This analysis informs us about the number and degeneracy of the electronic
eigenstates and the selection rules for transitions between them [4]. This insight
can be directly compared to experiments to narrow down or determine the possible
microscopic configuration of the defect of interest.

Electronic structure
Let us consider, for example, the hypothetical HS molecule. The spatial distribu-
tion of electron density in HS must have the same symmetry as the molecule it-
self. We can understand this intuitively: the electron density is determined by the
Coulomb interaction between the electrons and nuclei that constitute the molecule.
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If the spatial distribution of the core nuclei does not change when we perform on
the molecule the symmetry operations of the group (𝐶1,23 , 𝜎1,2,3𝑣 ), neither should the
electron density. Additionally, the electronic eigenstates in this molecule can be
written as linear combinations of the atomic orbitals of its valence electrons (𝑠, 𝑝,
𝑑, etc.) in each of the different atoms composing themolecule [4, 5, 9, 12]. Since the
electron density in the molecule has the same symmetry as the distribution of core
nuclei, these linear combinations of atomic orbitals must be symmetry adapted; in
other words, the spatial part of the wavefunctions corresponding to the electronic
eigenstates must transform as one of the irreps of the point group 𝐶3v.

Figure 2.2 shows a graphical representation of some of these linear combina-
tions. Here, we consider linear combinations of the 𝑝 orbitals on the green atoms.
The 𝑝𝑥, 𝑝𝑦 and 𝑝𝑧 orbitals have wavefunctions whose amplitude is proportional to
the 𝑥, 𝑦 and 𝑧 components of the electron position, respectively. Thus, at the origin,
an orbital 𝑝𝑥 (𝑝𝑦, 𝑝𝑧) transforms as a vector along the 𝑥̂ (𝑦̂, 𝑧̂) direction (similarly,
an orbital 𝑑𝑥𝑦 transforms as the product of the 𝑥 and 𝑦 components). Linear combi-
nations of these orbitals in several atoms may transform differently, however. For
example, from the 𝑝𝑧 orbitals in the green atoms, we can construct a linear combi-
nation that transforms as A1 (is unchanged upon any operation of the point group),
and linear combinations that transform as E (sets of two linearly independent wave-
functions that are fundamentally connected by the operations 𝐶1,23 and 𝜎𝑣). These
sets of linearly independent wavefunctions connected by the symmetry operations
of the group are equivalent from a symmetry point of view, and thus must have the
same energy. Thus, the degeneracy of an electronic eigenstate corresponds to the
dimension of its corresponding irrep. Finally, a linear combination of 𝑝𝑦 orbitals
on the green atoms transforms as A2 (the linear combination is unchanged upon
rotations around the three-fold axis, but goes into minus itself when mirrored on
the planes 𝜎1,2,3𝑣 ).

One of the shortcomings of this group-theoretical approach is that symmetry
does not tell us the particular energy ordering of the various possible symmetry
adapted molecular orbitals. This means that we cannot, from symmetry consid-
erations alone, determine the energy order of the various wavefunctions depicted
in Fig. 2.2. This information must be obtained from an analysis of the valence of
the various atoms involved, or –more accurately – from first-principle calculations
[10]. In a defect or molecule, the core electrons that participate in bonding have
their spin paired into singlets according to Pauli’s principle. Thus, the ground-state
electronic spin properties in these systems arise (at least in a rough approximation
where we disregard exchange interaction with core electrons) from unpaired va-
lence electrons. We can identify the relevant atomic orbitals for the unpaired elec-
tron spins from the atomic number of each atom constituting the molecule. Once
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Figure 2.3: Selection rules for transitions between various electronic eigenstates of the HS
molecule. We show the operators that can drive transitions between eigenstates of different symme-
tries. The cartoons corresponding to states of each symmetry are intended for illustration purposes and
are not the only states with those symmetries. Transitions between two eigenstates transforming as A1
(or two eigenstates transforming as A2) can only happen due to an electric dipole moment in the 𝑧̂ direc-
tion. Transitions between a state transforming as A1 and a state transforming as A2 requires interaction
with an operator that transforms as the magnetic dipole moment in the 𝑧̂ direction. Electric or magnetic
moments in the 𝑥𝑦 plane can drive transitions between states that transform as A1 or A2 and states
that transform as E. Finally, electric or magnetic fields in any direction can drive transitions between
eigenstates transforming as E.

that is done, we can obtain the symmetry adapted linear combination of these rele-
vant atomic orbitals, and this tells us the degeneracy and symmetry of the relevant
electronic eigenstates.

Selection rules
Given the symmetry of the eigenstates, obtained as outlined in the previous section,
we can go on to calculate the selection rules for transitions between them. According
to Fermi’s golden rule, the transition rate Γ𝑖→𝑓 (that is, the transition probability
per unit of time) between an initial state |𝑖⟩ and a final state |𝑓⟩ is proportional to
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the matrix element ⟨𝑓|𝐻′|𝑖⟩, where 𝐻′ is the perturbation responsible for driving
the transition [4, 13]. Explicitly, these matrix elements can be calculated from the
wavefunctions describing the defect eigenstates, such that

⟨𝑓|𝐻′|𝑖⟩ = ∫
𝑉
𝜓∗𝑓(𝑟, 𝑡)𝐻′𝜓𝑖(𝑟, 𝑡)𝑑𝑟 (2.4)

where𝜓𝑖,𝑓(𝑟, 𝑡) denotes the wavefunction associated with the initial and final states,
respectively, the asterisk corresponds to complex conjugation and the integral is
evaluated over the entire space. In general, the integral in Eq. 2.4 will be non-zero.
However, the fact that the matrix element is calculated from an integral evaluated
over the entire space incurs in some symmetry-based restrictions that lead to iden-
tically zeromatrix elements in some cases. If the product𝜓∗𝑓(𝑟, 𝑡)𝐻′𝜓𝑖(𝑟, 𝑡) does not
contain a part that transforms as the fully symmetric representation A1, it will be
identically zero. Looking at Fig. 2.2, it is evident that functions that transform as A2
or E are odd functions of at least one spatial coordinate, and as such their integrals
over the entire space result in zero. In contrast, functions transforming as A1 are
even functions of all spatial variables, such that their integral over the entire space
may be non-zero.

In this way, in order to determine if a certain transition is symmetry allowed,
we need to determine how the product 𝜓∗𝑓(𝑟, 𝑡)𝐻′𝜓𝑖(𝑟, 𝑡) transforms when we ap-
ply the symmetry operations of the relevant point group. As previously stated in
Sec. 2.1.1, the symmetry properties of this product can be obtained by multiplying
the irreps associated with each one of the terms by each other. Mathematically,
Γ⟨𝑓|𝐻′|𝑖⟩ = Γ∗𝜓𝑓⊗Γ𝐻′⊗Γ𝜓𝑖 , where Γ denotes the reducible or irreducible representa-
tion associated with each term.

The symmetry properties of the perturbation 𝐻′ (Γ𝐻′) can be obtained by apply-
ing, to the operator on its own, the symmetry operations of the group. In Fig. 2.2,
right column, we show explicitly how the electric dipole moment (𝑑) and magnetic
dipolemoment (𝜇⃗) operators transformunder the operations of the point group 𝐶3v.
Given the symmetry of these operators and the relevant wavefunctions, we can now
easily determinewhether ⟨𝑓|𝐻′|𝑖⟩ is allowed to be non-zero by symmetry. Figure 2.3
presents a summary of the selection rules for electric and magnetic dipole transi-
tions between electronic eigenstates of a molecule or defect with point-group sym-
metry 𝐶3v. We list, for initial and final eigenstates transforming as each of the irreps
of the point group, which electric or magnetic dipole moments can drive transitions
between the various levels. For illustration purposes, we also present two examples
of wavefunctions transforming as each irrep (one for the initial state, and one for
the final state). From this figure it is clear, for example, that we could never drive
transitions between an eigenstate transforming as A1 and an eigenstate transform-
ing as E with an electric field in the 𝑧̂ direction. This is a result of group theory, but
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can be intuitively understood by looking at the illustrated wavefunctions presented.
In order to go from a state transforming as A1 into a state transforming as Ewe need
to shift the electron density in the 𝑥𝑦 plane, and this is not possible with an electric
field along the symmetry axis. Similarly, an electric field in the 𝑥𝑦 plane cannot lead
to transitions between two states transforming as A1, since in this case, we need to
shift the electron density along the symmetry axis.

2.1.3.Double groups: spin and spin-orbit coupling
Historically, the concept of an intrinsic angular momentum associated with elec-
trons (their spin) arose directly from experimental observations. Explaining the
spectra of various atoms in a magnetic field, or the results of the Stern-Gerlach ex-
periment that measured the deflection of accelerated silver atoms in a magnetic
field, required the assumption that the electron has an intrinsic angular momen-
tum quantized in half-integer multiples of ℏ [9]. It was not until Dirac combined
Schrödinger’s equations with relativistic mechanics, however, that a formal and
generalized description of the spin arose. Dirac’s equations showed that the half-
integer spin is an intrinsic property of various particles, much like electric charge,
and arises directly from relativistic space-time transformations.

Dirac’s equations also showed that the spin is described by a spinor, not by a
vector. This means that a rotation of an angle of 360∘ around a general axis takes a
spin-1/2 into minus itself [3, 6]. In contrast, a rotation of any vector by an angle of
360∘ around any axis keeps it unchanged. This fundamental difference means that,
when half-integer spins are present, the simple point-group description developed
in the previous section is not enough to describe the symmetry properties of an
electronic wavefunction. In order to encompass the behavior of half-integer spins,
we must extend the relevant point group by including additionally all of the already
mentioned symmetry operations followed by a rotation of 360∘ around the high-
symmetry axis. This new, extended group is called a double group, and is denoted
by an upper bar. For example, the double group 𝐶̄3v is associated with the point
group 𝐶3v. Besides the operations 𝐸, 𝐶1,23 and 𝜎1,2,3𝑣 , it also contains the operations
ℛ𝐸, ℛ𝐶1,23 and ℛ𝜎1,2,3𝑣 , where ℛ denotes a rotation of 360∘ around the 𝐶3 axis.

These extra symmetry operations give rise to additional irrepswhich describe di-
rectly the symmetry properties of half-integer spins. The spin-up and down spinors
associated with a spin-1/2, for example, transform according to the irrep Γ4 of the
double group 𝐶̄3v. This irrep is doubly degenerate (that is, it has character 2 for the
identity operation), which means that the spins up and down are fundamentally
connected by the symmetry operations of the group. Additionally, the operations
ℛ𝐸, ℛ𝐶1,23 and ℛ𝜎1,2,3𝑣 have the same characters as the operations 𝐸, 𝐶1,23 and 𝜎1,2,3𝑣 ,
respectively, with a minus sign.
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In the same way as described previously for spinless wavefunctions, we can ob-
tain the symmetry properties of more complex wavefunctions by multiplying the
representations associated with each part. For example, two coupled spin-1/2 par-
ticles give rise to 4 states that are split into a singlet and a triplet. In an environment
that has 𝐶3v symmetry, this translates into the fact that two doublets transforming
as Γ4 can be coupled into 4 states such that Γ4⊗Γ4 = A1⊕A2⊕E, where the singlet
state transforms as A1, and the triplet states transform as A2⊕ E.

Spin-orbit coupling
An electron’s spin interacts with the magnetic fields arising from its orbital motion,
as well as the motion of the neighboring charges, via spin-orbit coupling [3, 4, 9].
This interaction couples spin and orbital variables, and means that the full descrip-
tion of the electronic configuration of amolecule or solid-state defect must consider
the spin, position, and velocity of all charges involved, and how these properties in-
teract with each other. Calculating these spin-orbit coupled wavefunctions ab ini-
tiomay be hard and is especially complicated for defects and molecules containing
heavy elements, where relativistic effects and exchange interaction are especially
relevant. The symmetry properties of these wavefunctions, however, are easily ac-
cessible through group theory. If we know how both the spinless spatial part of a
wavefunction and its spin-related part transform, we can multiply their associated
representations by each other to get the symmetry properties of the coupled states
[3].

For a single-electronwavefunction, we can illustrate this easily based on the spa-
tial eigenstates presented in Fig 2.2, middle column. An electron (which can have
spin up or down, and transforms as the irrep Γ4) in an orbital that transforms as
A1 gives rise to two degenerate spin-orbit coupled eigenstates that transform as Γ4,
since A1 ⊗ Γ4 = Γ4. In contrast, an electron in a spatial wavefunction transform-
ing as E gives rise to 4 different spin-orbit coupled eigenstates: two degenerate
states transforming as the doubly-degenerate irrep Γ4, and two degenerate states
transforming as the irreps Γ5,6. (Although the irreps Γ5,6 are non-degenerate, they
are connected by time-reversal symmetry and must have the same energy if this
symmetry is preserved, see below). Mathematically, this arises from the fact that
E⊗Γ4 = Γ4⊕Γ5,6. Symmetry thus dictates that, when a spin-1/2 particle occupies
a doubly-degenerate orbital eigenstate, an energy splitting may arise that splits the
4 spin-orbit coupled states into two doublets. This energy splitting is a direct result
of spin-orbit coupling.

The selection rules for transitions between the spin-orbit coupled states can
be obtained by simple multiplication of representations, as presented for spinless
wavefunctions in Sec. 2.1.2, but considering the irreducible representations associ-
ated with the spin-orbit coupled states instead.
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Kramers degeneracy
The spinors associated with the up (|↑⟩) and down (|↓⟩) spin states of a spin-1/2
are connected by time-reversal symmetry [3, 6]. Thus, if 𝒯 denotes a time-reversal
operation, 𝒯 |↑⟩ = |↓⟩. This has important consequences for the degeneracy of spin-
orbit coupled states arising from half-integer spins and the selection rules for tran-
sitions between them.

The first consequence is that half-integer spin states must be at least doubly de-
generate in the presence of time-reversal symmetry, an observationmathematically
formalized through Kramers Theorem [14]. If the Hamiltonian𝐻 is symmetric with
respect to time-reversal symmetry (that is, if the commutator [𝒯, 𝐻] = 0) and the
state |𝜓1⟩ is one of its eigenstates, the state |𝜓2⟩ = 𝒯 |𝜓1⟩ must also be an eigen-
state of 𝐻, with the same energy as |𝜓1⟩. For states containing half-integer spins,
|𝜓1⟩ ≠ |𝜓2⟩. Thus, in the presence of time-reversal symmetry, these states are al-
ways part of degenerate doublets consisting of |𝜓1⟩ and |𝜓2⟩.

Another related consequence is that operators that preserve time-reversal sym-
metry cannot drive transitions between states that are each other’s time-reversal
conjugate, even when these states are no longer degenerate. This can also be un-
derstood based on Kramers Theorem. Let 𝒪 be a time-reversal symmetric oper-
ator (for example, an electric dipole moment in the 𝑧̂ direction, then [𝒯, 𝒪] = 0.
Thus, the matrix elements of 𝒪 must obey the conditions ⟨𝜓1|𝒪|𝜓1⟩ = ⟨𝜓2|𝒪|𝜓2⟩
and ⟨𝜓1|𝒪|𝜓2⟩ = ⟨𝜓2|𝒪|𝜓1⟩∗. Since, in the presence of time-reversal symmetry, 𝒪
cannot break the degeneracy between the states |𝜓1⟩ and |𝜓2⟩, then ⟨𝜓1|𝒪|𝜓2⟩ =
⟨𝜓2|𝒪|𝜓1⟩∗ = 0.

2.2. Spectroscopic techniques
Experimentally, we can only probe the electronic structure of a molecule or defect
center as it interacts with the external world (our experimental equipment). That is,
if a defect center is in one of its eigenstates and is not disturbed, it does not exchange
energy with our measurement equipment and we can, thus, not measure its energy
levels. We can, however, peak into the electronic structure of these defects by dis-
turbing the system in such a way that it transitions between different eigenstates.
In this process, it absorbs energy from or emits energy into the outside world. The
results of this exchange can bemeasured, and provide information about the energy
difference between the eigenstates involved in the electronic transition and which
transitions are allowed.

Here, we focus on the optical characterization of ensembles of defects in SiC.
We experimentally investigate how these defect centers interact with (absorb and
emit) photonswith near-infraredwavelengths in order to determine their electronic
structure and whether we can, for example, optically initialize the ensemble spins
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into a well-defined spin state. In order to do this, we apply different all-optical
spectroscopic techniques: photoluminescence (PL), photoluminescence excitation
(PLE), two laser spectroscopy, and coherent population trapping (CPT). (In chapter
6, we also use related absorption techniques. These are presented in Sec. 2.3.) Each
of these techniques allows us to investigate a different energy range, and to probe
the energy of optical transition lines with various resolutions. In fact, these two pa-
rameters (resolution and range) are anticorrelated: a measurement with large en-
ergy resolution (that allows distinguishing between two small energy differences),
usually can only cover a narrow energy range. Thus, these different techniques are
highly complementary, and each of them provides unique and valuable information
about the full energy structure of spin defects. In what follows, we present a step-
by-step introduction of these different experimental techniques and what type of
information we can extract from their spectra, based on Fig. 2.4.

2.2.1. Photoluminescence
Of the techniques presented in this chapter, photoluminescence allows us to cover
the widest energy range. In these experiments, we excite the sample with pho-
tons that have energy much larger than the optical transitions of the defects under
study and collect the light emitted by the sample in an energy-resolvedmanner (see
Fig. 2.4(a), right panel). This collected light is passed through a grating, a prism
(dispersive spectroscopy) or an interferometer (Fourier-transform spectroscopy)
[13, 15], such that its different energy components can be resolved. As a result,
we get a spectrum of the intensity of light emitted by the sample versus its energy,
as shown in Fig. 2.4(a), left panel. The resolution of these measurements can vary
a lot depending on which particular equipment is used to separate the energy com-
ponents of the detected light. For example, in dispersion spectroscopy, where the
light emitted by the sample is diffracted by a grating or prism and then collected
in a CCD camera, the parameters of importance to determine the energy resolution
are the grating density, the distance between the grating and the CCD sensor, and
the pixel density at the sensor [15]. In contrast, in Fourier-transform spectroscopy,
the minimum resolution depends on the path difference in an interferometry setup
(much like aMichelson interferometer) [16]. Table-top setups of both types usually
havemaximum energy resolution (in the near-infrared part of the spectrum) on the
order of 0.1 − 0.01meV.

In order to understand the different features of a PL spectrum, we need to re-
late the measurement and its associated physical processes to the energy structure
of the defects being investigated in more detail. This can be done based on the
schematics of Fig. 2.4(a), right panel. In these schematics, each parabola corre-
sponds to an electronic eigenstate of the defect; upwards, straight arrows indicate
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excitation whereas downwards, wiggly arrows indicate optical emission. Ground
and optically-excited states have different energies, as indicated by the vertical dis-
placement of the parabolas corresponding to each of these states. Additionally, the
defects’ ground and optically-excited states are characterized by a different set of
configuration coordinates (the horizontal axis). These configuration coordinates
may include but are not limited to the coordinates of the nuclei at or neighbor-
ing the defect center and the defect spin and charge state [5, 11, 13], for example.
Both ground and optically-excited states can interact with localized vibrations, just
like molecules. Thus, ground and optically-excited states are characterized by a
zero-phonon state lowest in energy (represented by the lowest horizontal line in
each of the parabolas in this schematic) followed by a set of phonon-coupled states
higher in energy (represented by the other horizontal lines in the parabolas) [5]. The
strength of optical transitions between eigenstateswith different degrees of freedom
(phonon coupling, spin, etc.) can be reduced as compared to optical transitions
between pure electronic orbital eigenstates (Franck-Condon principle, [13]). This
strength may even become zero when the spin/phonon part of the wavefunctions
associated with the initial and final states are orthogonal to each other.

In a photoluminescence experiment, the energy of the photons used to excite
the defects is much larger than the energy difference between ground and optically-
excited states under study. Thus, as a defect in the ground state absorbs a photon,
it ends up in a highly excited band or vibronic state. The defect quickly relaxes non-
radiatively as this excess in energy is transferred to the lattice through vibrations or
collisions with band electrons or holes, for example. Eventually (if the temperature
is low enough), the defect ends up in the zero-phonon optically-excited state, and
the only way in which it can further lose its excess energy is through optical transi-
tions. Thus, from the zero-phonon optically-excited state the defect decays back to
the ground state through the emission of photons.

When the defect decays directly from the zero-phonon optically-excited state
into the zero-phonon ground state, it emits photons into the zero-phonon line (ZPL,
see Fig. 2.4(a), left panel). The zero-phonon line is often broadenedby inhomogene-
ity in the sample well beyond the natural linewidth of individual defects, limited
by the optically-excited state lifetime. In the case of measurements on ensembles,
each different defect sits in a different part of the crystal and thus sees a slightly
different electrostatic environment (due to strain, phonons, or charge instability
of other neighboring defects). If the energy of both ground and optically-excited
states is sensitive to electrostatic fields, the energy difference between them will
differ slightly for different defect centers, leading to both temporally and spatially
inhomogeneously broadened ZPL emission. This inhomogeneous broadening of
the optical transitions of the defect centers is an important parameter for quantum
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Figure 2.4: Spectroscopic techniques. Continued caption in next page
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Figure 2.4: The spectra obtained with the different spectroscopic techniques considered (a-d, left pan-
els) provide information about the energy levels of the defect centers (a-d, right panel) with increasing
energy resolution. In this way, the different techniques presented here are complimentary: (a) photolu-
minescence informs us about the energy splitting between ground and optically-excited states, and what
are the energies of the vibrational modes that can couple to the electronic ground state; (b) photolu-
minescence excitation informs us about the inhomogenous broadening of the optical transitions within
the ensemble, and whether there are (near) degenerate electronic states accessible to the defects; (c)
two-laser spectroscopy allows us to probe energy splittings smaller than the inhomogeneous broaden-
ing of single-laser PLE lines, such as the magnetic-field dependent splitting between spin sublevels in
ground and optically-excited states, and (d) coherent population trapping informs us about the timescale
at which the ensemble spins dephase.

information applications. In order to entangle two defects via optical fields, the
photons emitted by the two defects must be indistinguishable. Thus, defect centers
that suffer from strong inhomogeneous broadening create additional challenges for
establishing long-distance entanglement. For defect centers with little inhomoge-
neous broadening (in the tens of GHz range), thewidth of the ZPLs in a PL spectrum
may be a convolution of the width of the inhomogeneously broadened optical tran-
sitions and the resolution of the spectrometer.

Additionally, the defect can also decay into one of the vibronic states of the
ground state. These decay processes result in a broad phonon-sideband emission
at energies lower than the ZPL. In the particular spectrum we have chosen to illus-
trate this technique (Fig. 2.4(a), left panel), there is a gap between the ZPL and the
PSB, and we can recognize in the PSB a series of peaks regularly spaced. The gap
between the ZPL and the onset of the PSB indicates that the vibrational modes to
which the ground state couples are localized: strongly delocalized phonon modes
have energies in a continuum, whereas localized vibrational modes have quantized
energies. This is corroborated by the regular spacing of the peaks appearing in the
PSB: each peak corresponds to a phonon replica of the electronic ground state.

2.2.2. Photoluminescence excitation
Due to symmetry (see Sec. 2.1.2, Fig. 2.2), the ground and optically-excited state
manifolds of a certain defect centermay be composed of a set of degenerate or nearly
degenerate spatial eigenstates (GS1, 2 and ES1, 2 in Fig. 2.4(b), right panel). If the
energy splitting between different states within the ground or optically-excited state
manifolds is small enough (smaller than the resolution of the spectrometer or in-
terferometer), transitions between these states will give rise to ZPLs that cannot be
distinguished in a PL spectrum. In this case, we need a spectroscopy technique with
higher resolution to characterize the ground and optically-excited state manifolds
in detail. The technique of choice in this case is photoluminescence excitation [17–
20]. In this technique, we excite the defects resonantly with a narrow-line laser
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Figure 2.5: Measurement geometry. In spec-
troscopic techniques based on emission, we col-
lect light emitted by the sample in a direction or-
thogonal to the propagation direction of the ex-
citation optical beam. In measurements where
we only detect light emitted into the phonon side-
band, an additional long-pass filter is placed be-
tween the sample and the detector in order to
suppress scattered excitation light.

tuned to the energy of the ZPL in a PL spectrum – that is, the energy of the pho-
tons used to excite the defect centers matches the energy splitting between ground
and excited states. Using a tunable laser, we can scan the energy of the photons
impinging into the sample with high accuracy and in very small steps. In fact, the
smallest step size possible is in the sub-MHz range (that is, below a neV). However,
in practice we often take steps of a few GHz (or a few 𝜇eV), since this allows us to
scan a few meV energy range within a few hours. As we scan the energy of the ex-
citation photons (horizontal axis in the PLE spectrum of Fig. 2.4(b)), we measure
the integrated number of photons emitted by the sample into the phonon sideband
(vertical axis in the PLE spectrum). We do this by collecting the light emitted by
the sample into a direction orthogonal to the propagation direction of the excita-
tion light, and feeding it to an avalanche photodiode that can detect single photons
(Fig. 2.5). We filter out the scattered excitation light with a long-pass filter (a fil-
ter that significantly suppresses light with wavelength shorter than a threshold, but
allows light with longer wavelengths to go through). The amount of light emitted
into the phonon sideband depends on the population of defects that can be optically
excited by the excitation laser. Thus, as the excitation laser is resonant with optical
transitions starting from thermally populated states in the ground state manifold,
the amount of light emitted into the phonon sideband strongly increases leading to
a peak in the PLE spectrum (Fig. 2.4(b), left panel).

Additionally to showing whether or not the ground and optically excited mani-
folds are composedof (near) degenerate orbital states, a PLE spectrumalso provides
much clearer insight into the inhomogeneous broadening of the optical transitions.
The width of a peak in a PLE spectrum is a direct result of the energy broadening
and relative shifts of the optical transition lines for the various defects that com-
pose the ensemble. In the PLE spectrum shown in Fig. 2.4(b), this inhomogeneous
broadening is approximately 25 GHz (or 100 𝜇eV).
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2.2.3. Two-laser spectroscopy
Spin-related energy splittings (e.g. hyperfine lines or Zeeman splittings between
electronic spin sublevels at small magnetic fields) are often much smaller than the
inhomogeneous broadening of the optical transition lines of solid-state defects. In
this way, these features are not accessible via single-laser spectroscopy techniques
like PL or PLE. In order to characterize the spin-related energy structure of these
defects at small magnetic fields, we must use yet another technique. In this thesis,
we make use of two-laser spectroscopy techniques (Fig. 2.4(c)) [21–23].

As mentioned before, the energy splitting between ground and optically-excited
states is sensitive to electrostatic inhomogeneities in the lattice, giving rise to the
inhomogeneous broadening of the optical transition. The energy splitting between
the spin sublevels in the ground and optically-excited states, however, is mainly de-
termined by the Zeeman coupling between the magnetic moment of the electronic
state and the external magnetic field, and the coupling between the electronic spin
and neighboring nuclear spins. The Zeeman interactionmay be influenced by inho-
mogeneous electric fields only in second order, through spin-orbit coupling. Thus,
throughout an ensemble, the Zeeman splitting observed by different defects suffers
much less from inhomogeneous broadening than the splitting between ground and
optically-excited states.

Two-laser spectroscopy makes use of this fact. In these experiments, we excite
the sample with two different lasers (a control and a probe beam), and collect the
light emitted by the defects into the phonon sideband (Fig. 2.4(c), right panel). We
use the same geometry as in Fig. 2.5. We can control the detuning between the con-
trol and the probe beams (that is, the energy difference between the photon energies
in the two optical fields) with high accuracy, down to sub-MHz energy differences.
If the spin-sublevels in ground and excited states are non-degenerate, the control
beam may lead to spin polarization in the ground state sublevels. This is due to
the fact that the optical decay from optically-excited states into ground state sub-
levels may cause a ground-state spin flip. When this happens, the defect ends up
in a dark spin state, that is, a spin state which is not resonantly driven into the
optically-excited state by the control laser. The probe laser, however, may drive op-
tical transitions from this dark spin sublevel, depending on its detuningwith respect
to the control beam. As we scan the detuning between the two optical fields (hor-
izontal axis in Fig. 2.4(c), left panel), the amount of light emitted into the phonon
sideband (vertical axis in the same figure) is enhanced or suppressed when control
and probe beams are simultaneously resonant with two distinct spin-resolved op-
tical transitions, giving rise to peaks or dips in the two-laser PLE spectrum. Mea-
suring the multiplicity of features in a two-laser spectrum and their dependency
on the magnetic field provides important information about the multiplicity of the
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Figure 2.6: Measurement geometry and
time-resolved signal in a time-resolved
PLEexperiment. (a)We excite the samplewith
pump and probe pulses separated by a delay 𝜏,
and (b) collect the photons emitted by the sam-
ple into the phonon sideband in a time-resolved
manner.

spin sublevels (that is, if the ground and optically excited electronic states have a
spin 1/2, 1, etc.) and how they couple to external magnetic fields [18, 19, 21].

2.2.4.Optically probing spin dynamics
We can use optical techniques derived from PLE and two-laser spectroscopy to
probe the time evolution of the spin. On the one hand, time-resolved PLE provides
access to the spin-relaxation time (𝑇1), the time it takes for a spin-polarized ensem-
ble to relax back to its equilibrium configuration. On the other hand, coherent pop-
ulation trapping allows us to probe the ensemble inhomogeneous coherence time
(or ensemble dephasing time 𝑇∗2). This is the time it takes for an ensemble of defects
in a collective coherent state to lose its phase information due to the influence of an
inhomogeneously interacting environment. Below, we provide a few more details
on each of these techniques.

Time-resolved PLE
In time-resolved PLE experiments, we use a single laser (from which we create
pump and probe temporal pulses that have the same photon energy) to excite the
ensemble, and we collect the photons emitted by the defects into the phonon side-
band in a time-resolved manner (Fig. 2.6).

As explained previously in Sec. 2.2.3, the amount of light emitted by the ensem-
ble into the phonon sideband is proportional to the fraction of the ensemble that
can be resonantly driven into the optically-excited state. The pump pulse is long
enough to polarize the ensemble into a dark spin sublevel via spin-flipping optical
transitions. As the pumppulse is turned off, the ensemble relaxes back to its equilib-
rium configuration (at cryogenic temperatures of a few K andmagnetic fields below
a few T, the spin sublevels are approximately equally occupied in equilibrium) in a
characteristic spin-relaxation time 𝑇1. A second (probe) pulse excites the ensemble
after a delay time 𝜏. As a second probe pulse excites the ensemble, the number of
emitted photons depends on the fraction of the ensemble that has relaxed back into
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a bright spin sublevel (that is, the spin sublevel that can be resonantly driven into
the optically-excited state). By measuring the ensemble photon emission (just as in
PLE experiments) versus the variable delay 𝜏 between the pump and probe pulses
(Fig. 2.6(b)) we can determine the spin-relaxation time constant 𝑇1 [19, 24].

Coherent population trapping
As mentioned above, coherent population trapping allows us to determine the en-
semble dephasing time 𝑇∗2 . This technique consists of exciting the ensemble with
two lasers (as in two-laser spectroscopy), but focusing on a region of the spectrum
where the two lasers resonantly drive transitions from two different ground states
(GS1, ↓ and GS1, ↑ in Fig. 2.4(d), right panel) into a common excited state (ES1 ↓ in
the same figure). When one of the optical fields is strong enough, the two lasers are
on or near resonance with the two possible spin-resolved optical transitions and the
difference in photon energy between the two optical fieldsmatches the ground-state
energy splitting between the two spin sublevels, the electronic eigenstates are mod-
ified by the presence of the additional optical fields. The new eigenstates must be
obtained considering the coupled light-matter dynamics [25]. One of the resulting
eigenstates is the so-called CPT state, a coherent superposition of ground-state sub-
levels that is dark, that is, it cannot be resonantly excited into the optically-excited
state. This coherent superposition depends on the amplitude and relative phase of
the optical fields. Thus, as the coupled light-matter system evolves and defects in
the optically-excited state dacay into this dark eigenstate, the emission of photons
from the ensemble is suppressed, giving rise to a dip in a broader two-laser spec-
troscopy peak (Fig. 2.4(d), left panel). The depth and width of this dip depends on
both the power in the optical fields and the dephasing time of the spin ensemble
[25].

2.3.Appendix: Absorption spectroscopy
As defect centers interact with an on-resonance excitation beam, they absorb pho-
tons and this changes the power of the excitation laser as it propagates through the
sample. According to Beer’s Law [13], a beamwith intensity 𝐼0 propagating through
a sample of length 𝐿 with concentration of defects that interact resonantly with the
optical field 𝑁 is attenuated such that, after the sample, its intensity is given by

𝐼 = 𝐼0𝑒−𝜎𝑁𝐿 . (2.5)

Here, 𝜎 is the absorption cross section in units of area related to a particular defect
center and photon energy. In reality, as the beam propagates through the experi-
mental setup it is also attenuated due to processes independent of the defects that
we study experimentally, such as reflections off of interfaces. We should take for
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Figure 2.7: Measurement geome-
try for absorption spectroscopy.
The transmitted excitation beam is
monitored in an analog photodetector.
To increase the signal-to-noise ratio
in these measurements, the excitation
beam can be modulated in time, and
the voltage at the photodetector can be
fed to a lock-in amplifier.

the intensity 𝐼0 a reference value that accounts for these sample-independent pro-
cesses. Thus, we can constructmeasurement techniques analogous to PLE and two-
laser spectroscopy where, instead of measuring the light emitted by the sample, we
measure how the defects modify the intensity of the beam transmitted through the
sample, in a geometry as shown in Fig. 2.7.

For instance, we can measure the inhomogeneous broadening of optical tran-
sitions by probing the spectral shape of the absorption lines related to a certain
defect by scanning the excitation laser energy. This measurement is analogous to
PLE. We can also investigate how the absorption of an on-resonance laser changes
when a second detuned beam is also present, in a measurement analogous to two-
laser spectroscopy. Finally, we can excite the sample with time-resolved pump and
probe pulses, andmonitor how the absorption of the probe pulse changes as a func-
tion of the delay time between pump and probe. This measurement is analogous to
the time-resolved PLE experiments introduced earlier.

One of the advantages ofmeasuring changes in the transmission of a beamprop-
agating through the sample is that, since a laser beam is composed ofmany photons,
its intensity can be directly measured by an analog photodetector. In these mea-
surements, every defect that the laser beam encounters influences the transmitted
power of the optical field, such that there is very little geometrical loss of signal in
an absorption measurement. In contrast, experiments that rely on measuring the
emission from the defects usually require single-photon counters orders of mag-
nitude more expensive than a photodetector. This is due to the fact that emission
from the defects is usually non-directional, such that when we collect light emitted
by the ensemble into a certain direction we only collect a small fraction of the total
emission, and geometrical losses thus play a significant role.

Another related advantage is that absorption measurements – especially time-
resolved measurements – can be much faster than their emission counterparts.
This is due to the fact that an avalanche photodiode (APD) tuned for single-photon
countingmeasures single photons and returns their time tags in a digital signal. Af-
ter each photon-counting event, the APD needs some time to reset itself to its equi-
librium configuration, such that each photon-counting event is followed by a dark
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time in which no photons can be measured. Thus, in time-resolved experiments
where a significant number of photons needs to be collected for acceptable signal-
to-noise ratios considering Poisson statistics, the measurement times are signifi-
cantly extended. In contrast, an analog photodetector yields, as a signal, a voltage
proportional to the number of photons impinging on its sensor. Thus, when com-
pared to measuring on an APD, measurements taken on analog photodetectors can
be faster by at least a factor proportional to the number of photons collected times
the APD dead time.

The catch involved with measuring absorption signals directly on analog pho-
todetectors is that the influence of the sample on the transmitted laser beam must
be significant. That is, there must be a detectable sample-induced difference be-
tween 𝐼 and 𝐼0 in Eq. 2.5. If a significant portion of the excitation beam is absorbed
when on-resonance with the optical transitions of the defect of interest, that is, if
the product 𝜎𝑁𝐿 is considerable (≥ 1), we say that the sample is optically thick.

In order to improve the signal-to-noise ratio in absorption experiments, wemay
choose to periodicallymodulate the excitation laser in time and feed the signal from
the analog photodetector into a lock-in amplifier. A lock-in amplifier is a voltage
amplifier designed to extract signals with certain frequency components from a
noisy background [26]. Given a certain reference periodic signal (the frequency
at which we modulate the excitation, which we feed to the lock-in) with frequency
𝑓𝑟𝑒𝑓, the lock-in amplifier uses a frequency-filtering operation to extract the com-
ponent of an input voltage signal (the signal that is output by the photodetector,
𝑉𝑛𝑜𝑖𝑠𝑦) oscillating at the frequency 𝑓𝑟𝑒𝑓. Besides removing static backgrounds, this
setup also removes a big part of the noise spectrum in the signal, in particular the
low-frequency drift and noise that typically has the highest amplitudes. In this way,
we can eliminate the influence of scattered light, modulations of the excitation laser
beam at different frequencies than 𝑓𝑟𝑒𝑓, or electrical noise due to the connections of
the photodetector itself. In chapter 6, we present the specific measurement proto-
cols used for measuring time-resolved PLE and two-laser spectra based on absorp-
tion and aided by a lock-in amplifier.
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chapter 3
Spectroscopy of a spin-1/2 transitionmetal
defect in SiC

Color centers in wide-bandgap semiconductors are attractive systems for quan-
tum technologies since they can combine long-coherent electronic spin and bright
optical properties. Several suitable centers have been identified, most famously
the nitrogen-vacancy defect in diamond. However, integration in communication
technology is hindered by the fact that their optical transitions lie outside tele-
com wavelength bands. Several transition-metal impurities in silicon carbide do
emit at and near telecom wavelengths, but knowledge about their spin and op-
tical properties is incomplete. We present all-optical identification and coherent
control of molybdenum-impurity spins in silicon carbide with transitions at near-
infrared wavelengths. Our results identify spin 𝑆 = 1/2 for both the electronic
ground and excited state, with highly anisotropic spin properties thatwe apply for
implementing optical control of ground-state spin coherence. We identify, based
on a group-theoretical analysis of the magneto-optical spectra, the microscopic
configuration of the defect. Our results show that the defect has optical lifetimes
of ∼60 ns and inhomogeneous spin dephasing times of ∼0.3 𝜇s, establishing rele-
vance for quantum spin-photon interfacing.

3.1. Introduction

E lectronic spins of lattice defects in wide-bandgap semiconductors have come
forward as an important platform for quantum technologies [2], in particu-

lar for applications that require both manipulation of long-coherent spin and spin-
photon interfacing via bright optical transitions. In recent years this field showed
strong development, with demonstrations of distribution and storage of non-local
entanglement in networks for quantum communication [3–7], and sensing appli-
cations [8–12]. The nitrogen-vacancy defect in diamond is the material system that
is most widely used [13, 14] and best characterized [15–17] for these applications.
However, its zero-phonon-line (ZPL) transitionwavelength (637 nm) is not optimal

Parts of this chapter have been published in npj Quantum Information 4, 48 (2018) [1].
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3. Spectroscopy of a spin-1/2 transitionmetal defect in SiC

for integration with standard telecom technology, which uses near-infrared wave-
length bands where losses in optical fibers are minimal. A workaround could be to
convert photon energies between the emitter-resonance and telecom values [18–
20], but optimizing these processes is very challenging.

This situation has been driving a search for similar lattice defects that do com-
bine favorable spin properties with bright emission directly at telecom wavelength.
Both diamond and silicon carbide (SiC) can host many other spin-active color cen-
ters that could have suitable properties [21–24] (where SiC is also an attractive ma-
terial for its established position in the semiconductor device industry [25, 26]).
However, for many of these color centers detailed knowledge about the spin and
optical properties is lacking. In SiC, the divacancy [27–29] and silicon vacancy [11,
30–32] were recently explored, and these indeed show millisecond homogeneous
spin coherence times with bright ZPL transitions closer to the telecom band.

We present here a study of transition-metal impurity defects in SiC, which ex-
ist in great variety [33–38]. We focus here (directed by availability of lasers in our
lab) on the molybdenum impurity with ZPL transitions at 1076 nm (in 4H-SiC)
and 1121 nm (in 6H-SiC). Our results lead to the identification of the microscopic
configuration of this defect and show that the Mo defect is highly analogous to the
neutral V defect emitting directly in the telecom O-band [34]. Theoretical inves-
tigations [39], early electron paramagnetic resonance [34, 40] (EPR), and photo-
luminescence (PL) studies [41–43] indicate that these transition-metal impurities
have promising properties. These studies show that they are deep-level defects that
can be in several stable charge states, each with a distinctive value for its electronic
spin 𝑆 and near-infrared optical transitions. Further tuning and engineering possi-
bilities come from the fact that these impurities can be embedded in a variety of SiC
polytypes (4H, 6H, etc., see Fig. 3.1(a)). Recent work by Koehl et al. [38] studied
chromium impurities in 4H-SiC using optically detected magnetic resonance. They
identified efficient ZPL (little phonon-sideband) emission at 1042nmand 1070nm,
and their charge state as neutral with an electronic spin 𝑆 = 1 for the ground state.

Our work is an all-optical study of ensembles of molybdenum impurities in p-
type 4H-SiC and 6H-SiC material. The charge and spin configuration of these im-
purities, and the defect configuration in the SiC lattice that is energetically favored,
was until our work not yet identified with certainty. Our results show that theseMo
impurities are in the Mo5+(4𝑑1) charge state (we follow here conventional notation
[34]: the label 5+ indicates that of an original Mo atom 4 electrons participate in
bonds with SiC and 1 electron is transferred to the p-type lattice environment). The
single remaining electron in the 4𝑑 shell gives spin 𝑆 = 1/2 for the ground state
and optically-excited state that we address. While we will show later that this can
be concluded from our measurements, we assume it as a fact from the beginning
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since this simplifies the explanation of our experimental approach.

In addition to this identification of the impurity properties, we explore whether
ground-state spin coherence is compatible with optical control. Using a two-laser
magneto-spectroscopy method [29, 44, 45], we identify the spin Hamiltonian of
the 𝑆 = 1/2 ground state and optically-excited state, which behave as doublets with
highly anisotropic Landé g-factors. This gives insight in how a situation with only
spin-conserving transitions can be broken, and we find that we can use a weakmag-
netic field to enable optical transitions from both ground-state spin levels to a com-
mon excited-state level (Λ level scheme). Upon two-laser driving of such Λ schemes,
we observe coherent population trapping (CPT, all-optical control of ground-state
spin coherence and fundamental to operating ensemble-based quantummemories
optically[46, 47]). The observed CPT reflects inhomogeneous spin dephasing times
comparable to that of the SiC divacancy [29, 48] (near 1 𝜇s).

In what follows, we first present our methods and results of single-laser spec-
troscopy performed on ensembles of Mo impurities in both SiC polytypes. Next, we
discuss a two-laser method where optical spin pumping is detected. This allows for
characterizing the spin sublevels in the ground and excited states, and we demon-
strate how this can be extended to controlling spin coherence. Finally, we describe
how the experimental magneto-optical properties of these defects allow us to deter-
mine its charge state and microscopic configuration.

3.2.Materials and experimental methods
Both the 6H-SiC and 4H-SiC (Fig. 3.1(a)) samples were intentionally doped with
Mo. There was no further intentional doping, but near-band-gap photolumines-
cence revealed that both materials had p-type characteristics. The Mo concentra-
tions in the 4H and 6H samples were estimated [42, 43] to be in the range 1015-
1017 cm−3 and 1014-1016 cm−3, respectively. The samples were cooled in a liquid-
helium flow cryostat with optical access, which was equipped with a superconduct-
ing magnet system. The setup geometry is depicted in Fig. 3.1(b). The angle 𝜙
between the direction of the magnetic field and the c-axis of the crystal could be
varied, while both of these directions were kept orthogonal to the propagation di-
rection of excitation laser beams. In all experiments wherewe resonantly addressed
ZPL transitions the laser fields had linear polarization, and we always kept the di-
rection of the linear polarization parallel to the c-axis. Earlier studies [39, 42, 43] of
thesematerials showed that the ZPL transition dipoles are parallel to the c-axis. For
our experiments we confirmed that the PLE response was clearly the strongest with
linear polarization parallel to the c-axis, for all directions and magnitudes of the
magnetic fields that we applied. All results presented in this work come from pho-
toluminescence (PL) or photoluminescence-excitation (PLE) measurements. The
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excitation lasers were focused to a ∼100 𝜇m spot in the sample. PL emission was
measured from the side. A more complete description of experimental aspects is
presented in Sec. 3.10.2.

Figure 3.1: Crystal structures of SiC, setup schematic and optical signatures of Mo in 6H-
SiC. (a), Schematic illustration of the stacking of Si-C bilayers in the crystal structure of the 4H-SiC
and 6H-SiC polytypes, which gives lattice sites with quasi-cubic and quasi-hexagonal local environment
labeled by 𝑘(1,2) and ℎ, respectively. Our work revisits the question whether Mo impurities are present
as substitutional atoms (as depicted) or residing inside Si-C divacancies. The c-axis coincides with the
growth direction. (b) Schematic of SiC crystal in the setup. The crystal is placed in a cryostat with optical
access. Laser excitation beams (control and probe for two-laser experiments) are incident on a side
facet of the SiC crystal and propagate normal to the c-axis. Magnetic fields B are applied in a direction
orthogonal to the optical axis and at angle 𝜙 with the c-axis. Photoluminescence (PL) is collected and
detected out of another side facet of the SiC crystal. (c) PL from Mo in 6H-SiC at 3.5 K and zero field,
resulting from excitation with an 892.7 nm laser, with labels identifying the zero-phonon-line (ZPL,
at 1.1057 eV) emission and phonon replicas (shaded and labeled as phonon sideband, PSB). The inset
shows the ZPL asmeasured by photoluminescence excitation (PLE). Here, the excitation laser is scanned
across the ZPL peak and emission into the PSB is used for detection.

3.3. Single-laser characterization
For initial characterization of Mo transitions in 6H-SiC and 4H-SiC we used PL and
PLE spectroscopy (see Sec. 3.10.2). Figure 3.1(c) shows the PL emission spectrum
of the 6H-SiC sample at 3.5K,measured using an 892.7 nm laser for excitation. The
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ZPL transition of theMo defect visible in this spectrum is studied in detail through-
out this work. The shaded region indicates the emission of phonon replicas related
to this ZPL [42, 43]. Whilewe could not performadetailed analysis, the peak area of
the ZPL in comparison with that of the phonon replicas indicates that the ZPL car-
ries clearly more than a few percent of the full PL emission. Similar PL data from
Mo in the 4H-SiC sample, together with a study of the temperature dependence of
the PL, can be found in Sec. 3.10.3, Fig. 3.7.

For a more detailed study of the ZPL of the Mo defects, PLE was used. In PLE
measurements, the photon energy of a narrow-linewidth excitation laser is scanned
across the ZPL part of the spectrum, while resulting PL emission into the phonon
sideband is detected (Fig. 3.1(b)). We used filters to keep light from the excitation
laser from reaching the detector, see Sec. 3.10.2. The inset of Fig. 3.1(c) shows the
resulting ZPL forMo in 6H-SiC at 1.1057 eV (1121.3 nm). For 4H-SiC wemeasured
the ZPL at 1.1521 eV (1076.2 nm, see Sec. 3.10.3). Both are in close agreement with
literature [42, 43]. Temperature dependence of the PLE from the Mo defects in
both 4H-SiC and 6H-SiC can be found in the Sec. 3.10.3, Fig. 3.8.

The width of the ZPL is governed by the inhomogeneous broadening of the elec-
tronic transition throughout the ensemble of Mo impurities, which typically hap-
pens due to nonuniform strain in the crystal. ForMo in 6H-SiC we observe a broad-
ening of 24±1GHzFWHM, and 23±1GHz for 4H-SiC. This inhomogeneous broad-
ening is larger than the anticipated electronic spin splittings [34], and it thusmasks
signatures of spin levels in optical transitions between the ground and excited state.

3.4. Two-laser characterization
In order to characterize the spin-related fine structure of theMo defects, a two-laser
spectroscopy technique was employed [29, 44, 45]. We introduce this for the four-
level system sketched in Fig. 3.2(a). A laser fixed at frequency 𝑓0 is resonant with
one possible transition from ground to excited state (for the example in Fig. 3.2(a)
|𝑔2⟩ to |𝑒2⟩), and causes PL froma sequence of excitation and emission events. How-
ever, if the system decays from the state |𝑒2⟩ to |𝑔1⟩, the laser field at frequency 𝑓0
is no longer resonantly driving optical excitations (the system goes dark due to op-
tical pumping). In this situation, the PL is limited by the (typically long) lifetime of
the |𝑔1⟩ state. Addressing the systemwith a second laser field, in frequency detuned
from the first by an amount 𝛿, counteracts optical pumping into off-resonant energy
levels if the detuning 𝛿 equals the splitting Δ𝑔 between the ground-state sublevels.
Thus, for specific two-laser detuning values corresponding to the energy spacings
between ground-state and excited-state sublevels the PL response of the ensemble is
greatly increased. Notably, this technique gives a clear signal for sublevel splittings
that are smaller than the inhomogeneous broadening of the optical transition, and
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Figure 3.2: Two-laser spectroscopy results for Mo in 6H-SiC. (a) Working principle of two-laser
spectroscopy: one laser at frequency 𝑓0 is resonant with the |𝑔2⟩-|𝑒2⟩ transition, the second laser is de-
tuned from the first laser by𝛿. If𝛿 is such that the second laser becomes resonantwith another transition
(here sketched for |𝑔1⟩-|𝑒2⟩) the photoluminescence will increase since optical spin-pumping by the first
laser is counteracted by the second and vice versa. (b-d) Photoluminescence excitation (PLE) signals as
a function of two-laser detuning at 4 K. (b) Magnetic field dependence with field near-parallel to the c-
axis (𝜙 = 1°). For clarity, data in the plot have been magnified by a factor 10 right from the dashed line.
Two peaks are visible, labeled 𝐿1 and 𝐿2 (the small peak at 3300MHz is an artefact from the Fabry-Pérot
interferometer in the setup). (c) Magnetic field dependence with the field nearly perpendicular to the c-
axis (𝜙 = 87°). Three peaks and a dip (enlarged in the inset) are visible. These four features are labeled
𝐿1 through 𝐿4. The peak positions as a function of field in (b,c) coincide with straight lines through the
origin (within 0.2% error). (d) Angle dependence of the PLE signal at 300mT. Peaks 𝐿1 and 𝐿4 move to
the left with increasing angle, whereas 𝐿2 moves to the right. The data in (b-d) are offset vertically for
clarity.

the two-laser spectral features reflect the homogeneous linewidth of optical transi-
tions [29, 48].

In our measurements a 200 𝜇W continuous-wave control and probe laser were
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Figure 3.3: Two-laser pumping schemes with optical transitions between S = 1/2 ground
and excited states. (a) Λ scheme, responsible for 𝐿1 emission feature: Two lasers are resonant with
transitions from both ground states |𝑔1⟩ (red arrow) and |𝑔2⟩ (blue arrow) to a common excited state
|𝑒2⟩. This is achieved when the detuning equals the ground-state splitting Δ𝑔. The gray arrows indicate
a secondary Λ scheme via |𝑒1⟩ that is simultaneously driven in an ensemble when it has inhomogeneous
values for its optical transition energies. (b) Π scheme, responsible for 𝐿2 emission feature: Two lasers
are resonant with both vertical transitions. This is achieved when the detuning equals the difference
between the ground-state and excited-state splittings, |Δ𝑔 − Δ𝑒|. (c) V scheme, responsible for 𝐿3 emis-
sion feature: Two lasers are resonant with transitions from a common ground state |𝑔1⟩ to both excited
states |𝑒1⟩ (blue arrow) and |𝑒2⟩ (red arrow). This is achieved when the laser detuning equals the excited
state splitting Δ𝑒. The gray arrows indicate a secondary V scheme that is simultaneously driven when
the optical transition energies are inhomogeneously broadened. (d) X scheme, responsible for the 𝐿4
emission feature: Two lasers are resonant with the diagonal transitions in the scheme. This is achieved
when the detuning is equal to the sum of the ground-state and the excited-state splittings, (Δ𝑔 + Δ𝑒).

made to overlap in the sample. For investigating Mo in 6H-SiC the control beam
was tuned to the ZPL at 1121.32 nm (𝑓control = 𝑓0 = 267.3567 THz), the probe beam
was detuned from 𝑓0 by a variable detuning 𝛿 (i.e. 𝑓probe = 𝑓0 + 𝛿). In addition, a
100 𝜇W pulsed 770 nm re-pump laser was focused onto the defects to counteract
bleaching of the Mo impurities due to charge-state switching [29, 49, 50] (which
we observed to only occur partially without re-pump laser). All three lasers were
parallel to within 3∘ inside the sample. A magnetic field was applied to ensure that
the spin sublevels were at non-degenerate energies. Finally, we observed that the
spectral signatures due to spin show strong broadening above a temperature of ∼
10 K, and we thus performed measurements at 4 K (unless stated otherwise).

Figure 3.2(b) shows the dependence of the PLE on the two-laser detuning for
the 6H-SiC sample (4H-SiC data in Sec. 3.10.5, Fig. 3.12), for a range of magnitudes
of the magnetic field (here aligned close to parallel with the c-axis, 𝜙 = 1°). Two
emission peaks can be distinguished, labeled line 𝐿1 and 𝐿2. The emission (peak
height) of 𝐿2 is much stronger than that of 𝐿1. Figure 3.2(c) shows the results of a
similar measurement with the magnetic field nearly orthogonal to the crystal c-axis
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(𝜙 = 87°), where four spin-related emission signatures are visible, labeled as lines
𝐿1 through 𝐿4 (a very small peak feature left from 𝐿1, at half its detuning, is an arti-
fact that occurs due to a leakage effect in the spectral filtering that is used for beam
preparation, see Sec. 3.10.2). The two-laser detuning frequencies corresponding to
all four lines emerge from the origin (𝐵 = 0, 𝛿 = 0) and evolve linearly with mag-
netic field (we checked this up to 1.2 T). The slopes of all four lines (in Hertz per
Tesla) are smaller in Fig. 3.2(c) than in Fig 3.2(b). In contrast to lines 𝐿1, 𝐿2 and 𝐿4,
which are peaks in the PLE spectrum, 𝐿3 shows a dip.

In order to identify the lines at various angles 𝜙 between the magnetic field and
the c-axis, we follow how each line evolves with increasing angle. Figure 3.2(d)
shows that as 𝜙 increases, 𝐿1, 𝐿3, and 𝐿4 move to the left, whereas 𝐿2 moves to the
right. Near 86°, 𝐿2 and 𝐿1 cross. At this angle, the left-to-right order of the emission
lines is swapped, justifying the assignment of 𝐿1, 𝐿2, 𝐿3 and 𝐿4 as in Fig. 3.2(b,c).
Section 3.10.4 presents further results from two-laser magneto-spectroscopy at in-
termediate angles 𝜙.

We note that part of the naturally abundant Mo isotopes (≈ 25.5%) have non-
zero nuclear spin, which gives rise to a subensemble of defects that have their elec-
tronic spin coupled to a central nuclear spin via hyperfine coupling. In our results,
we see no evidence of hyperfine-coupled energy levels. Progressing insight from the
next chapters in this thesis (particularly chapter 5 and 6) show that the presence of
the nuclear spin leads to a reduced spin-relaxation time. This relatively short spin-
relaxation time decreases the contrast in two-laser experiments. Thus, this could
explain why we see no evidence of a hyperfine-coupled sub ensemble in the experi-
ments presented in this chapter.

3.5.Analysis
We show below that the results in Fig. 3.2 indicate that the Mo impurities have
electronic spin 𝑆 = 1/2 for the ground and excited state. This contradicts predic-
tions and interpretations of initial results [34, 39, 42, 43]. Theoretically, it was
predicted that the defect associated with the ZPL under study here is a Mo impurity
in the asymmetric split-vacancy configuration (Mo impurity asymmetrically located
inside a Si-C divacancy), where it would have a spin 𝑆 = 1 ground state with zero-
field splittings of about 3 to 6GHz [34, 39, 42, 43]. However, this would lead to the
observation of additional emission lines in our measurements. Particularly, in the
presence of a zero-field splitting, wewould expect to observe two-laser spectroscopy
lines emerging from a nonzero detuning [29]. We have measured near zero fields
and up to 1.2T, aswell as from 100MHz to 21GHzdetuning (Sec. 3.10.4), but found
no other peaks besides the four present in Fig. 3.2(c). A larger splitting would have
been visible as a splitting of the ZPL in measurements as presented in the inset of
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Fig. 3.1(c), which was not observed in scans up to 1000 GHz. Additionally, a zero-
field splitting and corresponding avoided crossings at certainmagnetic fields would
result in curved behavior for the positions of lines in magneto-spectroscopy. Thus,
our observations rule out that there is a zero-field splitting for the ground-state and
excited-state spin sublevels. In this case the effective-spin Hamiltonian [51] can
only take the form of a Zeeman term

𝐻𝑔(𝑒) = 𝜇𝐵𝑔𝑔(𝑒)B ⋅ S̃ (3.1)

where 𝑔𝑔(𝑒) is the g-factor for the electronic ground (excited) state (both assumed
positive), 𝜇𝐵 the Bohrmagneton,B themagnetic field vector of an externally applied
field, and S̃ the effective spin vector. The observation of four emission lines can be
explained, in the simplest manner, by a system with spin 𝑆 = 1/2 (doublet) in both
the ground and excited state.

For such a system, Fig. 3.3 presents the two-laser optical pumping schemes that
correspond to the observed emission lines 𝐿1 through 𝐿4. Addressing the system
with the V-scheme excitation pathways from Fig. 3.3(c) leads to increased pumping
into a dark ground-state sublevel, since two excited states contribute to decay into
the off-resonant ground-state energy level while optical excitation out of the other
ground-state level is enhanced. This results in reduced emission observed as the
PLE dip feature of 𝐿3 in Fig. 3.2(c) (for details see Sec. 3.10.7).

We find that the g-factor values 𝑔𝑔 and 𝑔𝑒 strongly depend on 𝜙, that is, they
are uniaxially anisotropic. While this is in accordance with earlier observations for
transition metal defects in SiC [34], we did not find a comprehensive report on the
underlying physical picture. In Sec. 3.10.1 we present a group-theoretical analysis
that explains the anisotropy 𝑔𝑔 ≈ 1.7 for 𝜙 = 0° and 𝑔𝑔 = 0 for 𝜙 = 90°, and
similar behavior for 𝑔𝑒 (which we also use to identify the orbital character of the
ground and excited state). In this scenario the effective Landé g-factor [51] is given
by

𝑔(𝜙) = √(𝑔∥ cos𝜙)
2 + (𝑔⊥ sin𝜙)

2
(3.2)

where 𝑔∥ represents the component of 𝑔 along the c-axis of the silicon carbide struc-
ture and 𝑔⊥ the component in the basal plane. Figure 3.4 shows the ground and
excited state effective g-factors extracted from our two-laser magnetospectroscopy
experiments for 6H-SiC and 4H-SiC (additional experimental data can be found
in Sec. 3.10.5). The solid lines represent fits to the equation (3.2) for the effective
g-factor. The resulting 𝑔∥ and 𝑔⊥ parameters are given in table 3.1.
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Figure 3.4: Effective g-factors for the
spin of Mo impurities in SiC. Angular
dependence of the g-factor for the 𝑆 = 1/2
ground (𝑔𝑔) and excited states (𝑔𝑒) of the
Mo impurity in 4H-SiC and 6H-SiC. The
solid lines indicate fits of equation (3.2)
to the data points extracted from two-laser
magneto-spectroscopy measurements as in
Fig. 3.2(b,c).
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Table 3.1: Components of the g-factors for the spin of Mo impurities in SiC

𝑔∥ 𝑔⊥
4H-SiC
ground state 1.87 ± 0.2 0.04 ± 0.04
excited state 1.39 ± 0.2 0.10 ± 0.02
6H-SiC
ground state 1.61 ± 0.02 0.000 ± 0.004
excited state 1.20 ± 0.02 0.11 ± 0.02

The reasonwhy diagonal transitions (in Fig. 3.3 panels a,c), and thus the Λ andV
schemes are allowed, lies in the different behavior of 𝑔𝑒 and 𝑔𝑔. When themagnetic
field direction coincides with the internal quantization axis of the defect, the spin
states in both the ground and excited state are given by the basis of the 𝑆𝑧 operator,
where the 𝑧-axis is defined along the c-axis. This means that the spin-state over-
lap for vertical transitions, e.g. from |𝑔1⟩ to |𝑒1⟩, is unity. In such cases, diagonal
transitions are forbidden as the overlap between e.g. |𝑔1⟩ and |𝑒2⟩ is zero. Tilting
themagnetic field away from the internal quantization axis introducesmixing of the
spin states. The amount of mixing depends on 𝑔⊥, such that it differs for the ground
and excited states. This results in a tunable non-zero overlap for all transitions, al-
lowing all four schemes to be observed (as in Fig. 3.2(b) where 𝜙 = 87°). This rea-
soning also explains the suppression of all emission lines except 𝐿2 in Fig. 3.2(b),
where the magnetic field is nearly along the c-axis. A detailed analysis of the rela-
tive peak heights in Fig. 3.2(b,c) compared to wave function overlap can be found
in Sec. 3.10.6.
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Figure 3.5: Signatures of coher-
ent population trapping of Mo
spin states in 6H-SiC. Two-laser
spectroscopy of the 𝐿1 peak in the
PLE signals reveals a dipped struc-
ture in the peak at several combi-
nations of probe-beam and control-
beam power. This results from co-
herent population trapping (CPT)
upon Λ-scheme driving. Tempera-
ture, magnetic field orientation and
magnitude, and laser powers, were
as labeled. The data are offset verti-
cally for clarity. Solid lines are fits of
a theoretical model of CPT (see main
text). The inset shows the normal-
ized CPT feature depths.

3.6.Coherent Population Trapping
The Λ driving scheme depicted in Fig. 3.3(a), where both ground states are cou-
pled to a common excited state, is of particular interest. In such cases it is pos-
sible to achieve all-optical coherent population trapping (CPT) [46], which is of
great significance in quantum-optical operations that use ground-state spin coher-
ence. This phenomenon occurs when two lasers address a Λ system at exact two-
photon resonance, i.e.when the two-laser detuning matches the ground-state split-
ting. The ground-state spin system is then driven towards a superposition state that
approaches |Ψ𝐶𝑃𝑇⟩ ∝ Ω2 |𝑔1⟩−Ω1 |𝑔2⟩ for ideal spin coherence. Here Ω𝑛 is the Rabi
frequency for the driven transition from the |𝑔𝑛⟩ state to the common excited state.
Since the system is now coherently trapped in the ground state, the photolumines-
cence decreases.

In order to study the occurrence of CPT, we focus on the two-laser PLE fea-
tures that result from a Λ scheme. A probe field with variable two-laser detuning
relative to a fixed control laser was scanned across this line in frequency steps of
50 kHz, at 200 𝜇W. The control laser power was varied between 200 𝜇Wand 5mW.
This indeed yields signatures of CPT, as presented in Fig. 3.5. A clear power de-
pendence is visible: when the control beam power is increased, the depth of the
CPT dip increases (and can fully develop at higher laser powers or by concentrating
laser fields in SiC waveguides [48]). This observation of CPT confirms our earlier
interpretation of lines 𝐿1-𝐿4, in that it confirms that 𝐿1 results from a Λ scheme. It
also strengthens the conclusion that this system is 𝑆 = 1/2, since otherwise optical
spin-pumping into the additional (dark) energy levels of the ground state would be
detrimental for the observation of CPT.
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Using a standard model for CPT [46], adapted to account for strong inhomo-
geneous broadening of the optical transitions [48] (see also Sec. 3.10.8) we extract
an inhomogeneous spin dephasing time 𝑇∗2 of 0.32 ± 0.08 𝜇s and an optical lifetime
of the excited state of 56 ± 8 ns. The optical lifetime is about a factor two longer
than that of the nitrogen-vacancy defect in diamond [13], indicating that the Mo
defects can be applied as bright emitters (although we were not able to measure
their quantum efficiency). The value of 𝑇∗2 is relatively short but sufficient for appli-
cations based on CPT [46]. Moreover, the EPR studies by Baur et al. [34] on vari-
ous transition-metal impurities show that the inhomogeneity probably has a strong
static contribution from an effect linked to the spread in mass for Mo isotopes in
natural abundance (nearly absent for the mentioned vanadium case), compatible
with elongating spin coherence via spin-echo techniques. In addition, their work
showed that the hyperfine coupling to the impurity nuclear spin can be resolved.
There is thus clearly a prospect for storage times in quantum memory applications
that are considerably longer than 𝑇∗2 .

3.7.Origin of anisotropic g-parameter
The anisotropic behavior of the g-factor that we observe for theMo defects was also
observed for vanadium and titanium in the EPR studies by Baur et al. [34] (they
observed 𝑔∥ ≈ 1.7 and 𝑔⊥ = 0 for the ground state). In these cases the transition
metal has a single electron in its 3𝑑 orbital and occupies a Si-substitutional site with
strong 𝐶3v symmetry. We derive in Sec. 3.10.1 a physical picture that shows that this
behavior can be traced back to a combination of a crystal field with 𝐶3v symmetry
and spin-orbit coupling for the specific case of an ion with one electron in its 𝑑-
orbital.

The magneto-optical spectra experimentally observed for Mo defects arise from
optical transitions between spin-1/2 ground and excited states. Since Mo has orig-
inally 6 electrons in its valence shell, it must be positively or negatively ionized to
have eigenstates with half-integer spin. Considering that the Mo defect is only ob-
served in p-doped samples, we conclude that the it is most likely related to a pos-
itively ionized impurity. Additionally, a single line associated with Mo defects is
observed in both 4H-SiC and 6H-SiC, and no line is observed in 3C-SiC, indicating
that the Mo impurity substitutes a Si atom in a quasi-hexagonal lattice site. In this
case, the molybdenum bonds to the lattice in a tetrahedral geometry, sharing four
electrons with its nearest neighbors. Since the impurity is additionally ionized, do-
nating a single electron to the p-type SiC host material, it is left in a configuration
Mo5+, with one electron left in the 4𝑑 orbitals.

The 4𝑑 orbitals of the transitionmetal (that are originally degenerate in the pres-
ence of spherical symmetry), are split by the crystal field with 𝐶3v symmetry into two
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orbital doublets and an orbital singlet. Whereas the singlet must have zero orbital
angularmomentum (the orbital angularmomentum is quenched), the doubletsmay
have orbital states with non-zero projection of the orbital angularmomentum along
the symmetry axis of the defect (see Sec. 3.10.1). When we consider also the spin of
the single electron, spin-orbit coupling further splits the degeneracy of each orbital
doublet, giving rise to two spin-orbit coupled Kramers doublets (KDs). These KDs
act as effective-spin-1/2 doublets. That is, they interact with magnetic fields, but
the particular strength of the interaction depends on both spin and orbital degrees
of freedom.

The highly anisotropic Zeeman splitting observed for Mo defects in SiC, and in
particular the term 𝑔⊥ = 0, arises from the fact that in the eigenstates that originate
from orbital doublets, the orbital angularmomentumprojection is pinned along the
crystal c-axis due to the symmetry of the defect. Due to SOC, spin and orbital angu-
lar momenta are strongly coupled, such that a magnetic field perpendicular to the
crystal c-axis will only lead to observable Zeeman splittings if the electronic Zeeman
energy is comparable to the spin-orbit coupling strength. This is only expected to
happen at very large fields (above 15 T), much larger than those explored in this
work.

3.8. Further discussion
An alternative scenario for our type of Mo impurities was proposed by Ivády et al.
in earlier work. They proposed, based on theoretical work [36], the existence of the
asymmetric split-vacancy (ASV) defect in SiC. An ASV defect in SiC occurs when an
impurity occupies the interstitial site formed by adjacent silicon and carbon vacan-
cies. The local symmetry of this defect is a distorted octahedron with a threefold
symmetry axis in which the strong g-factor anisotropy (𝑔⊥ = 0) may also be present
for the 𝑆 = 1/2 state [51]. Considering six shared electrons for this divacancy envi-
ronment, the Mo5+(4𝑑1) Mo configuration occurs for the singly charged −|𝑒| state.
For our observations this is a highly improbable scenario as compared to one based
on the +|𝑒| state, given the p-type SiC host material used in our work. We thus
conclude that this scenario by Ivády et al. does not occur in our material. Inter-
estingly, niobium defects have been shown to grow in this ASV configuration [52],
indicating there indeed exist large varieties in the crystal symmetries involved with
transitionmetal defects in SiC. This defect displays 𝑆 = 1/2 spinwith several optical
transitions between 892 − 897 nm in 4H-SiC and 907 − 911 nm in 6H-SiC [52].

Another defect worth comparing to is the aforementioned chromium defect,
studied by Koehl et al. [38] Like Mo in SiC, the Cr defect is located at a silicon
substitutional site, thus yielding a 3𝑑2 configuration for this defect in its neutral
charge state. The observed 𝑆 = 1 spin state has a zero-field splitting parameter
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of 6.7 GHz [38]. By employing optically detected magnetic resonance techniques
they measured an inhomogeneous spin coherence time 𝑇∗2 of 37 ns [38], which is
considerably shorter than observed for molybdenum in the present work. Regard-
ing spin-qubit applications, the exceptionally low phonon-sideband emission of Cr
seems favorable for optical interfacing. However, the optical lifetime for this Cr
configuration (146 𝜇s [38]) is much longer than that of the Mo defect we studied,
hampering its application as a bright emitter. It is clear that there is a wide variety
in optical and spin properties throughout transition-metal impurities in SiC, which
makes up a useful library for engineering quantum technologies with spin-active
color centers.

3.9. Summary and Outlook
Wehave studied ensembles ofmolybdenumdefect centers in 6Hand 4Hsilicon car-
bide with 1.1521 eV and 1.1057 eV transition energies, respectively. The ground-
state and excited-state spin of both defects was determined to be 𝑆 = 1/2with large
g-factor anisotropy. Since this is allowed in hexagonal symmetry, but forbidden in
cubic, we find this to be consistent with theoretical descriptions that predict that
Mo resides at a quasi-hexagonal lattice site in 4H-SiC and 6H-SiC [36, 39], and our
p-type host environment strongly suggests that this occurs for Mo at a silicon sub-
stitutional site. We used the measured insight in the 𝑆 = 1/2 spin Hamiltonians for
tuning control schemes where two-laser driving addresses transitions of a Λ sys-
tem, and observed CPT for such cases. This demonstrates that the Mo defect and
similar transition-metal impurities are promising for quantum information tech-
nologies. In particular for the highly analogous vanadium color center, engineered
to be in SiC material where it stays in its neutral V4+(3𝑑1) charge state, this holds
promise for combining 𝑆 = 1/2 spin coherence with operation directly at telecom
wavelengths.
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3.10.Appendices
3.10.1.A toymodel for understanding the anisotropic g-factor
Effective spin Hamiltonian and local configuration of the defect
An effective spin-Hamiltonian as the one used in Sec. 3.5 is a convenient tool which
allows us to describe the behavior of the system in a wide range of configurations,
as long as the effective parameters are experimentally determined and all relevant
states are considered. It is often the meeting point between experimentalists, who
measure the relevant parameters, and theoreticians, who attempt to correlate them
to theHamiltonian that describes the configuration of the system. A careful descrip-
tion of the latter, and how it modifies the parameters at hand, allows us to rational-
ize our choiceswhen investigating defectswith varying characteristics (such as a dif-
ferent charge state or element). This task is more approachable when we consider
the group-theoretical properties of the system at hand. Here we combine group-
theoretical considerations with ligand field theory in order to qualitatively describe
the features observed in our experiment. In particular, we aim at explaining the
large Zeeman splitting anisotropy observed in both ground and excited states, and
correlating it to the charge and spatial configuration of the defect.

In our experiments, we observe a single zero-phonon line (ZPL) associated with
optical transitions between two Kramers doublets (KD, doublets whose degener-
acy is protected by time-reversal symmetry and is thus broken in the presence of a
magnetic field) in defects which contain Mo. The presence of a single zero-phonon
line in both 4H and 6H-SiC samples indicates that the defect occupies a lattice site
with quasi-hexagonal symmetry. The lattice of 6H-SiC has two inequivalent sites
with cubic symmetry. Thus, if the defect were to occupy sites of cubic symmetry, we
would expect to observe two ZPLs closely spaced in this sample. The absence of the
ZPL associated with this defect in samples of 3C-SiC [53] further corroborates this
assumption. Additionally, we observe strong anisotropy in the Zeeman splitting of
the ground and excited states. Specifically, when the magnetic field is perpendic-
ular to the symmetry axis of the crystal, the Zeeman splitting of the ground state
goes to zero, whereas that of the excited state is very small. This feature is observed
in other transition-metal defects in SiC situated at Si substitutional sites of strong
𝐶3v symmetry and with one electron in its 3𝑑 orbital [34], but we are not aware of a
clear explanation of the phenomenon.

Ground and excited states are isolated KDs (that is, effective-spin-1/2 doublets),
indicating that the defect contains an odd number of electrons. A Mo atom has 6
electrons in its valence shell. The atom can occupy a Si substitutional site (MoSi),
where it needs to bond to 4 neighboring atoms, or an asymmetric split vacancy
(ASV) site (MoVSi−VC), where it bonds to 6 neighboring atoms. If we assume that
the localized states with mid-gap energies arise from electrons strongly localized
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around the TM impurity, these defects can, respectively, be described by a Mo ion
in the configurations 4𝑑2 and 4𝑑0. Thus, the defect must be ionized in order to
contain an odd number of electrons. Its charge state, which could be ±1, ±3, etc.,
is determined by the Fermi level in the crystal of interest. We note that the ZPL
could only be observed in p-doped samples, which indicates that the features in-
vestigated here are unlikely to arise from negatively charged defects. The defect
Mo+1

Si
(where +1 represents the charge state of the defect, not the Mo atom) can be

approximately described by aMo in a configuration 4𝑑1, which facilitates the treat-
ment of its configuration in terms of 𝑑 orbitals. In contrast, the defect Mo+1VSi−VC is
described by an electronic configuration containing a hole in the bonding orbitals.
These orbitals show strong hybridization between the 𝑑 orbitals of the Mo and the
orbitals of the ligands, and cannot be straight-forwardly analyzed using the formal-
ism described below. Inspired by the similarities between our system and other
transition-metal defects reported in SiC [34], we investigate the effect of the crys-
tal field of 𝐶3v symmetry on the one-electron eigenstates associated with the 5 4𝑑
orbitals (10, if spin multiplicity is included) of a Mo atom. We qualitatively predict
the spin-hamiltonian parameters expected for a Mo ion in a 4𝑑1 configuration, and
compare our analysis to the experimental results.

Ion in4𝑑1 configuration in thepresenceofcrystal fieldof𝐶3v symmetryandspin-
orbit coupling
The 5 degenerate sublevels of a 4𝑑-orbital are split by a crystal field of 𝐶3v symmetry
[51]. The energy splittings induced by this field are much smaller than the energy
difference between the 4𝑑 shell and the next orbital excited state (5𝑠). This allows
us to, initially, consider the 4𝑑 orbitals as a complete set. Since Mo is a heavy atom,
we cannot disregard the effect of spin-orbit interaction. However, we assume that
the crystal field is larger than SOC, that is, Δ𝐸𝑓𝑟𝑒𝑒 ≫ Δ𝐸𝑐𝑟𝑦𝑠𝑡𝑎𝑙 ≫ Δ𝐸𝑠𝑝𝑖𝑛−𝑜𝑟𝑏𝑖𝑡 ≫
Δ𝐸𝑍𝑒𝑒𝑚𝑎𝑛, whereΔ𝐸 denotes the energy splitting induced by each term (see Fig. 3.6).

The 5 orbital states of the 𝑑-orbital form a 5-dimensional irreducible represen-
tation (irrep) of the full rotation group SO(3). When the symmetry is lowered by the
crystal field to 𝐶3v, the 5-dimensional representation is split into 2 doublets (E1, E2)
and 1 singlet (A) that are irreps of 𝐶3v. Writing the 5 components of the 4𝑑 orbital in
terms of the quadratic functions 𝑧2, 𝑥2−𝑦2, 𝑥𝑦, 𝑥𝑧, 𝑦𝑧 allows us to identify which or-
bitals are degenerate in the presence of a crystal field of trigonal symmetry. We find
that the singlet A is composed of the orbital 4𝑑𝑧2 . Furthermore, the orbitals 4𝑑𝑥𝑧
and 4𝑑𝑦𝑧 are degenerate upon action of the crystal field and make up doublet E1.
Finally the orbitals 4𝑑𝑥2−𝑦2 and 4𝑑𝑥𝑦 correspond to doublet E2. Group-theoretical
considerations alone are not capable of elucidating which irrep corresponds to the
ground state, that is, it does not provide information about the order of the energy
levels.
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Figure 3.6: Splitting of one-electron energy levels of a 4d orbital, under the action of a crystal
field and spin-orbit coupling. In the free atom, the 5 orbitals corresponding to the 4𝑑 shell (disregarding
the spin) are degenerate. A crystal field of cubic symmetry breaks this degeneracy, generating an orbital
triplet and a doublet, whereas a crystal field of C3v symmetry, splits the 5 orbitals into one singlet and two
doublets. In the text, we focus on a crystal field of C3v symmetry, and disregard the cubic term. Although
we recognize that this is an approximation, we argue that this approach clarifies the physics governing
the strong magnetic anisotropy observed, and is thus justified. Spin-orbit coupling is responsible for
splitting the doublets, generating in total 5 sets of Kramers doublets (here, the spin of the electron is
taken into account). The energy splittings caused by a magnetic field within these KDs give rise to the
effective-spin Hamiltonian parameters considered. We note that a group-theoretical approach alone is
not capable of providing the order of the energy levels shown in the figure. We take this order to be the
one observed in transition-metal defects in a tetrahedral crystal field with strong trigonal distortion [51].

Comparison between the cubic harmonic forming these 5 orbitals and the spher-
ical harmonics which span a 5-dimensional space (that is, the spherical harmonics
𝑌𝑚𝑙 with 𝑙 = 2) allows us to rewrite the relevant orbitals as linear combinations of the
eigenstates of the operators 𝐿2, 𝐿𝑧. This yields a new basis for each irrep considered
above:

E1 ∶ 𝑌−22 = |𝑑−2⟩ ; 𝑌22 = |𝑑2⟩ 1st orbital doublet (3.3)

E2 ∶ 𝑌−12 = |𝑑−1⟩ ; 𝑌12 = |𝑑1⟩ 2nd orbital doublet (3.4)

A ∶ 𝑌02 = |𝑑0⟩ orbital singlet (3.5)

When the spinmultiplicity is considered, each orbital doublet yields 4possible states,
whereas the orbital singlet yields 2possible states. Spin-orbit coupling (represented
by the operator𝐻𝑆𝑂 = −𝜆L⋅S) is responsible for splitting these states into 5 different
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Kramers doublets:

KD1 ∶ |𝑑+2, +
1
2 ⟩ ; |𝑑−2, −

1
2 ⟩ (3.6)

KD2 ∶ |𝑑+2, −
1
2 ⟩ ; |𝑑−2, +

1
2 ⟩ (3.7)

KD3 ∶ |𝑑+1, +
1
2 ⟩ ; |𝑑−1, −

1
2 ⟩ (3.8)

KD4 ∶ |𝑑+1, −
1
2 ⟩ ; |𝑑−1, +

1
2 ⟩ (3.9)

KD5 ∶ |𝑑0, +
1
2 ⟩ ; |𝑑0, −

1
2 ⟩ (3.10)

where the basis vectors are given in terms of the quantumnumbers𝑚𝑙 and𝑚𝑠 which
denote the projection of the orbital and spin angular momentum along the quanti-
zation axis, respectively (Fig. 3.6). Here, the spin-orbit coupling is considered up
to first order in the energy correction, whereas the wave function is not corrected.

A magnetic field lifts the degeneracy between the two components of each KD.
This splitting is usually describedphenomenologically by an effective ZeemanHamil-
tonian in a system with effective-spin S̃ = 1

2 .

𝐻𝑒𝑓𝑓 =− 𝜇𝐵B ⋅ g ⋅ S̃1/2 (3.11)

where 𝜇𝐵 is the Bohr magneton, B the magnetic field vector, S̃1/2 the pseudo spin
1
2

operator and g the g-tensor. In the presence of axial symmetry, g can be diagonal-
ized such that equation (3.11) can be rewritten in terms of the symmetry axis of the
crystal

𝐻𝑒𝑓𝑓 =− 𝜇𝐵(𝑔∥𝐵𝑧𝑆̃1/2,𝑧 + (𝑔⊥𝐵𝑥𝑆̃1/2,𝑥 + 𝑔⊥𝐵𝑦𝑆̃1/2,𝑦)) (3.12)

In terms of the eigenstates belonging to each KD, the splitting is described by
the Zeeman Hamiltonian given by

𝐻𝑍𝑒𝑒 = −B ⋅ 𝜇 = −𝜇𝐵B ⋅ (𝑔0S+ 𝑘L) (3.13)

where 𝜇 is the magnetic moment operator, 𝑔0 the g-factor for a free electron, S the
total spin operator, 𝑘 the orbital reduction factor, and L the orbital angularmomen-
tum operator [51, 54]. The orbital reduction factor 𝑘, is a factor between 0 and 1
which corrects for partial covalent bonding between the orbitals of the TM and the
ligands [51] (note that the value of 𝑘 differs for each of the 5 KDs in equations (3.6-
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3.10)). Comparison of equations (3.12) and (3.13) shows that

𝑔∥ =2 ⟨𝑔𝑒𝑆𝑧 + 𝑘𝐿𝑧⟩ =
2 ⟨𝜇𝑧⟩
𝜇𝐵

(3.14)

𝑔⊥ =2 ⟨𝑔𝑒(𝑆𝑥 + 𝑆𝑦) + 𝑘(𝐿𝑥 + 𝐿𝑦)⟩ =
2 ⟨𝜇𝑥 + 𝜇𝑦⟩

𝜇𝐵
(3.15)

As long as themagnitude of this Zeeman splitting is small compared to the spin-
orbit interaction, we can consider the effect of the magnetic field in the sets formed
by each KD independently. That is, we consider that the magnetic field does not
mix states pertaining to two different KDs.

In order to calculate the values of 𝑔∥ and 𝑔⊥ for each KD defined by trigonal
symmetry and spin-orbit coupling, we rewrite equation (3.13) as

𝐻𝑍𝑒𝑒 = −(𝐵𝑧𝜇𝑧 + 𝐵𝑥𝜇𝑥 + 𝐵𝑦𝜇𝑦) = −(𝐵𝑧𝜇𝑧 +
1
2(𝐵+𝜇− + 𝐵−𝜇+)) (3.16)

where the + and − subindices denote the raising and lowering magnetic moment
operators and the linear combinations 𝐵𝑥±𝑖𝐵𝑦, respectively. When we consider the
basis given in equations (3.6-3.9), the matrix elements of both 𝜇+ and 𝜇− are zero
between two eigenvectors pertaining to one KD. This arises from the fact that the
operators 𝜇± couples states with (𝑚𝑙 , 𝑚𝑠) to states with (𝑚𝑙 ± 1,𝑚𝑠) or (𝑚𝑙 , 𝑚𝑠 ±
1). Since, within a KD, there is a change in both 𝑚𝑙 and 𝑚𝑠 when going from one
eigenvector to the other, the operators 𝜇+ and 𝜇− cannot couple these states to each
other. Explicitly, for KD1 for example, we obtain

⟨𝑑+2, −
1
2 |𝜇±|𝑑+2, −

1
2 ⟩ = 0 (3.17)

⟨𝑑+2, −
1
2 |𝜇±|𝑑−2, +

1
2 ⟩ = 0 (3.18)

⟨𝑑−2, +
1
2 |𝜇±|𝑑−2, +

1
2 ⟩ = 0 (3.19)

and in a similar way for KDs 2 through 4. Thus, up to first order, a magnetic field
applied perpendicular to the crystal c-axis is not capable of lifting the degeneracies
of the 4 KDs given in equations (3.6)-(3.9). Comparing these results to equation
(3.15) we conclude that, for the 8 sublevels of the KDs 1 through 4, 𝑔⊥ = 0. This
arises from the effect of both the crystal field of𝐶3v symmetry and SOC in decoupling
and isolatingKDswith the propertiesmentioned above. This is not the case forKD5,
given in equation (3.10). In this case,

⟨𝑑0, −
1
2 |𝜇±|𝑑0, +

1
2 ⟩ ≠ 0 (3.20)
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and the degeneracy of this KD is broken in the presence of a magnetic field perpen-
dicular to the c-axis of the crystal.

We can consider in addition the effect of spin-orbit coupling inmixing the eigen-
states presented in equations (3.6-3.10). Spin-orbit coupling is responsible formix-
ing between the eigenstates of KD2 and KD3 (equations (3.7) and (3.8)). Since both
of these KDs show 𝑔⊥ = 0, this mixing does not modify the expected value of 𝑔⊥ in
neither KD. In contrast, the SOC induced mixing between KD4 and KD5 causes
some deviation of 𝑔⊥ from 0 in KD4, since 𝑔⊥ ≠ 0 in KD5. The values of 𝑔∥ and
𝑔⊥ for one electron in each of the KDs described in this section are presented in
table 3.2.

The tetrahedral part of the crystal field will furthermix the KDs described in this
section (this will be further discussed in Chapter 5). However, the physical mecha-
nisms underlined here are still relevant in that case. The procedure to calculate the
effective g-parameters from the electronic wavefunction remains the same, but the
result must be summed over contributions with different orbital angular momen-
tum components. Symmetry dictates that the tetrahedral field will lead to mixing
between KDs 1, 4 and 5, giving rise to three different KDs that transform as the Γ4
irrep of the double group 𝐶̄3v (see Tab. A.1). In contrast, mixing between the KDs 2
and 3 gives rise to two KDs that transform as the Γ5,6 irrep.

In addition, the optical transitions observed aremainly polarized along the crys-
tal c-axis of the defect. Careful analysis of the selection rules associated with the
double trigonal group (which includes, besides the spatial symmetry, the spin of
the electron) has been reported by Kunzer et al. [55] and can be easily checked in
Sec. 4.5.4. Comparing their results to the considerations presented in the previous
paragraphs indicates that either ground and excited states are both of the Γ4 type,
or both are of the Γ5,6 type. Finally, we note that we could not experimentally iden-
tify secondary ZPLs corresponding to transitions between other sets of KDs, even
though they are allowed by symmetry. This could be explained by a series of factors.
On the one hand, some of the KDs treated could have energies above the conduction
band edge in the crystal, which would impede the observation of optical transitions
from and into these levels. On the other hand, the presence of these lines could be
masked by the intense phonon sideband at the red side of the ZPL, or the associ-
ated photon energies fall outside our detection window. Progressing insight shows
that, for the V defect in SiC (see chapter 6), the lowest energy ground-state doublet
is of the Γ4 type. The ordering of the levels may differ, however, for Mo defects.
We also show in the following chapters that magneto-spectra of hyperfine-coupled
defects with non-zero nuclear spin provides unequivocal insight into the symme-
try character of the electronic KD (chapter 5). However, since we could not detect
in our work a subensemble with visible hyperfine-split eigenlevels, we cannot un-
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Table 3.2: The g-factors of the Kramers doublets originated due to spin-orbit coupling within each sub-
space of the electronic eigenstates in a field of C3v symmetry. Spin-orbit coupling is added as a pertur-
bation, and included up to first order. The parameters 𝜆 and 𝛿 are as defined in the text and in Fig. 3.6.
Note that the g-factor values in this table can take on negative values, while in our experimental analysis
we can only extract |𝑔∥| and |𝑔⊥|.

C3v Spin-Orbit 𝑔∥ 𝑔⊥
Doublet,𝑚𝑙 = ±2

KD1, eq. 3.6 2(2𝑘 + 1) 0
KD2, eq. 3.7 2(2𝑘 − 1) 0

Doublet,𝑚𝑙 = ±1
KD3, eq. 3.8 2(𝑘 + 1) 0
KD4, eq. 3.9 2(𝑘 − 1) 0 + ∝ 𝜆

𝛿
Singlet,𝑚𝑙 = 0 KD5, eq. 3.10 2 2 − ∝ 𝜆

𝛿

equivocally determine the symmetry character of the ground-state doublet of the
Mo defect in SiC.

Validity of our assumptions
The toy-model considered here is capable of qualitatively informing us about the
behavior of orbitals with 𝑑 character in the presence of trigonal crystal field and
spin-orbit coupling. It is clear that the full description of the configuration of the
defect is farmore subtle than the simplemodel applied here. We intend to comment
on this in the next paragraphs.

Symmetry of the crystal field. In our derivation, we assume that the trigonal
crystal field is the prevailing term in the Hamiltonian describing the defect. This
assumption is not rigorously correct, since the symmetry of defects in SiC is more
accurately described by a ligand field of cubic symmetry – which determine most of
its ground and excited state properties. This field ismodified in the presence of axial
symmetry, as is the case for defects in quasi-hexagonal lattice sites, which is gener-
ally included as a first-order perturbation term in the Hamiltonian. Nonetheless, it
can be shown [51, 56] that the large anisotropy in the Zeeman response described
above, with the cancelation of 𝑔⊥, is also observed in the case of a cubic field with
trigonal distortion and spin-orbit coupling of similar magnitudes. The analysis, in
this case, is more laborious due to the fact that mixing of the orbitals is involved,
and calculating the matrix elements of the operators 𝐿±, 𝑆±, 𝐿𝑧 and 𝑆𝑧 is less trivial.
Furthermore, this analysis would not increase our level of understanding of the sys-
tem at this point, since we were only capable of observing transitions between the
sublevels of two KDs in this experiment. This approach would be more profitable
if transitions between other sets of KDs were observed, allowing us to unravel sev-
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eral parameters associated with the system, such as the strength of the spin-orbit
coupling and trigonal crystal field. This is the approach we take in chapter 5 for V
defects in SiC.

Charge state of the defect. Similarly, it can be shown that the considerations
presented here can be expanded to configurations where the 4𝑑 orbitals are filled
by multiple electrons (for instance, a defect in a configuration 4𝑑3). In this case, a
doubly degenerate orbital configuration (in symmetry terms, a configuration of the
kind 𝑚E, where 𝑚 is the spin multiplicity) in the presence of a crystal field of 𝐶3v
symmetry gives rise to at least one KD with 𝑔⊥ = 0when SOC is taken into account.
Nonetheless, only a negatively chargedMo in a Si substitutional site would give rise
to a defect in the configuration 4𝑑3. The absence of the ZPL in n-doped samples
indicates that this is unlikely.

In addition, a similar group theoretical analysis can show that one hole in a
bonding orbital of symmetry E would also give rise to 𝑔⊥ = 0. Thus, the features
observed here could also correspond to a positively chargedMoVSi−VC defect (where
one of the six Mo electrons that participate in bonding is lost to the crystal lattice).
Due to the strong hybridization between the Mo and the divacancy orbitals in this
case, the description of this case is more subtle and will not be performed here.

Summary
We showed that an analysis of the effect of the defect symmetry on the Zeeman en-
ergy splittings of its ground and excited states, combined with the experimental ob-
servations, helps us unravel the configuration of the defect studied in this work. We
show that, in 𝐶3v symmetry, a combination of the crystal field and spin-orbit inter-
action is responsible for the strong magnetic anisotropy observed experimentally.
Furthermore, the fact that the defect studied in this work is only observed optically
in samples which are p-doped indicates that the charge of the defect is more likely
positive than negative. In this way, we conclude that the most probable configura-
tion of our defect is aMo ion on a Si substitutional site of h symmetry, with a charge
+1, which can be approximately described by a Mo atom in a 4𝑑1 configuration.
The absence of other lines associated with the defect prevents us from providing a
more accurate description of the system. Nonetheless, we have developed a qualita-
tive description based on symmetry, which explains the Zeeman splittings observed.
The considerations presented here allow us to predict and rationalize the presence
of strong anisotropy in other transition-metal defects in SiC. We expect neutrally
charged vanadium defects in quasi-hexagonal lattice sites to show a magnetic be-
havior similar to the one observed in the Mo defects investigated in this work.
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3.10.2.Methods
Materials The samples used in this study were ∼1 mm thick epilayers grown with
chemical vapor deposition, and they were intentionally doped withMo during sam-
ple growth. The PL signals showed that a relatively low concentration of tungsten
was present due to unintentional doping frommetal parts of the growth setup (three
PL peaks near 1.00 eV, outside the range presented in Fig. 3.1(a)). The concentra-
tion of various types of (di)vacancies was too low to be observed in the PL spectrum
that was recorded. For more details see Ref. [43].

CryostatDuring allmeasurements, the samplewasmounted in a helium flow cryo-
stat with optical access through four windows and equippedwith a superconducting
magnet system.

Photoluminescence (PL) The PL spectrum of the 6H-SiC sample was measured
by exciting thematerial with an 892.7 nm laser, and using a doublemonochromator
equipped with infrared-sensitive photomultiplier. For the 4H-SiC sample, we used
a 514.5 nm excitation laser and an FTIR spectrometer.

Photoluminescence Excitation (PLE) The PLE spectrumwasmeasured by ex-
citing the defects using a CW diode laser tunable from 1050 nm to 1158 nm with
linewidth below 50 kHz, stabilizedwithin 1MHzusing feedback fromaHighFinesse
WS-7 wavelength meter. The polarization was linear along the sample c-axis. The
laser spot diameter was ∼ 100 𝜇m at the sample. The PL exiting the sample side-
ways was collected with a high-NA lens, and detected by a single-photon counter.
The peaks in the PLE data were typically recorded at a rate of about 10 kcounts/s by
the single-photon counter. We present PLE count rates in arb. u. since the photon
collection efficiency was not well defined, and it varied with changing the angle 𝜙.
For part of the settings we placed neutral density filters before the single-photon
counter to keep it from saturating. The excitation laser was filtered from the PLE
signals using a set of three 1082 nm (for the 4H-SiC case) or 1130 nm (for the 6H-
SiC case) longpass interference filters. PLE was measured using an ID230 single-
photon counter. Additionally, to counter charge state switching of the defects, a
770 nm re-pump beam from a tunable pulsed Ti:sapphire laser was focused at the
same region in the sample. Laser powers as mentioned in the main text.

Two-laser characterization The PLE setup described above was modified by
focusing a detuned laser beam to the sample, in addition to the present beams.
The detuned laser field was generated by splitting off part of the stabilized diode
laser beam. This secondary beam was coupled into a single-mode fiber and passed
through an electro-optic phase modulator in which an RF signal (up to ∼5 GHz)
modulated the phase. Several sidebands were created next to the fundamental laser
frequency, the spacing of these sidebands was determined by the RF frequency.
Next, a Fabry-Pérot interferometer was used to select one of the first-order side-
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bands (and it was locked to the selected mode). The resulting beam was focused on
the same region in the sample as the original PLE beams (diode laser and re-pump)
with similar spot size and polarization along the sample c-axis. Laser powers were
as mentioned in the main text. Small rotations of the c-axis with respect to the
magnetic field were performed using a piezo-actuated goniometer with 7.2 degrees
travel.
Data processing For all graphs with PLE data a background count rate is sub-
tracted from each line, determined by the minimum value of the PLE in that line
(far away from resonance features). After this a fixed vertical offset is added for
clarity. For each graph, the scaling is identical for all lines within that graph.

3.10.3. Single-laser spectroscopy

Figure 3.7: Temperature depen-
dence of Mo PL spectrum in
4H-SiC. PL from excitation with a
514.5 nm laser, for 5 and 20 K sam-
ple temperatures and at zero mag-
netic field. The dashed box marks
the ZPL at 1.1521 eV. The inset
gives a magnified view of the ZPL.
The broader peaks at lower pho-
ton energies are phonon replicas of
the ZPL. There is almost no depen-
dence on temperature in both ZPL
and replicas. Data courtesy of A.
Gällström.

Figure 3.8: Temperature dependence of the PLE signals from the Mo ZPL in 4H-SiC and
6H-SiC. PLE signals from scanning a single CW narrow-linewidth laser across the ZPL photon-energy
range. The temperature was varied between 4 and 20 K. A residual magnetic field of a few mT was
present in the superconducting magnet, with unknown exact magnitude. The ZPL for Mo in (a) 4H-SiC
is at 1.1521 eV, and forMo in (b) 6H-SiC at 1.1057 eV.When the temperature is decreased, the height of
the ZPL drops significantly, probably due to a combination between the reduced emission into the PSB
at lower temperatures and optical spin-pumping.
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3.10.4.Additional two-laser spectroscopy for Mo in 6H-SiC
Angle dependence. In addition to Fig. 3.2(b,c), we also measured the magnetic
field dependence of the spin related emission signatures at intermediate angles 𝜙.
Figure 3.9 shows this dependence for 𝜙 = 37°, 57° and 81°. The spectroscopic po-
sition of emission lines 𝐿𝑛 show a linear dependence on magnetic field, with slopes
Θ𝐿𝑛 (in Hertz per Tesla) that decrease as 𝜙 increases. The effective g-factors in
Fig. 3.4 are acquired from the emission lines by relating their slopes to the Zeeman
splittings in the ground and excited state. Using the four pumping schemes depicted
in Fig. 3.3, we derive

Θ𝐿1 =
𝜇𝐵
ℎ 𝑔𝑔 (3.21)

Θ𝐿2 =
𝜇𝐵
ℎ |𝑔𝑒 − 𝑔𝑔| (3.22)

Θ𝐿3 =
𝜇𝐵
ℎ 𝑔𝑒 (3.23)

Θ𝐿4 =
𝜇𝐵
ℎ (𝑔𝑒 + 𝑔𝑔) (3.24)

where ℎ is Planck’s constant, 𝜇𝐵 the Bohr magneton and 𝑔𝑔(𝑒) the ground (excited)
state g-factor.

Figure 3.9: Magneto-spectroscopy of two-laser spin signatures in PLE fromMo in 6H-SiC.
Magnetic field dependence of the PLE signal as a function of two-laser detuning, for angles 𝜙 between
themagnetic field and c-axis set to𝜙 = 37° (a),𝜙 = 57° (b) and𝜙 = 81° (c). Results for the temperature
at 4K. The labeling of the emission lines (𝐿1 - 𝐿4) is consistent with Fig. 3.2. The data are offset vertically
for clarity.

Temperature and photon-energy dependence. We also measured the de-
pendence of the two-laser PLE signal on temperature, see Fig. 3.10(a). The PLE
features disappear above 8 K in amuch broader PLE background that starts to emit
because ofmore rapid thermal spinmixing in the ground state. OtherMo systems in
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the ensemble for which the two-laser resonance condition is not met then also start
emitting due to single-laser excitation (see also Fig. 3.8), since the optical pump-
ing into an off-resonant state becomes shorter lived. Notably, the linewidths of the
peaks in Fig. 3.10(a) do not change in the range 2 K to 8 K, indicating that the tem-
perature does not affect the optical lifetime in this range. Above 8K the temperature
was a bit unstable during themeasurements, which causes the drifting in the single-
laser PLE contribution to this signal. Interestingly, the dip (𝐿3) is most pronounced
at 6 K, since there are several competing processing responsible for this dip (see
section 3.10.7).

Additionally, we measured how the two-laser PLE occurred throughout the in-
homogenously broadened ensemble, by varying the photon energy of the control
laser and sweeping the two-laser detuning for each case (Fig. 3.10(b)). For all pho-
ton energies the peaks are at the same position, indicating that all Mo atoms in the
ensemble behave similarly. At 1.10561 eV the control laser is too far detuned from
the ZPL to yield any two-laser PLE signal.

Figure 3.10: Temperature and photon-energy dependence of two-laser emission features
in 6H-SiC. Temperature (a) and laser photon-energy (b) dependence of the PLE signal as a function of
two-laser detuning. Results are offset vertically for clarity.

Two-laser spectroscopy for the 5 − 21 GHz detuning range. In order to
check for a possible presence of spin-related emission features at detunings larger
than 5GHz (checking for a possible zero-field splitting), wemodified the setup such
that we could control two-laser detunings up to 21 GHz. The electro-optical phase
modulator (EOM) we used for generating the detuned laser field could generate
first-order sidebands up to 7 GHz. In order to check for two-laser spectroscopy
emission features at larger detunings, we removed the Fabry-Pérot (FP) filter, such
that all sidebands (on the same optical axis) were focused onto the sample with
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Figure 3.11: Two-laser
spin signatures of Mo
in 6H-SiC at large de-
tuning. (a) Transmission
scan of the Fabry-Pérot
resonator, characterizing
which optical frequencies
are present in the beam
after passing through the
electro-optical modulator
(EOM). The first-order
sidebands at ±300 MHz
have the highest intensity,
whereas the fundamental
laser frequency is sup-
pressed (but not fully
removed) by the EOM.
Relevant sideband spacings
are indicated. (b) Spin
signatures at low two-laser
detuning. Emission fea-
tures similar to those in
Fig. 3.2(c) of Fig. 3.2 are
visible, and labeled 𝐿𝑛,𝑚.
(c) The PLE signal from
two-laser spectroscopy at
larger detuning. No peaked
features from single, double
or triple sideband spacings
are visible.

2mW total laser power. Apart from the re-pump beam, no additional laser was fo-
cused onto the sample in this experiment. In this way, theMo defects could interact
with several combinations of sidebands. Figure 3.11(a) shows the spectral content
of this beam (here characterized by still using the FP resonator). The first and sec-
ond order sidebands at negative and positive detuning take a significant portion of
the total optical power. Hence, pairs of sidebands spaced by single, double or triple
frequency intervals (EOM frequency 𝑓EOM) now perform two-laser spectroscopy on
the Mo defects. The relevant sideband spacings are indicated in Fig. 3.11(a).

Figure 3.11(b) presents results of these measurements, showing various peaks
that we identified and label as 𝐿𝑛,𝑚. Here 𝑛 is identifying the peak as a line 𝐿𝑛 as
in Fig. 3.3, while the label 𝑚 identifies it as a spectroscopic response for two-laser
detuning at 𝑚 ⋅ 𝑓EOM (that is, 𝑚 = 1 is for first-order EOM sideband spacing, etc.).
Note that second-ordermanifestations of the known peaks 𝐿1-𝐿4 (from double side-
band spacings, labeled as 𝐿𝑛,2) are now visible at

1
2𝑓EOM, and third-order response

of the known 𝐿1-𝐿4 occurs at
1
3𝑓EOM (but for preserving clarity these have not been

labeled in Fig. 3.11(b)).

Figure 3.11(c) depicts a continuation of this experiment with 𝑓EOM up to 7 GHz
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with the same resolution as Fig. 3.11(b). No new peaks are observed. Considering
that third-order peaks were clearly visible before, we conclude that no additional
two-laser emission features exist up to 21 GHz.

3.10.5. Two-laser spectroscopy for Mo in 4H-SiC

Figure 3.12: Two-laser spin signatures of Mo in 4H-SiC. PLE signal as a function of two-laser
detuning and magnetic field strength, for various angles 𝜙 between the magnetic field and c-axis. (a)
Measurement at 4.2 K, with 𝜙 = 33°. A single emission line (peak) is visible, labeled 𝐿2. (b) Measure-
ment at 4.2 K, with 𝜙 = 57°. Three emission lines are visible, labeled 𝐿1, 𝐿2 (peaks), and 𝐿3 (dip). (c)
Measurement at 10 K, with 𝜙 = 83°. Four emission lines are visible, labeled 𝐿1 through 𝐿4 (all dips).
Note that the measurement range of (c) is six time as large as (a) and (b), but the plot aspect ratio is the
same. A gray-scale plot has been used for optimal contrast.

We also studied the spin-related fine structure ofMo defects in 4H-SiC. Our 4H-
SiC sample suffered from large background absorption, which drastically lowered
the signal-to-noise ratio. We relate this absorption to a larger impurity content (of
unknown character, but giving broad-band absorption) in our 4H-SiC material as
compared to our 6H-SiCmaterial. Therefore, the lasers were incident on a corner of
the sample, so as to minimize the decay of the emitted PL. We present the results in
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Figure 3.13: Temperature dependence of PLE spin sig-
natures from Mo in 4H-SiC. PLE signal as a function of
two-laser detuning and temperature with magnetic field at
𝜙 = 83° from the sample c-axis at 100 mT. As the temper-
ature increases, the signal from 𝐿1 changes from a peak to a
broad dip, while 𝐿3 remains a dip.
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gray-scale plots in Fig. 3.12 for optimized contrast. The figure shows the magnetic
field and two-laser detuning dependence of the PLE.

Analogous to Fig. 3.2 for 6H-SiC, the spectroscopic position features appear as
straight lines that emerge from zero detuning, indicating the absence of a zero-field
splitting. When themagnetic field is nearly perpendicular to the c-axis (Fig. 3.12(c)),
four lines are visible. This is consistent with an 𝑆 = 1/2 ground and excited state.

The data from Fig. 3.12(c) was measured at 10 K, whereas Fig. 3.12(a,b) was at
4.2 K. At 10 K, all emission lines become dips, while for 6H-SiC only the V system
shows a dip. The temperature dependence of 𝐿3 and 𝐿1 is shown in Fig. 3.13 for the
same configuration as in Fig. 3.12(c) (𝜙 = 83°). At low temperatures 𝐿1 shows a
peak and 𝐿3 shows a dip. Upon increasing the temperature, both features become
dips. This phenomenon was only observed for Mo in 4H-SiC, it could not be seen
in 6H-SiC. We therefore conclude that this probably arises from effects where Mo
absorption and emission is influenced by the large background absorption in the
4H-SiC material.

The labels in Fig. 3.12 are assigned based on the energy diagrams in Fig. 3.2.
Like in Sec. 3.5, 𝐿1 through 𝐿4 indicate Λ, Π, V and X two-laser pumping schemes,
respectively. The 𝐿1 and 𝐿3 labels are interchangeable in Fig. 3.12(c) when only con-
sidering the sum rules. However, the fact that the left feature in Fig. 3.13 shows a
dip for all temperatures means that it should be related to a V scheme. Thus, the
current assignment of the labels with corresponding pumping schemes is justified.
Using equations 3.21 through 3.24, the effective g-factors can be determined. Fit-
ting these to equation (3.2) gives the values for 𝑔∥ and 𝑔⊥ reported in Tab. 3.1.
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3.10.6. Franck-Condon principle with respect to spin
The amplitude of the two-laser emission signatures is determined by the strength of
the underlying optical transitions. For a transition |𝑔𝑖⟩-|𝑒𝑗⟩, this strength is deter-
mined by the spin overlap ⟨𝑔𝑖|𝑒𝑗⟩, according to the Franck-Condon principle with
respect to spin [57]. The quantum states of the spin in the electronic ground and
excited state can be described using effective spin Hamiltonian

𝐻𝑔(𝑒) = 𝜇𝐵B ⋅ g𝑔(𝑒) ⋅ S̃ (3.25)

with 𝜇𝐵 the Bohr magneton, B the applied magnetic field vector, S̃ the effective spin
vector, and where the ground (excited) state g-parameter is a tensor g𝑔(𝑒). Using
Cartesian coordinates this can be written as

g𝑔(𝑒) = (
𝑔𝑔(𝑒)⊥ 0 0
0 𝑔𝑔(𝑒)⊥ 0
0 0 𝑔𝑔(𝑒)∥

) (3.26)

Here the 𝑧-axis is parallel to the SiC c-axis, and the 𝑥 and 𝑦-axes lay in the plane
perpendicular to the c-axis. Due to the symmetry of the defect, the magnetic field B
can be written as

B = (
0

𝐵 sin𝜙
𝐵 cos𝜙

) (3.27)

where 𝐵 indicates the magnitude of the magnetic field. The resulting Hamiltonian
𝐻𝑔(𝑒)may be found by substitutingB and g𝑔(𝑒) into equation (3.25), and considering
that 𝑆 = 1/2. The basis of 𝐻𝑔(𝑒) can be found from the eigenvectors.

For the ground state𝑔𝑔⊥ is zero, thus the bases of𝐻𝑔 and 𝑆𝑧 coincide, independent
of 𝜙. Therefore, there is no mixing of spins in the ground state. However, in the
excited state 𝑔𝑒⊥ is nonzero, causing its eigenbasis to rotate if a magnetic field is
applied non-parallel to the c-axis. The new eigenbasis is a linear combination of
eigenstates of 𝑆𝑥, 𝑆𝑦 and 𝑆𝑧, such that there will be mixing for spins in the excited
state for any nonzero angle 𝜙.

We calculate the spin overlap for the |𝑔𝑖⟩-|𝑒𝑗⟩ transition from the inner product
of two basis states |𝑔𝑖⟩ and |𝑒𝑗⟩. The strength of a two-laser pumping scheme is then
the product of the strength of both transitions. For example, the strength of the Λ
scheme from Fig. 3.3(a) equals the inner product ⟨𝑔1|𝑒2⟩multiplied by ⟨𝑔2|𝑒2⟩. The
resulting strengths for all four pumping schemes are depicted in Fig. 3.14.

Wenowcompare these transition strengths to the data inFig. 3.2(b,c) andFig. 3.9
and 3.12. It is clear that the Π scheme is the strongest pumping scheme for all an-
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Figure 3.14: Two-laser pumping scheme transition strengths. For each scheme the product of
the spin overlaps from both underlying transitions is shown. The strength of the Π scheme is near unity
for large angles and never vanishes. The strengths of the Λ and V schemes are equal, they vanish at
𝜙 = 0°. The X scheme strength vanishes more rapidly than any other scheme for angles 𝜙 close to 0°.

gles 𝜙 ≠ 90°. This explains the large relative amplitude of 𝐿2 in our measurements.
The Λ and V scheme transition strengths are equal, starting from zero for 𝜙 = 0°
and increasing as 𝜙 approaches 90°. For the Λ scheme, this is consistent with the
increasing relative amplitude of 𝐿1. For 𝜙 close to 90° the amplitude of 𝐿1 is even
larger than for 𝐿2. The reason for this is that a Λ scheme is emittingmore effectively
than a Π scheme. The V scheme is harder to observe in the background emission,
such that 𝐿3 is only visible for 𝜙 close to 90°. Finally, the transition strength of the
X scheme is only significant for 𝜙 close to 90°, which is why we have not been able
to observe 𝐿4 below 81° in 6H-SiC.

3.10.7.V-scheme dip
Understanding the observation of a dip for the V pumping scheme in a four-level
system (Fig. 3.2(c)) is less trivial than for the observation of peaks from the other
three pumping schemes. The latter can be readily understood from the fact that for
proper two-laser detuning values both ground states are addressed simultaneously,
such that there is no optical pumping into dark states. In this section we will inves-
tigate how a dip feature can occur in the PLE signals. Ourmodeling will be based on
solving a master equation in Lindblad form with a density matrix in rotating wave
approximation for a four-level system with two near-resonant lasers [46].

Consider the four-level system depicted in Fig. 3.15(a). A control laser is near-
resonantwith the |𝑔1⟩-|𝑒1⟩ (vertical) transition and a probe laser near-resonantwith
|𝑔1⟩-|𝑒2⟩ (diagonal) transition. Here the two-laser detuning is defined as 𝛿 = Δ𝑝 −
Δ𝑐, i.e. the difference between the detunings Δ of both lasers from their respective
near-resonant transitions, such that the emission feature appears at zero two-laser
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Figure 3.15: Four-level V-scheme model. (a) V pumping scheme in a four level system. Here Ω is
the Rabi frequency for the control and probe lasers, and 𝜔 their (angular) frequency. Γ𝑣 and Γ𝑑 are the
decay rates for vertical and diagonal decay, respectively. Δ represents the detuning from resonance of
the control and probe beam. (a) V-scheme simultaneously resonant (with the scheme in panel (a)) for
another part of the inhomogeneously broadened ensemble. Probe and control Rabi frequenciesΩ′ differ
from (a), since both lasers drive other transitions with different dipole strengths. (c) Total population in
the excited-state levels (|𝑒1⟩ and |𝑒2⟩) for both schemes separately (blue and green) as well as their sum
(black).

detuning. The decay rates from the excited states are Γ𝑣 and Γ𝑑 for vertical and
diagonal transitions, respectively. They are quadratically proportional to the spin-
state overlap ⟨𝑔𝑖|𝑒𝑗⟩

Γ𝑣 ∝ |⟨𝑔1|𝑒1⟩|
2 , (3.28)

Γ𝑑 ∝ |⟨𝑔1|𝑒2⟩|
2 . (3.29)

These rates are unequal, since the spin-state overlap for diagonal transitions is gen-
erally smaller than for vertical transitions (see previous section). The decay rates
Γ𝑒 between excited-state levels and Γ𝑔 ground-state levels are assumed very small
compared to the decay rates from the excited-state levels. The decay rates from
ground-state levels towards the excited-state levels are set to zero. Dephasing rates
are taken relative to the |𝑔1⟩ state (𝛾𝑔1 = 0). The choices for parameters are listed
in table 3.3. The Rabi frequencies Ω𝑐 and Ω𝑝 of the driven transitions are linearly
proportional to the spin-state overlap

Ω𝑐 ∝ |⟨𝑔1|𝑒1⟩| , (3.30)

Ω𝑝 ∝ |⟨𝑔1|𝑒2⟩| . (3.31)
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Table 3.3: Parameter choices for V-schememodel

parameter value (Hz) parameter value (Hz)

Γ𝑣 0.9 ⋅ 107 𝛾𝑔1 0
Γ𝑑 0.1 ⋅ 107 𝛾𝑔2 5 ⋅ 106
Γ𝑔 1 ⋅ 104 𝛾𝑔3 5 ⋅ 106
Γ𝑒 1 ⋅ 104 𝛾𝑔4 5 ⋅ 106
Δ𝑐 0 Ω𝑐 √.9 ⋅ 107
Δ𝑝 ∈ [−500, 500] ⋅ 106 Ω𝑝 √.1 ⋅ 107

Additionally, we have to consider a secondary V-scheme (Fig. 3.15(b)) resonant
with another part of the inhomogeneously broadened ensemble. The control and
probe laser are swapped, as the former now addresses a diagonal transition, while
the latter addresses a vertical one. The new Rabi frequency is taken to be Ω′𝑐 =
√Γ𝑑
Γ𝑣
Ω𝑐 for the control beam, which is now driving a diagonal transition (with re-

duced strength). The probe beam is driving a vertical transition (with increased

strength), and its Rabi frequency is Ω′𝑝 = √
Γ𝑣
Γ𝑑
Ω𝑝.

Considering both V-schemes, we calculate the total population in both excited-
state levels as it reflects the amount of photoluminescence resulting fromdecay back
to the ground states. The two-laser detuning dependence of the excited-state pop-
ulation is shown in Fig. 3.15(c). The black curve considers both schemes simulta-
neously, which represents the situation in our measurements. Here the dip indeed
appears, although both separate schemes (a and b) display a dip and peak (respec-
tively). The competition between both schemes limits the depth of the observed
dip, which explains our observation of shallow dips in contrast to sharp peaks in
Fig. 3.2(c).

Interestingly, the black curve displays a peak within the dip, which might seem
like a CPT feature. However, this feature is not visible in either curve from the two
separate pumping schemes. This peak appears because the peak from the second
V-scheme (green) is slightly sharper than the dip from the first one (blue). The peak
might still be caused by CPT, as the blunting of the dip relative to the peak can be
caused by a long dephasing time of the ground state.

Key to understanding the appearance of a dip in the total photoluminescence
emission is the difference in decay rates, vertical decay being favored over diagonal
decay. Consider the pumping scheme fromFig. 3.15(a). When the probe laser is off-
resonant the control laser drives the |𝑔1⟩-|𝑒1⟩ transition. Decay will occur mostly
towards the |𝑔1⟩ state and occasionally to the dark |𝑔2⟩ state. If the probe laser
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becomes resonant with the |𝑔1⟩-|𝑒2⟩ transition, the increased population in the |𝑒2⟩
state will prefer to decay towards the dark |𝑔2⟩ state. The overall decay towards the
dark state is now increased. The secondary pumping scheme (Fig. 3.15(b)) works
the other way around, where the diagonal transition is always driven by the control
beam and a resonant probe beamwill counteract some of the pumping into the dark
state (now |𝑔1⟩). However, the slightly increased emission from scheme b cannot
fully counteract the decreased emission from scheme a (even whenΩ𝑝 = Ω𝑐 = Ω′𝑝 =
Ω′𝑐).

3.10.8.Modeling of coherent population trapping
For fitting the CPT traces in Fig. 3.5, we use a standard CPT description [46], ex-
tended for strong inhomogeneous broadening of the optical transitions, and an ap-
proach similar to the one from the previous section. However (as compared to the
previous section), the behavior of CPT has a more pronounced dependence on pa-
rameters, such that almost no assumptions have to be made. When taking the spin
Hamiltonians as established input, the only assumptionmade is that the spin relax-
ation time in the ground state and excited state is much slower than all other decay
process. This allows for setting up fitting of the CPT traces with only two free fit
parameters, which correspond to the optical lifetime and the inhomogeneous de-
phasing time 𝑇∗2 .

Since two lasers couple both ground-state levels to a single common excited-
state level, the other excited-state level will be empty. Therefore, we may describe
this situation with a three-level system, where the PL is directly proportional to the
excited-state population. The decay rates and Rabi frequencies are proportional to
the Franck-Condon factors for spin-state overlaps ⟨𝑔𝑖|𝑒⟩ in the same way as before
(equations (3.28)-(3.31)). At this angle (𝜙 = 102°) we calculate these factors to be

⟨𝑔1|𝑒⟩ = 0.9793 (3.32)

⟨𝑔2|𝑒⟩ = 0.2022 (3.33)

according to the reasoning in section 3.10.6. We take that the |𝑔1⟩-|𝑒⟩ is a vertical
transition and |𝑔2⟩-|𝑒⟩ a diagonal one.

In order to account for inhomogeneous broadening throughout the ensemble,
the solution of the master equation is computed for a set of control-laser detunings
Δ𝑐 (see Fig. 3.15(a)) around zero, its range extending far beyond the two-laser de-
tuning values 𝛿 (since we experimentally observed an inhomogeneous broadening
much in excess of the spin splittings). In this case the probe-laser detuning becomes
Δ𝑝 = Δ𝑐 + 𝛿. The resulting excited-state populations are integrated along the inho-
mogeneous broadening Δ𝑐 (up to the point where the signal contribution vanishes)

3

77



3. Spectroscopy of a spin-1/2 transitionmetal defect in SiC

to give the PL emission as a function of two-laser detuning 𝛿. Analogous to the pre-
vious section, we have to consider a secondaryΛ-scheme in order to fully account for
the inhomogeneous broadening. The total PL emission is found by adding together
the excited-state populations from both schemes.

We fit this model to the data presented in Fig. 3.5 after subtracting a static back-
ground. We extract the inhomogeneous dephasing time 𝑇∗2 = 0.32 ± 0.08 𝜇s and an
optical lifetime of 56 ± 8 ns. The errors are estimated from the spread in extracted
dephasing times and lifetimes throughout the data sets.
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chapter 4
Spin-relaxation times exceeding seconds for
color centers with strong spin-orbit coupling
in SiC

Spin-active color centers in solids show good performance for quantum technolo-
gies. Several transition-metal defects in SiC offer compatibility with telecom and
semiconductor industries. However, whether their strong spin-orbit coupling de-
grades their spin lifetimes is not clear. We show that a combination of a crystal-
field with axial symmetry and spin-orbit coupling leads to a suppression of spin-
lattice and spin-spin interactions, resulting in remarkably slow spin relaxation.
Our optical measurements on an ensemble of Mo impurities in SiC show a spin
lifetime 𝑇1 of 2.4 s at 2 K.

4.1. Introduction

S pin-active color centers in semiconductors have attracted significant interest
for the implementation of quantum technologies, since several of these systems

combine long-lived spin states with a bright optical interface [2–5]. Long-distance
spin entanglement has been achieved for a variety of defects as stationary nodes [6–
9]. However, finding suitable emitters that combine long-lived spins, short excited-
state lifetimes and optical transitions compatible with telecommunication fiber-
optic infrastructure in an industrially established material has remained elusive.
Silicon carbide, a wide band-gap semiconductor with mature fabrication technol-
ogy, hosts a range of defect centers with optical transitions near or at the telecom
range [10, 11], including several defects containing transitionmetal (TM) impurities
[12–18]. The electronic and spin properties of these defects derive largely from the
character of the 𝑑-orbitals of the TM under the action of a crystal field determined
by the lattice site [19–21]. Furthermore, the presence of a heavy atom in the de-
fect implies that spin-orbit coupling (SOC) plays a significant role in the electronic
structure of these color centers. Generally, as widely demonstrated by the solid

Parts of this chapter have been published in New Journal of Physics 22, 103051 (2020) [1].
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state spin-qubit community, combining favorable spin properties and strong SOC
can be challenging [18, 22–24]. However, the extent to which the spin lifetimes of
TM defects in SiC are limited by the strong influence of SOC is not clear.

We report here on slow spin relaxation with 𝑇1 exceeding seconds below 4 K for
amolybdenumdefect ensemble in 6H-SiC, indicating that the defect spin is surpris-
ingly robust with respect to spin relaxation despite the presence of strong SOC. In
order to understand this, we measure the spin-relaxation time of the Mo defect in
SiC between 2 and 7 K and identify the main processes leading to spin relaxation in
this temperature range. We analyze the manifestation strength of these processes,
while considering the electronic structure of the defect, and find that a combination
of axial rotational symmetry and SOC suppresses several spin-relaxation mecha-
nisms in this system, leading to unexpectedly long 𝑇1. The analysis leading to these
conclusions is general, relying on the character of the 𝑑-orbitals of the TM and the
particular symmetry of the defect. Thus, a similar approach could be relevant in the
interpretation of experiments on other point defects in crystals with analogous sym-
metries, such as vanadium defects in SiC (with optical transitions compatible with
telecom infrastructure), group-IV defects in diamond and point-defects in transi-
tion metal dichalcogenides [15, 17, 19, 25–27].

4.2.Methods
We focus on the Mo defect associated with an optical transition line at 1121.3 nm
in 6H-SiC, which consists of a Mo impurity in a Si substitutional site of quasi-
hexagonal symmetry (Fig. 4.1(a), ℎ site) [14, 16]. The defect is positively ionized,
such that after binding to four neighboring carbons, the TM is left with one active
unpaired electron in its 4𝑑 shell. In this lattice site – and only considering the ro-
tational symmetry of the defect – both ground and excited states are two-fold or-
bitally degenerate, such that the orbital angular momentum is not quenched [21].
In the presence of SOC, the orbital degeneracy is broken, giving rise to two Kramers
doublets (KD) in the ground and two KDs in the excited state (Fig. 4.1(b)) [14, 16],
resembling what is observed for the group-IV defects in diamond [26].

Each KD is a doublet composed of a time-reversal pair: the doublet splits as an
effective spin-1/2 system in the presence of a magnetic field, but its degeneracy is
otherwise protected by time-reversal symmetry (see Sec. 4.5.4). The energy differ-
ence between the two spin-orbit split KDs in the ground state, Δ𝑜𝑟𝑏 in Fig. 4.1(b), is
expected to be approximately 1 meV [16], in accordance with the appearance of a
second zero-phonon line (ZPL) in resonant photoluminescence excitation (PLE) ex-
periments at approximately 8 K (Fig. 4.1(c)). Finally, the presence of sharp phonon
replicas of the ZPL in the photoluminescence spectrum indicates that the defect
center couples strongly to localized vibrational modes (Fig. 4.1(b,d)).
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Figure 4.1: Defect and electronic structure. (a) The defect is composed of a Mo atom positively
ionized substituting a Si at a quasi-hexagonal (ℎ) lattice site. (b) Electronic structure of the Mo defect.
Both ground (|G1⟩) and optically excited (|E1⟩) states are characterized by a spin doublet which is split by
a magnetic field. Additionally, a second ground-state Kramers doublet (|G2⟩) is present approximately
1 meV above the ground state doublet, and the defect’s electronic states can couple to local vibrational
modes, giving rise to vibronic states |G1𝑣𝑖𝑏⟩. (c) PLE spectrum showing the defect emission into the
phonon-sideband versus energy of the excitation laser (ℏ𝜔). A second zero-phonon line (ZPL) appears
in the photoluminescence excitation (PLE) spectrum as the second doublet state is thermally occupied.
(d) Photoluminescence of the Mo defect upon off-resonant excitation. The spectrum shows, besides the
zero-phonon line and broad phonon-sideband emission, sharp phonon-replicas of the ZPL. These are
evidence of the presence of localized vibrational modes.

We measure the spin-relaxation time of this defect by means of a pump-probe
experiment as shown in Fig. 4.2. Experiments are performed on an ensemble of
defects in a 6H-SiC sample previously investigated in Ref. [14]. The sample showed
p-doped character, and the defect concentration was estimated to be between 1014
and 1016 cm-3. We create pulses out of a CW laser beam by using a combination of
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an electro-optical phasemodulator (EOM) and a Fabry-Pérot (FP) cavity. The EOM
generates sidebands from our CW laser at frequency steps determined by an RF
input signal; by tuning the FP cavity to transmit this sideband only, we create pulses
that turn on/off as the RF generator turns on/off. These pulses resonantly drive
optical transitions between ground and excited states, and we measure the photon
emission into the phonon sideband with a single-photon counter after filtering out
the laser line. We apply a magnetic field non-collinear with the c-axis of the sample
such that spin-flipping transitions between ground and optically-excited states are
allowed (Fig. 4.2(a-b)) [14]. In order to counteract slow ionization of the defects (see
Sec. 4.5.3 for further details), we apply a repump laser in between measurements
[14, 28–30].

4.3. Results
In the pump-probe experiment (Fig. 4.2(c)), the initial response of the sample to
pulse P1, ℎ1, provides a measure of the population in the bright spin state |G1 ↓⟩
at thermal equilibrium (see the caption of Fig. 4.2 for an explanation of the terms
dark and bright spin sublevels in this chapter). The sharp increase (decrease) of
the PL signal as the pulse turns on (off) indicates that both the optical decay rate
and the Rabi frequency are relatively fast (see Sec. 4.5.5 for further details). Optical
excitation provided by P1 polarizes the spin ensemble in a dark spin sublevel (|G1 ↑⟩
in Fig. 4.2(b)) within the first few microseconds, as evidenced by the decrease and
subsequent saturation of the PLE signal (the saturation level shows that the effective
𝑇1 is lower when the laser is on, see Sec. 4.5.5). The leading-edge response of the
ensemble to a second (probe) pulse P2, ℎ2, reflects the recovery of the population
in the bright spin sublevel (|G1 ↓⟩ in Fig. 4.2(b)) during the time 𝜏 between the two
optical pulses. Between 2 K and 7 K, we observe a monoexponential recovery of
ℎ2 towards ℎ1 as a function of 𝜏 (Fig. 4.2(d)), which must correspond to the spin-
relaxation time 𝑇1 given the considerations presented below.

We repeat this experiment at zero magnetic field in order to confirm that the PL
darkening observed within the first few microseconds of optical excitation corre-
sponds to optical pumping of the ensemble into a dark spin sublevel. In this case, we
observe no leading-edge peak in the PLE signal, indicating that no optical pumping
occurs at this timescale if the spin sublevels are degenerate (see Sec. 4.5.2). The ab-
sence of PL darkening at zeromagnetic field implies that we cannot trapMo centers
in state |G2⟩ for observable times. This is the case if the optical decay rate between
states |E1⟩ and |G2⟩ is smaller than the relaxation rate between the two ground state
KDs |G2⟩ and |G1⟩ in the temperature range investigated. (We expect the optical de-
cay rate between |E1⟩ and |G2⟩ to be small, since we observe no lines corresponding
to this transition in PL and PLE scans.) Thus, we conclude that after optical pump-
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Figure 4.2: Time-resolved hole burning experiment. (a) In order to investigate 𝑇1, we perform
time-resolved pump-probe experiments where we resonantly excite the sample in the presence of amag-
netic field and collect the phonon-sideband emission. (b) When the magnetic field is non-collinear with
the symmetry axis of the defect, spin-flipping transitions between ground and optically-excited states
are allowed. (c) The first pulse P1 probes the population at thermal equilibrium in the ground-state spin
sublevel |G1 ↓⟩ (which we call bright state in this work, since it can be optically excited), and polarizes
the spin population into a spin sublevel that cannot be optically excited, |G1 ↑⟩ (which we here call dark
state). After a variable delay 𝜏, a second pulse P2 probes the recovery of the population in the bright
state. (inset) The ratio of the leading-edge peaks in the PLE signal (ℎ2/ℎ1) recovers monoexponentially
as a function of the delay between the two pulses.

ing in the presence of a magnetic field, no significant population is trapped in state
|G2⟩, and relaxation dynamics via this level do not affect the signals used to derive

4

87



4. Spin-relaxation times exceeding seconds for color centers with strong spin-orbit
coupling in SiC

Figure 4.3: Temperature depen-
dence of spin relaxation. The
variation of Γ = 𝑇−11 with tempera-
ture can be accurately described by a
combination of direct (one-phonon),
Raman and Orbach processes (two-
phononprocesses). The two-phonon
processes happen due to coupling to
an excited state approximately 6.5
meV above the ground state KD,
compatible with coupling of the elec-
tronic state of the defect to local-
ized vibrational modes. Error bars
are extracted from the exponential
fits of the data presented in the in-
set of Fig. 4.2(c) (for details, see
Sec. 4.5.1), and are smaller than the
data points when not visible.

𝑇1. Furthermore, we investigate the timescale associated with bleaching due to ion-
ization [29, 30], which is found to be several orders of magnitude slower than the
one associated with spin dynamics (see Sec. 4.5.3).

The temperature dependence of the spin-relaxation time spans several orders of
magnitude, going from 2.4 s at 2 K to 83 𝜇s at 7 K (Fig. 4.3). Concerning phonon
mediated spin relaxation, themechanisms leading to spin relaxation are well estab-
lished [21, 31]. One (direct) and two-phonon (Raman, Orbach) processes are rele-
vant when transitions between the levels involved are thermally accessible. Direct
spin-flip processes are expected to lead to spin-relaxation rates (Γ = 𝑇−11 ) that grow
linearly with temperature (Γ𝑑𝑖𝑟𝑒𝑐𝑡 ∝ 𝑇). In contrast, two-phonon processes medi-
ated by an excited state give rise to spin-relaxation rates that grow superlinearly
with temperature (Γ𝑅𝑎𝑚𝑎𝑛 ∝ 𝑇5<𝑛<11 and Γ𝑂𝑟𝑏𝑎𝑐ℎ ∝ 𝑒−Δ/𝑘𝐵𝑇, where Δ is the energy
of the relevant excited state) [21, 31–33]. Additionally, interaction with paramag-
netic moments in the material is expected to lead to temperature-independent spin
relaxation. We fit the data presented in Fig. 4.3 to a combination of these processes
and identify the temperature regimes where they are relevant (see Sec. 4.5.7 for ad-
ditional details concerning the fitting procedure).

The defect has a rich electronic structure, with orbital and vibrational degrees
of freedom at energies that are thermally accessible between 2 and 7 K (Fig. 4.1(b)).
Thus, we expect two-phonon processes involving transitions into both orbital and
vibrational excited states to contribute to the temperature dependence of Γ. Surpris-
ingly, we find that not all available states contribute significantly to spin relaxation,
leading to unexpectedly long spin lifetimes below 4 K.

Above 4 K, we identify an exponential growth of Γ as a function of temperature,
indicating the prevalence of spin relaxation via Orbach processes in this tempera-
ture range. From the fit presented in Fig. 4.3, we extract Δ = 6.5 ± 1 meV for the
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energy of the excited state involved in these spin flips. This energy matches the dif-
ference observed in PL experiments between the ZPL and the onset of the phonon-
sideband emission (Fig. 4.1(d)). The first phonon replica is observed 10meV above
the ZPL, but its broadened line indicates that the first available vibrational levels are
lower in energy. Thus, we identify vibronic levels where the spin is coupled to local-
ized vibrational modes as the relevant excited state for two-phonon mediated spin-
relaxation processes that degrade 𝑇1 above 4 K. As expected, these spin-relaxation
mechanisms do not depend on the magnitude of the magnetic field (see Sec. 4.5.7).

We note that we cannot observe Orbach processes involving states |G2⟩. Be-
tween 2 and 7 K, the contribution of these processes to the spin relaxation is ex-
pected to be close to saturation, giving a flat temperature dependence in this range.
Thus, the long spin-relaxation times observed at 2 K provide an upper bound to
the spin-relaxation rates due to two-phonon processes mediated by |G2⟩, and are
evidence that these processes are slow. This leads us to conclude that transitions
between |G1⟩ and |G2⟩ are strongly spin-conserving. Based on this, we can esti-
mate the timescale of phonon-induced transitions between the two doublets |G1⟩
and |G2⟩ to be on the order of miliseconds [34] (also, see Sec. 4.5.8). This process is
orders of magnitude slower than the same process in SnV in diamond, a group-IV
defect with similarmass to theMo defect in SiC, [27, 35]. We note that, for this class
of defects in diamond, the active electrons participate in bonding to the neighbor-
ing carbon atoms [26], which may change the character of the phonons responsible
for spin-lattice interactions. In fact, the gap observed between the ZPL and the PSB
for theMo defect is absent in the PL spectrum of group-IV defects in diamond [36],
indicating that the latter are more sensitive to low-energy phonons.

Spin-conserving phononmediated transitions between the two orbital states are
expected to contribute to decoherence [37], limiting the spin coherence time 𝑇2 of
the |G1⟩ spin to milisecond timescales at 4 K. This is significantly larger than the
experimentally observed ensemble 𝑇∗2 [14], likely due to an inhomogeneus distribu-
tion of Zeeman splittings [19].

Below 4K, the slow spin-relaxation rates observedmust result from threemech-
anisms: i) processes whose temperature dependence is saturated in this range (as
treated above); ii) direct one-phonon transitions between the two spin sublevels
|G1 ↓⟩ and |G1 ↑⟩ and iii) temperature independent processes (such as spin-spin
paramagnetic coupling). The long 𝑇1 observed below 4 K is evidence that all three
processes are relatively slow for this particular system. The first contribution has
been discussed above. Below, we elaborate on how the electronic structure of this
defect leads to a suppression of the latter two processes.

The two spin sublevels pertaining to a KD are strictly time-reversal symmetric
with respect to each other, such that they must be degenerate eigenstates of any ex-
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ternal field that preserves time-reversal symmetry. Thus, to first order, non-chiral
phonons or electric fields cannot cause a direct spin-flip within pure KD pairs (but
note that this does not concern transitions between levels belonging to different
KDs, see Sec. 4.5.8). A magnetic field or the interaction with nearby nuclear spins
leads to mixing between spin sublevels pertaining to different KDs, enabling direct
spin-flips via interactions with single phonons. This mixing is inversely propor-
tional to the energy separation between the various KDs, which is in turn largely
determined by the spin-orbit splitting. Thus, large SOC protects the KD character
of the ground-state spin doublet, suppressing direct spin-flipping processes within
the spin doublet.

Additionally, SOC leads to a highly anisotropic Zeeman splitting of the ground-
state spin sublevels [14], which hinders its interaction with a bath of paramagnetic
impurities in the SiC crystal. Firstly, the spins are insensitive to magnetic fields
perpendicular to their quantization axis, such that small fluctuations in the local
magnetic field are not likely to induce a spin flip. Secondly, the spin doublet has a
Zeeman splitting governed by a 𝑔 factor that is at maximum 1.6 [14], suppressing
resonant spin flip-flop interactions with neighboring paramagnetic impurities with
𝑔 ≈ 2.

The same arguments presented above to explain the long spin-relaxation times
observed in this defect indicate that obtaining control of the defect spin via mi-
crowave fields is a challenge. Driving spin resonances between the two ground-state
spin sublevels requires mixing of the various KDs by a perturbation that breaks
time-reversal symmetry, such as a strong magnetic field (see Sec. 4.5.4). This is
necessary to control the ground-state spin via microwaves, and is expected to con-
tribute to spin-relaxation mechanisms.

4.4.Discussion and conclusion
As discussed above, in the particular case of a TM at a quasi-hexagonal site, such as
the Mo center, a combination of rotational symmetry and strong SOC protects the
effective spin from flipping: it gives rise to ground state effective spin which is an
isolated KD, protected by time-reversal symmetry and magnetically isolated from
other paramagnetic centers in the crystal due to its unique Zeeman structure. In
this doublet, the crystal field locks the orbital angular momentum along the axis of
rotational symmetry of the defect. Via the strong SOC, the electronic spin is stabi-
lized, giving rise to robust effective-spin states with long spin-relaxation times.

Considering these processes alone, stronger SOC is thus expected to lead to
slower spin-relaxation rates in TM color centers with an odd number of electrons
and rotational symmetry. Nonetheless, our work shows that the presence of local-
ized vibrational modes is pivotal in generating spin-flips, their energy determining
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the temperature where the onset of two-phonon relaxation mechanisms happens.
Since the energy and density of states of the localized vibrational modes depend
non-trivially on the mass of the defect, whether or not defects containing heavier
TMs (where SOC is more prevalent) will exhibit longer spin-relaxation times re-
mains a question. In fact, the class of group-IV defects in diamond show signifi-
cantly faster spin relaxation, which depends non-trivially on the mass of the defect
[27, 35]. Thus, it would be relevant to investigate these processes in defects contain-
ing 5𝑑 electrons in SiC. Tungsten defects, for example, have been observed with an
optical transition at 1240 nm and an odd number of electrons, although their mi-
croscopic configuration is still unknown [38].

More generally, SOC should not be regarded as a detrimental feature when in-
vestigating solid-state defects for quantum communication applications. Transi-
tionmetal defects in SiC offer interesting opportunities, such as charge-state switch-
ing [39, 40], emission in the near-infrared [15] and long spin lifetimes [18]. The
maturity of the SiC-semiconductor industry means that a wide range of defects has
been identified [19]. Nonetheless, their characterization with respect to optical and
spin properties is still vastly unexplored.
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4.5.Appendices
4.5.1. Experimental methods
Setup The laser power is 200 𝜇𝑊 for the resonant pulsed beam at 1121.32 nm.
It is polarized linearly along the 6H-SiC c-axis. The repump beam accounting for
charge state switching has 2mWpower at 770 nm, it is pulsed with 80MHz repeti-
tion rate.

Reinitialization time After the pump-delay-probe sequence thermal equilib-
rium should be recovered before the next sequence can be started. To this end a
reinitialization time needs to be considered. We chose sufficiently low repetition
rates to account for this reinitialization time. For the measurements at 6 K and
7 K we kept the repetition rate fixed throughout the measurement (at 35.7 Hz and
243.9Hz respectively). In this way the reinitialization time was always well beyond
20 times the observed 𝑇1 time. This renders any errors due to incomplete reini-
tialization negligible. In order to save time and to keep a consistent reinitialization
time at all delay times, we scaled the repetition rate along with the delay for the
measurements at 2 − 5 K. Here, the reinitialization time was always larger than 5
times the observed 𝑇1 time. This limits the error in 𝑇1 to 3%. Moreover, the error in
this method is such that the measured 𝑇1 value will always be lower than the true 𝑇1
value, thus not affecting the integrity of our lower-bound measurement. Table 4.1
shows the reinitialization times for all temperatures for which 𝑇1 was measured.

Fitting routine We extract the 𝑇1 lifetimes from the time-resolved PLE experi-
ments as in Fig. 4.2(c) by comparing the leading-edge response from the first pulse
ℎ1 to that from the second pulse ℎ2. These are determined by taking the average of
the first 20 bins (of varying size, dependent on the timescale at a certain tempera-
ture) of the responses to the pulses. The behavior of the fraction of ℎ2 and ℎ1 can
be described as

ℎ2
ℎ1
= ℎ0(1 − 𝑒−𝑡/𝑇1) + 𝛿

ℎ0 + 𝛿
(4.1)

where 𝛿 is the baseline height, ℎ0 is the peak height at thermal equilibrium minus
the baseline 𝛿, and 𝑡 is the delay between both pulses. This allows us to create a fit
function

ℎ2
ℎ1
= 𝑞(1 − 𝑒−𝑡/𝑇1) + 1 − 𝑞 (4.2)

with only two free parameters: 𝑇1 and 𝑞, which represents the fraction
ℎ0
ℎ0+𝛿

.

For the uncertainty in the 𝑇1 (and 𝑞) fit parameters we take the 95% confidence
interval from fitting. However, for the 2 K and 3.3 K measurements this method
yields unrepresentative large error bars due to the small size of these data sets. For
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Table 4.1: Reinitialization times used

Temperature 𝑇1 Reinitialization time

2.0 K 2.4 ± 0.8 s 30 s
3.0 K 1.2 ± 0.1 s 10 s
3.3 K 1.0 ± 0.4 s 10 s
3.8 K 0.23 ± 0.05 s 10 s
4.0 K 121 ± 8ms 800ms
5.0 K 6.1 ± 0.2ms 70ms
6.0 K 0.48 ± 0.03ms 26 − 23ms
7.0 K 83 ± 13 𝜇s 2.1 − 1.8ms

these measurements we estimate the error by first only deriving a value for the 𝑞
parameter (with error bar), directly from the PLE traces in Fig. 4.12. The 𝑞 param-
eter is determined by reading ℎ0 and 𝛿 from the PLE response traces of the initial
pulses for those temperatures. Next, we use this range (set by error bar) of 𝑞 values
as input in an approach that only fits 𝑇1, where we take for the uncertainty in 𝑇1
again the 95% confidence interval. The way in which the error in determining ℎ0
and 𝛿 carries over into an error for 𝑇1 is thus considered, but this is found to give a
negligible contribution to the reported error.

Deadtimepile-upeffect For the experiments in thisworkweused an avalanche
photodiode single photon counter (SPC) for detection. After every detection event
the detector has to reset its state, for which a predefined deadtime is used (10 𝜇s in
our case). This creates a pile-up effect in our experiments when integrating many
pulse sequences. We investigated how this causes an error in determining 𝑇1.

The probability of having a count at time 𝑡 can be described by the combined
probability that a photon is present and detected at the counter 𝑃photon multiplied
by the probability of not having measured a photon before for the duration of the
deadtime Δ𝑡. We get the equation

𝑃count(𝑡) = 𝑃photon(𝑡) (1 − ∫
𝑡

𝑡−Δ𝑡
𝑃count(𝜏)𝑑𝜏) (4.3)

The outcome is plotted in Fig. 4.4 for a square PLE response to a pulse where
𝑃photon(𝑡) = 100 kHz during the pulse, which saturates the SPC. Before the pulse,
the detector is always ready to receive a photon, thus the initially measured count
rate relates accurately to the number of photons present. For the duration of the
deadtime (10 𝜇s) the detector will be recovering and thus the count rate drops. This
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Figure 4.4: Simulated count rate at the
single-photon counter for signal above
saturation values. Probability of counting
a photon at time 𝑡, for a square PLE signal
above saturation (1/(10𝜇s)).
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is periodic, but it clearly damps out to a steady-state count rate due to a spread in
the actual detection times. This behavior is consistent with what we observe ex-
perimentally when illuminating the SPC with constant, intense light. This effect
becomes less relevant, however, when illumination conditions are far from the sat-
uration of the avalanche photodiode, and we used these findings to minimize the
effect of the saturation of the SPC while maximizing the signal to noise ratio ob-
tained.

Generally, this pile-up effect will give a positive error 𝜖1 (𝜖2) for the measured
value of ℎ1 (ℎ2). At small 𝑡 the magnitude of the error 𝜖2 is low and increases to 𝜖1
as 𝑡 ≫ 𝑇1. If we rewrite Eq. 4.2 to represent the measured values it becomes

ℎ2
ℎ1
= 𝑞′(1 − 𝑒−𝑡/𝑇1) + 1 − 𝑞′ + 𝜖1 − 𝜖2

ℎ0 + 𝛿 − 𝜖1
(4.4)

where 𝑞′ is represents the corrected fraction ℎ0
ℎ0+𝛿−𝜖1

. The final term in this equation

makes the measured
ℎ2
ℎ1

approach its asymptote faster than in reality. Thus, fitting
ℎ2
ℎ1

to Eq. 4.2will always yield shorter 𝑇1 values compared to the true spin-flip times.

Simulating the pile-up effect for our measurements yields errors in 𝑇1 varying from
2% to 7%. We choose to not correct for this and report the lower-bound values for
the 𝑇1 spin-flip times. Background PLE and dark counts have been neglected in this
analysis as we found them to be of little influence so long as they remain below 10%
of the peak count rate.

Total error of ℎ2/ℎ1 data points The error in the estimation of the ratio ℎ2/ℎ1
in the insets of Fig. 4.2(c) and Fig. 4.12 is obtained from a combination of several
contributions:

• Effects from saturation of SPC contribute errors of approximately 2−7%when
the intensity of the signal is large compared to the saturation threshold of the
SPC. This is only relevant for the data set at 7 K;
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• At low temperatures, when the full measurement sequence time is above sec-
onds, a drift in the resonance frequency of the Fabry-Pérot cavity during the
measurement causes the intensity of the second pulse to be different than the
intensity of the first pulse. This difference can be estimated from the differ-
ence in the steady state emission (the height of the trailing edge of the PLE).
For the data set presented in Fig. 4.2, that is, at 3.8 K, it contributes a maxi-
mum error of 7% to the value of ℎ2/ℎ1;

• When analyzing the data, we choose a time interval for which photon counts
contribute to ℎ1, ℎ2. Varying this time interval changes the values of ℎ1, ℎ2
slightly, introducing errors to the ratio ℎ2/ℎ1. This error is also limited to 3%.

4.5.2. Zero-field measurement
To confirm that the 𝑇1 lifetimes measured are actually from the spin from the |G1⟩
and not influenced by some other process, we performed zero-field experiments.
Both ground-state spins are then degenerate and no spin pumping is expected. The
results are shown in Fig. 4.5. The leading-edge peak in PLE as seen in Fig. 4.2(c)
vanishes in Fig. 4.5(a). Wenote that thermal effects from laser driving at high inten-
sities becomemore prominent at zeromagnetic field, since darkening of the PLE no
longer occurs. Additionally, we checked again the optical polarization dependence
for these conditions at 𝐵 = 0mT, but this confirmed that the driving was still only
sensitive to the component parallel to the c-axis.

In Fig. 4.6 we show the evolution of the PLE response with increasing magnetic
field amplitude. Figure 4.6(e) summarizes this experiment, depicting the steady-
state baseline of thePLE response togetherwith the leading-edge peakheights (base-
line subtracted) upon ramping the field. Up to 4 mT the baseline decreases, indi-
cating that spin-pumping occurs to an increasing degree. Beyond 4mT it stabilizes.
At this field the spin-splitting (49 MHz at 4 mT) is well beyond the homogeneous
linewidth (15 MHz [14]) of the spin-states, and a single laser can no longer drive
transitions from both spin states.

0 20 40 60

Time (ms)

0

5000

10000

15000

T = 4 KC
ou

nt
 r

at
e 

(H
z) Figure 4.5: Zero field measurement.

Time-resolved PLE measurement at 𝐵 =
0 T, 𝑇 = 4 K and 200 𝜇W excitation power.
For this particular experiment, the excita-
tion pulses were right-circularly polarized,
but we found no unexpected dependence
on polarization: the PLE response was al-
ways proportional to the component of lin-
ear driving along the c-axis.
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Figure 4.6: Magnetic field dependence (a-d) Time resolved measurements at various magnetic
fields. (e) Baseline and leading-edge peak heights (baseline subtracted) versus magnetic field. A re-
pump laser counteracting any bleaching was always present in these experiments. All measurements at
𝑇 = 4 K.
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4.5.3.Charge-state switching
When resonantly addressing optical transitions in the Mo defect in SiC, the PLE
response drops over time. This is ascribed to charge-state switching of the defect.
We investigate the timescales of this bleaching in order to rule out its influence on
the measurements of the 𝑇1 spin-flip times.

The experimental approach is depicted in Fig. 4.7(a). First, a repump beam
(770 nm, pulsed) counteracts any prior bleaching [14], resetting the charge state
for 60 seconds. Next, a probe beam resonant with the ZPL illuminates the sample,
slowly bleaching the Mo defects. We can track the bleaching timescale by measur-
ing the PLE response as function of time. After another 1000 seconds the repump
beam is incident on the sample together with the probe beam, which allows us to
track the recovery timescale. Finally, the repump is switched off for 60 seconds to
check the initial decay of the PLE response. This sequence is repeated four times.
Weuse a 2mWrepumpbeamand a 200 𝜇Wprobe focused to approximately 100 𝜇m
diameter in the sample. The magnetic field strength is 100 mT at an angle of 57°
with the c-axis.

The results are shown in Fig. 4.8. The bleaching between 60 and 1060 seconds
occurs according to two timescales, both are fit with an exponential decay for the
orange and blue curve. The yellow curve is an exponential fit to the recovery by the
repump laser. All three timescales are plotted versus temperature in Fig. 4.7(b). For
the 𝑇1 experiments, where the repump beam was only on in between measurement
runs, the two bleaching scales are most relevant. Both occur at rates that are at
least one order of magnitude slower than the observed spin-relaxation times. Any
bleaching occurring at faster timescales should have been visible in the zero-field
measurements from section 4.5.2. Thus, the effect of bleaching on measuring 𝑇1
can be deemed negligible.

Note the fast decay of PLE for 4 K (Fig. 4.8(a)) after the repump laser is blocked
at 1300 seconds. We ascribe this to fast spin relaxation induced by the repump
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Figure 4.7: Bleaching experiment (a) Sequence of lasers used to measure the bleaching/repump
timescales. (b) The acquired timescales versus temperature.
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laser. When performing the experiments to measure 𝑇1 with an omnipresent re-
pump laser, we observe that 𝑇1 is reduced by an order of magnitude (for similar
laser powers). This fast decay is not visible in Fig. 4.8(b-f) since the spin-relaxation
times are already quite short at higher temperatures.
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Figure 4.8: Detailed bleaching results (a-f) Dynamics of the resonant photoluminescence signal
(PLE) over long time periods, at various temperatures. A static background is subtracted as well as a
fluorescence background induced by the repump when it is on (measured during the first 60 seconds).
When the repump is off, but the system is being renonantly driven, the PLE signal decays exponentially
with two characteristics time constants (blue and red fits). As the repump is turned on, the PLE signal
recovers quickly, with a single time constant (yellow fit).
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4.5.4. Electronic structure: symmetry-related selection rules
As previously stated in chapter 3, the Mo defect is characterized by a single active
spin in the 4𝑑 shell of a molybdenum impurity at a Si substitutional lattice site [14].
In this configuration, the Hamiltonian of the defect has a three-fold rotational sym-
metry and three verticalmirror planes, such that the eigenfunctions of the electronic
orbital state transform according to the symmetry group 𝐶3v. Despite the extensive
literature available on the effect of crystal field and spin-orbit coupling on the elec-
tronic states of these defects [20, 39], we are unaware of a comprehensive report
on the effect of symmetry on the coupling terms between the various specific spin
sublevels and external fields based on the double group representations of the de-
fect symmetry, and we present this analysis here. We apply a group-theoretical ap-
proach to obtain the symmetry of the eigenfunctions associated with a defect center
in a crystal field of 𝐶3v symmetry in the presence of spin-orbit coupling. Further-
more, we obtain and explain the selection rules governing the interaction of the
electronic spin with magnetic and electric fields.

The group theoretical rules governing the selection rules presented here do not
rely on a particular basis set for the description of the electronic wavefunction. By
this, wemean that even if we consider hybridization of the wavefunction of the bare
transition metal atom/ion with the nearest carbon atoms due to covalent bonding,
the symmetry of the crystal-fieldHamiltonian is preserved such that the new,modi-
fiedwavefunctions will still obey the selection rules arising from a group-theoretical
analysis. Nonetheless, it is instructive to start from an analysis of the effect of the
Hamiltonian on the 10 spin-orbital states arising from a single electron sitting in
one of the 𝑑-orbitals of the transition metal.

The transition metal at a silicon substitutional site shows tetrahedral coordina-
tion due to bonding to the 4 nearest carbons. In this configuration, the 5 different
𝑑 orbitals split into an orbital doublet and an orbital triplet (which transform as the
irreps E and T2 of the symmetry group 𝑇d), where the triplet lies highest in energy.
Due to the hexagonal character of the lattice, the tetrahedral symmetry of these
sites is lowered to 𝐶3v, with the rotational axis aligned parallel to the growth axis
of the crystal. Upon this symmetry reduction, the triplet further splits giving rise
to an orbital doublet and a singlet, which transform respectively as E and A2. The
effect of this symmetry lowering operation is expected to be largest in the lattice
sites of quasi-hexagonal symmetry (ℎ), and to only modestly affect the lattice sites
of quasi-cubic symmetry (𝑘) (Fig. 4.9(a)).

A wavefunction transforming as a non-degenerate irrep of a given point-group
cannot have an effective orbital angular momentum (in other words, the orbital
angular momentum is quenched) [21]. However, this requirement is lifted in the
presence of degeneracies, such that the eigenfunctions of the Hamiltonian trans-
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forming as E are allowed to have a non-zero orbital angular momentum. Thus, in
order to fully describe our system, we must consider the effect of spin-orbit cou-
pling. In a group-theoretical approach, this is done by extending the group of inter-
est to include 2𝜋 rotations which bring a spin ↑ into − ↑ [41]. That is, this is done
by considering the eigenfunctions as basis states of the irreps of the double group
associated with the 𝐶3v group, here denoted by 𝐶̄3v.

In the double group including the effect of spin-orbit coupling, three irreps de-
scribing how half-integer spin wavefunctions transform are added to the group.
These irreps are Γ4, which is doubly degenerate, and Γ5,6, two irreps that are con-
nected by time-reversal symmetry and must thus be degenerate in the presence
of time-reversal symmetry. The orbital singlet transforming as A2 gives rise to a
Kramers doublet (KD) transforming as Γ4, whereas an orbital doublet transform-
ing as E splits into two KDs, of which one transforms as irrep Γ4, and the other
transforms as irreps Γ5,6. Thus, the symmetries mentioned above split the 10 states
arising from an electronic configuration 2D into 5 Kramers doublets, of which 2
transform as Γ5,6, and 3 transform as Γ4 (Fig. 4.9(a)). The character table of the
double group 𝐶̄3v is given in Tab. A.1. This table also explicitly shows the trans-
formation properties of the vectors 𝑥, 𝑦, 𝑧 and the axial vectors 𝑅𝑥 , 𝑅𝑦 , 𝑅𝑧, as well as
how the cubic harmonics 𝑧2, 𝑥2 − 𝑦2, 𝑥𝑦, 𝑥𝑧, 𝑦𝑧 transform under the operations of
the group.

We can investigate the role of smallmagnetic and electric fields in driving transi-
tions between different KD (coupling between different KDs), and spin resonances
(coupling between the two eigenstates pertaining to a single KD) in the framework
of group-theory, given that these fields are small enough to preserve the symme-
tries of the Hamiltonian 𝐻0. The selection rules between two wavefunctions can
be obtained in a straight-forward way. If |𝜓𝑖⟩ and |𝜙𝑖′⟩ are two eigenstates of the
Hamiltonian 𝐻0 transforming respectively as irreps Γ𝑖, Γ𝑖′ , the selection rules with
respect to a perturbative Hamiltonian 𝐻′ are given by the product ⟨𝜓𝑖| 𝐻′ |𝜙𝑖′⟩. In
order for this matrix element to be non-zero, it must transform as a scalar, that
is, as the totally symmetric irrep A1 [41]. Thus, the product of the representations
Γ∗𝑖 ⊗ Γ𝑗 ⊗ Γ𝑖′ , where the perturbation 𝐻′ transforms as Γ𝑗 and ∗ denotes complex
conjugation, must contain the totally symmetric irrep A1.

Table A.2 gives the decomposition of the various products of Γ4, Γ5,6, in terms of
irreps of the 𝐶3v group. Based on this, we can obtain the selection rules for optical
and microwave transitions between the different spin sublevels.

Optical transitions between various sets of KDs are allowed due to coupling to
𝐸∥, 𝐸⊥, which belong to irreps A1 andE, respectively. We can extract polarization se-
lection rules from Tab A.2. Electric-field driven transitions between two KDs trans-
forming as Γ5,6 will be polarized along the symmetry axis of the defect; transitions
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between two KDs transforming as Γ4 can be polarized along any direction; transi-
tions between a KD transforming as Γ5,6 and a KD transforming as Γ4 are only al-
lowed for light polarized perpendicular to the symmetry axis. These properties are
summarized in Fig. 4.9(b). The zero-phonon line studied in this work can be driven
most strongly with an electric field parallel to the symmetry axis of the defect, indi-
cating that ground and optically excited KDs are of the same symmetry type (either
they are both of the Γ4 type, or they are both of the Γ5,6 type).

Transitions and energy splittings within each of the KDs can also be understood
based on the symmetry of the defect. The anisotropic Zeeman structure observed for
the ground-state spin doublet, which is insensitive tomagnetic fields perpendicular
to the crystal growth axis [14] can be understood based on the properties of the
group. A magnetic field along the symmetry axis of the defect transforms as 𝑅𝑧,
whereas a magnetic field perpendicular to this axis transforms as 𝑅𝑥 , 𝑅𝑦. Within
a doublet which transforms as Γ5,6, no coupling is allowed with a magnetic field
perpendicular to the symmetry axis since Γ∗5,6⊗ E⊗Γ5,6 = E ⊅ A1. This is not the
case for a doublet transforming as Γ4, such that the spin sublevels that transform
as Γ4 are allowed to couple to magnetic fields in the plane, and will not in general
have 𝑔⊥ = 0. These states may, however, have accidental 𝑔⊥ = 0. As we show in
following chapters, this is the case for the V defect in SiC, for example (chapters 5
and 6) Thus, we cannot conclude what is the symmetry character of the ground-
state doublet. We do know, however, that it is not sensitive to magnetic fields in
the plane perpendicular to the symmetry axis of the defect (Fig. 4.9(c)). As long as
the quantization axis of the defect spin points parallel to the symmetry axis of the
defect, we cannot rotate the spin via microwave spin resonances, since these spins
are insensitive to magnetic or electric fields perpendicular to this axis.

If two spin sublevels are strictly connected by time-reversal symmetry (that is,
they are a pure KD), they cannot be connected by operators that preserve time-
reversal symmetry. This was proven by Kramers and became what is known as
Kramers theorem [41]. Thus, within a pure KD, electric fields are not capable of
driving transitions between the two spin sublevels.

Finally, we note that the effect of electric fields on the optical transition energy
is more subtle. Strictly speaking, from Kramers theorem alone, we can say that the
two spin sublevels pertaining to a KDmust have the same energy when subject to an
electric field, but the actual value of this energy can change depending on the elec-
trostatic environment of the defect. Additionally, if the electronic wavefunctions
were composed by the 𝑑-orbitals exclusively, we would observe no optical transi-
tion (due to the spatial parity of the 𝑑-orbitals and of the electric dipole moment
operator). Thus, the fact that the defects are optically active means that the states
show somehybridization of the𝑑-orbitalswith the latticewavefunctions, and is thus
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sensitive to a spatially extended electrostatic environment. These two factors com-
bined lead us to conclude that ground and excited state wavefunctions can show
some spectral diffusion.

Figure 4.9: Electronic Structure and selection rules based on group-theoretical analysis (a)
The 10 spin-orbital states corresponding to the 2D configuration of the free ion are split into 5 Kramers
doublets under the action of the crystal field and SOC, of which three transform as irrep Γ4 and two
transform as irrep Γ5,6 of the double group 𝐶3v. (b) Coupling between 2 KD transforming as Γ5,6 is
allowed under the action of an electric or magnetic field parallel to the symmetry axis; coupling between
2 KD transforming as Γ4 is allowed under the action of an electric or magnetic field pointing in any
direction; coupling between a KD transforming as Γ5,6 and a KD transforming as Γ4 is allowed under
the action of an electric or magnetic field perpendicular to the symmetry axis. (c) A KD transforming
as Γ5,6 does not interact with a magnetic field perpendicular to the symmetry axis, whereas this is not
necessarily the case for a KD transforming as Γ4.
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4.5.5. Simulation of raw data
Due to the large number of available states for the defect (vibrational levels, orbital
state |G2⟩ in Fig. 4.1, ionized states), it is not straight forward to obtain quantitative
information from the shape of the raw data plots presented in Fig. 6.3. Nonetheless,
we can apply a rate equation model to reproduce the data and, upon carefully taken
assumptions, obtain a boundary for the values of the optical decay time and Rabi
driving frequency in our experiments.

In order to minimize the set of free parameters and facilitate the analysis of
the behavior of the system, we simulate this defect center as a three-level system
(Fig. 4.11(a)), where the ground (state 1) and excited (state 3) states can be coupled
by an optical field with Raby frequency Ω𝑅. From the optically-excited state, the
system can decay either back into the ground state with a rate Γ31, or into a shelving
state 2 with a rate Γ32. Additionally, population can be transferred between states
2 and 1 at a rate Γ21, and between 1 and 2 at a rate Γ12 = 𝑒−Δ/𝑘𝑇Γ21, where Δ is
the energy difference between 2 and 1 and 𝑘𝑇 denotes the thermal energy of the
system. We simulate the system with a simple set of rate equations for the popu-
lations of each state (𝑃1, 𝑃2, 𝑃3), without treating coherences explicitly. Finally, we
consider that the photoluminescence observed is proportional to the population of
the optically-excited state, 𝑃3.

We try to reproduce the typical shape of the raw PL data obtained experimen-
tally (Fig. 4.11(b)) in order to obtain a set of reasonable values for the Rabi driving
frequency and optical decay rates in our system. We assume that states 1 and 2
correspond to the ground-state spin sublevels, |G1 ↓⟩ and |G1 ↑⟩ respectively. In
this way, we can write Γ32 in terms of Γ31 by assuming that the branching ratios
correspond to the overlap of the spin states in ground and optically-excited state
[14]. This gives Γ32 ∼ 0.003 Γ31. Previous experiments revealed an excited state
lifetime of ∼ 56 ns, resulting in Γ31 ∼ 20 MHz. Similar TM defects have been re-
cently reported with optical excited state lifetime of∼100 ns. Thus, we simulate the
experiment for values of Γ31 of 2 and 20MHz. For Γ21, we use the values presented
in Fig. 4.3 for the spin relaxation time.

We note that differences based on the exact value of Γ31 are barely noticeable.
Thus, we cannot restrict our estimate for Γ31 further. Nonetheless, we can restrict
the expected values ofΩ𝑅 by comparing the traces presented in Fig. 4.11(c,d) and the
raw trace presented in Fig. 4.11(b). We note that if Ω𝑅 is very small, of the order of
a kHz, PL darkening is almost absent, unlike what is seen in experiment, where PL
darkening is significant. In contrast, if Ω𝑅 is of the order of a few MHz, the defect
darkens completely within the time of the driving pulse. This is also in disagree-
ment with the experimental data. Thus, we conclude that the Rabi frequency in our
experiments is of a few tens to hundreds of kHz.
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Furthermore, section 4.5.2 shows that we do not see any PL darkening when we
perform the time-resolved measurements described in the main text at zero mag-
netic field. In this case, state 2 in our model corresponds to the orbital state |G2⟩
from Fig. 4.1. We calculate the population in state 2 after optically driving the sys-
tem for approximately 500 ms, with Rabi frequencies of the order of a few tens of
kHz, and present these results in Fig. 4.10. We only transfer significant popula-
tion into 2 (leading to PL darkening) when the optical decay rate into state 2 (Γ32)
is larger than the rate at which the system leaves state 2 (Γ21). Since we do not ob-
serve any PL darkening, we conclude that Γ32 ≪ Γ21 such that, within the time of our
measurements, no significant population is transferred into the orbital state |G2⟩,
and the presence of this state does not influence our measured value for the spin 𝑇1.

Figure 4.10: Optical pumping into orbital state |G2⟩ Significant population is only transferred into
|G2⟩ when Γ32 ≫ Γ21.
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Figure 4.11: Three-level model describing dynamics of defect in ms timescale (a) The three
level model inclued a ground and optically-excited states that are connected via optical driving with Rabi
frequency Ω𝑅. The optically-excited state can decay into the ground state or into a shelving state, with
rates Γ31 and Γ32. Population can decay back from the shelving state into the ground state with a rate
Γ21. The photoluminescence excitation signal obtained is assumed to be proportional to the population
in the optically-excited state. (b) Typical experimental data in the presence of a magnetic field consists
of PLE signal with sharp on and offset as the laser turns on and off. After a leading-edge peak, the PLE
signal decays back to a constant non-zero value, indicative of PL darkening due to optical pumping into
shelving states within the first few microseconds of illumination. (c,d) Simulating the dynamics of the
population in the excited state upon illumination and comparing these curves to the experimental data,
we can determine that the Rabi frequencies observed in these experiments are of the order of a few tens
of kHz.
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4.5.6. 𝑇1 vs Temperature
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Figure 4.12: Raw traces and exponential fits used to determine 𝑇1 at various temperatures.
For the 5 − 7 K measurements the error bars on the ℎ2/ℎ1 datapoints in the inset are smaller than the
marker size and thus not shown.
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4.5.7. Fitting of 𝑇−11 vs temperature
The spin-lattice relaxation of single spins of substitutional defects in solid-statema-
terials arises from amodulation of the crystal-field potential in time due to the pres-
ence of phonons, which perturbs the stationary crystal field (𝑉(0)) and couples var-
ious eigenstates of the time-independent Hamiltonian to each other [21]. Thus, the
probability of a spin flip to occur depends largely on the matrix elements of the
time-dependent crystal field 𝑉(1) between the various electronic levels accessible to
the defect. We thus define the terms 𝑉𝑜𝑟𝑏 and 𝑉𝑣𝑖𝑏, which indicate the order of mag-
nitude of the matrix elements of 𝑉(1) connecting {|G1 ↓⟩ , |G1 ↑⟩} to {|G2 ↓⟩ , |G2 ↑⟩}
and {|G1𝑣𝑖𝑏 ↓⟩ , |G1𝑣𝑖𝑏 ↑⟩} respectively (see Fig. 4.1 for definitions).

The direct process, a one-phonon interaction driving transitions between states
|G1 ↓⟩ and |G1 ↑⟩ directly, is expected to show a temperature dependence of the kind
𝑇−11 ∝ (ℏ𝜔)2| ⟨𝐺1 ↓| 𝑉(1) |G1 ↑⟩ |2𝑇 when 𝑘𝐵𝑇 ≫ ℏ𝜔 (ℏ𝜔 is the Zeeman splitting be-
tween the spin sublevels |G1 ↓⟩ and |G1 ↑⟩). Since the states |G1 ↓⟩ and |G1 ↑⟩ are
each other’s time-reversal pair and 𝑉(1) preserves time-reversal symmetry, the ma-
trix elements | ⟨𝐺1 ↓| 𝑉(1) |G1 ↑⟩ | are identically zero (see section 4.5.4). Nonethe-
less, the presence of a magnetic field or hyperfine interaction perturbs states |G1 ↓⟩
and |G1 ↑⟩ by mixing in states higher in energy, in such a way that we expect the di-

rect process to be present with a magnitude roughly proportional to (ℏ𝜔)4 |𝑉
(1)|2
Δ2 𝑇,

where 𝑉(1) is now the matrix element of the time-dependent crystal field coupling
states |G1 ↓⟩, |G1 ↑⟩ to a generic excited state |𝐸⟩ lying an energy Δ above |G1 ↓⟩,
|G1 ↑⟩. All of the excited states shown in Fig. 4.1(b) are expected to contribute to
this process, such that mixing with both the higher KD (|G2 ↓⟩, |G2 ↑⟩) and the vi-
bronic states (|G1𝑣𝑖𝑏 ↓⟩, |G1𝑣𝑖𝑏 ↑⟩) should be considered. In this way, we expect a

dependence of the kind 𝑇−11 ∝ (ℏ𝜔)4( |𝑉𝑜𝑟𝑏|
2

Δ2𝑜𝑟𝑏
+ |𝑉𝑣𝑖𝑏|2

Δ2𝑣𝑖𝑏
)𝑇.

Additionally, a spin polarization in the defect ensemble can decay back to its
equilibrium value via two-phonon processes comprising transitions into real (Or-
bach process) or virtual (Raman process) excited states. The former gives rise to an
exponential temperature dependence of the type

𝑇−11 ∝ | ⟨𝐺1 ↓| 𝑉(1) |𝐸⟩ ⟨𝐸| 𝑉(1) |G1 ↑⟩ |Δ3 exp(−Δ/𝑘𝐵𝑇)

in the limit of Δ ≫ 𝑘𝐵𝑇, where Δ is the energy difference between a generic excited
state |𝐸⟩ and the KD |G1 ↓⟩, |G1 ↑⟩. Orbach processes relative to transitions into
states |G2 ↓⟩, |G2 ↑⟩ are expected to give rise to a strong temperature dependence
at temperatures below 1 K and saturate at higher temperatures, when Δ𝑜𝑟𝑏 ∼ 𝑘𝐵𝑇,
and its exponential behavior is thus not visible in our data. In contrast, Orbach
processes relative to transitions into vibronic levels are expected to contribute sig-
nificantly to the temperature dependence of 𝑇−11 at a few K, since Δ𝑣𝑖𝑏 ∼ 10 meV
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≫ 𝑘𝐵𝑇 between 2 and 8 K (Fig. 4.1(d)) .Thus, we expect the Orbach process to give
rise to a temperature dependence of the kind 𝑇−11 ∝ |𝑉𝑣𝑖𝑏|2Δ3𝑣𝑖𝑏 exp(−Δ𝑣𝑖𝑏/𝑘𝐵𝑇).

Finally, second order Raman processes give rise to a temperature dependence

of the kind 𝑇−11 ∝ |𝑉(1)|4𝑇5 when Δ ≪ 𝑘𝐵𝑇, or 𝑇−11 ∝ ( |𝑉
(1)|
Δ )4𝑇9 when Δ ≫ 𝑘𝐵𝑇,

where Δ is the energy difference between levels {|G1 ↓⟩, |G1 ↑⟩} and a generic level
|𝐸⟩ which is coupled to |G1 ↓⟩, |G1 ↑⟩ via 𝑉(1). Thus, since Δ𝑜𝑟𝑏 ∼ 𝑘𝐵𝑇, Raman
processes involving states |G2 ↓⟩, |G2 ↑⟩ are expected to show a |𝑉𝑜𝑟𝑏|4𝑇5 depen-
dence, whereas Raman processes involving virtual transitions into the vibronic lev-
els |G1𝑣𝑖𝑏 ↓⟩, |G1𝑣𝑖𝑏 ↑⟩ are expected to contribute a term ( |𝑉𝑣𝑖𝑏|Δ𝑣𝑖𝑏

)4𝑇9 to 𝑇−11 .

We fit the data in Fig. 4.3 to a model of the type

𝑇−11 = 𝐶𝐷𝑇 + 𝐶𝑅𝑇𝑛 + 𝐶𝑂 exp(−Δ/𝑘𝐵𝑇) + Γ0,

where 𝐶𝐷,𝑅,𝑂, Δ and Γ0 are fitting parameters, and 𝑛 = 5, 9. The parameter Γ0 is in-
cluded to account for temperature independent processes of spin relaxation. The
fit quality does not improve significantly if we consider 𝑛 = 9 instead of 𝑛 = 5 for
the Raman process involved. Thus, we are unable to determine which levels are in-
volved in the Raman transitions responsible for spin relaxation between 3 and 4 K.
In either case, however, the exponential increase of the spin relaxation rate above
4 K is accounted for by an Orbach process where two phonons drive transitions be-
tween the ground state |G1⟩ and the its vibrational excited state |G1𝑣𝑖𝑏⟩ flipping its
spin. From the fit, we extract Δ𝑣𝑖𝑏 ≈ 6.5 ± 1 meV, consistent with the energies of
the phonon-coupled states responsible for the onset of PSB emission in the photo-
luminescence spectrum.

Whereas the parameters 𝐶𝑂 and Δ can be determined with large accuracy (er-
rors of ∼ 0.1%) due to the undisputable exponential behavior of the relaxation rate
at higher temperatures, this is not the case for parameters 𝐶𝐷, Γ0 and 𝐶𝑅. At low
temperatures, there is a large tradeoff between the coefficients 𝐶𝐷 and Γ0 – which
in turn modify the magnitude of 𝐶𝑅 – and various combinations of direct, temper-
ature independent, and Raman processes can fit our data well. For example, a fit
with 𝐶𝐷 fixed to zero yields an increase of 6% in the root-mean-squared value of the
residuals of the fit, and an increase of 62% in the value of Γ0 and 15% in the value
of 𝐶𝑅. On the other hand, a fit with Γ0 fixed to zero yields an increase of 13% in the
rms of the residuals of the fit, an increase of 250% in the value of 𝐶𝐷 and a decrease
of 30% in the value of 𝐶𝑅. Nonetheless, this uncertainty in the fit does not change
the fact that, owing to the long spin-relaxation times in this range, all of the three
processes must be relatively slow for these defects.

Finally, we note that the data can also be fit by a power law model of the type
𝑇−11 = 𝛼𝑇+𝛽𝑇𝛾, with 𝛾 ≈ 13. Spin-lattice relaxation of this type has been previously
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reported for heavy ions in solid-state environments [32]. In that work, a Raman
process is observed with a power dependence with 𝛾 ≈ 11 > 9. They justify the
large power observed by noting that the spin sublevels in theKDare not exactly each
other’s time-reversal conjugate, in such a way that the ’Van Vleck’ cancellation does
not happen completely [21]. We exclude this as a relevant model in our case due to
the fact that the power dependence necessary to explain our data is much higher,
with 𝛾 ≈ 13. Additionally, the consistency of Δ𝑣𝑖𝑏 observed by fitting the data with
the energies observed in thePSBof thePL spectrum indicates that the rapid increase
of the relaxation rate observed above 4 K is indeed related to exponential Orbach
processes involving |G1𝑣𝑖𝑏 ↓⟩, |G1𝑣𝑖𝑏 ↑⟩.

4.5.8. Estimating 𝑇2
Our goal here is to estimate the rate of decoherence induced by phonon-driven tran-
sitions between the two orbital states, |G1⟩ and |G2⟩. Our data shows that transi-
tions between these levels are largely spin conserving. Nonetheless, these transi-
tions introduce decoherence in the ground-state spin sublevels |G1 ↓⟩, |G1 ↑⟩ since
the Zeeman splitting and, therefore, the Larmor precession rate of the electronic
spin differs between states |G1⟩ and |G2⟩. Thus, the spin-coherence time of the
defect will be limited by phonon-driven transitions between the two orbital states,
which happen at a rate 𝜈𝐺1→𝐺2. In order to obtain an estimate for the contribution
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Figure 4.13: Estimating a limit for 𝑇2 from 𝑇1. Orbach processes between |G1⟩ and |G2⟩ happen
with a prefactor 4𝑓𝑐𝐵𝐺1−𝐺2 smaller than 50Hz.
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of this process to 𝑇2,𝑙𝑖𝑚, we must obtain an estimate for the transition rate between
the two orbital states, 𝜈𝐺1→𝐺2, given by

𝜈𝐺1→𝐺2 =
𝐵𝐺1−𝐺2

exp(Δ𝑜𝑟𝑏/𝑘𝐵𝑇) − 1
(4.5)

where Δ𝑜𝑟𝑏 is the energy difference between |G1⟩ and |G2⟩, and 𝐵𝐺1−𝐺2 is the Ein-
stein coefficient for transitions beween the two orbital doublets.

We can obtain an estimate for the value of 𝐵𝐺1−𝐺2 from the 𝑇1 data presented in
Fig. 4.3. In order to do this, we start out by estimating a limit to the order of magni-
tude of the Orbach processes involving the orbital excited state |G2⟩. Subsequently,
we compare these values with the expression obtained by Harris and Yngvesson in
Ref. [34] to describe Orbach processes where the upwards and downards transi-
tion rates into the relevant excited state differ significantly. This is compatible with
our model, if we assume that one of those transitions is spin conserving (fast rate),
whereas the other one is spin flipping (slow rate).

Based on their model, we obtain an expression for the rate of Orbach transitions
between the two spin eigenstates of |G1⟩ given by

𝜈𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛 = 2(
𝐵1↓−2↓𝐵1↑−2↓
𝐵1↓−2↓ + 𝐵1↑−2↓

+ 𝐵1↓−2↑𝐵1↑−2↑
𝐵1↓−2↑ + 𝐵1↑−2↑

) 1 + 0.5 exp(−Δ𝑜𝑟𝑏/𝑘𝐵𝑇)
exp(Δ𝑜𝑟𝑏/𝑘𝐵𝑇) + exp(−Δ𝑜𝑟𝑏/𝑘𝐵𝑇)

(4.6)

which reduces to the familiar exp(−Δ𝑜𝑟𝑏/𝑘𝐵𝑇) when 𝑘𝐵𝑇 ≪ Δ𝑜𝑟𝑏. Here, 𝐵1↓−2↓
and 𝐵1↑−2↑ correspond to the Einstein coefficients for spin-conserving transitions,
whereas𝐵1↑−2↓ and𝐵1↓−2↑ correspond to Einstein coefficients for spin-flipping tran-
sitions. We rewrite this in terms of the Einstein coefficient for the total transition
probability between |G1⟩ and |G2⟩ 𝐵𝐺1−𝐺2, and factors that represent the proportion
of spin-flipping (𝑓) and spin-conserving (𝑐) transitions, such that 𝑓 + 𝑐 = 1

𝜈𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛 = 4𝑓𝑐𝐵𝐺1−𝐺2
1 + 0.5 exp(−Δ𝑜𝑟𝑏/𝑘𝐵𝑇)

exp(Δ𝑜𝑟𝑏/𝑘𝐵𝑇) + exp(−Δ𝑜𝑟𝑏/𝑘𝐵𝑇)
(4.7)

Figure 4.13 shows the 𝑇1 temperature dependence of the Mo defect, compared
to the contribution of Orbach processes involving |G2⟩ with different values for the
prefactor 4𝑓𝑐𝐵𝐺1−𝐺2. In our experimental data, we see no signature of exponential
increase of the spin-relaxation rate at the relevant temperatures (that is, between 2
and 4 K), leading us to conclude that Orbach processes involving |G2⟩ do not con-
tribute significantly to 𝑇1. These Orbach processes must happen with a prefactor
that is at most 4𝑓𝑐𝐵𝐺1−𝐺2 = 50Hz.

We conservatively assume that 4𝑓𝑐𝐵𝐺1−𝐺2 = 50 Hz. To obtain the product 𝑓𝑐,
we use the data and model presented in chapter 3, Sec. 3.10.6 to describe the ra-
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tio of the peaks in two-laser spectroscopy experiments. There, the product 𝑓𝑐 for
spin-flipping and spin-conserving transitions between ground and optically-excited
state corresponds to the intensity of the Λ line squared, ∼ 0.052 for this configura-
tion of magnetic field. We recognize that the excited state of interest here, |G2⟩, is
different from the excited state of interest in that work, |𝐸⟩. Nonetheless, we expect
from our model that taking this value leads to an underestimation of the product
𝑓𝑐. Since 𝐵𝐺1−𝐺2 is inversely proportional to both 𝑓𝑐 and 𝑇2,𝑙𝑖𝑚, this will lead to an
underestimation of the limit of 𝑇2,𝑙𝑖𝑚. Taking 𝑓𝑐 = 0.052, yields 𝐵𝐺1−𝐺2 ≈ 5 kHz.
Based on Eq. 4.5, this corresponds to a limit of 𝑇2,𝑙𝑖𝑚 on the order of miliseconds at
4 K.
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chapter 5
Hyperfine-mediated transitions between
electronic spin-1/2 levels of transitionmetal
defects in SiC

Transition metal defects in SiC give rise to localized electronic states that can be
optically addressed in the telecom range in an industrially mature semiconductor
platform. This has led to intense scrutiny of the spin and optical properties of these
defect centers. For spin-1/2 defects, a combination of the defect symmetry and the
strong spin-orbit couplingmay restrict the allowed spin transitions, giving rise to
defect spins that are long lived, but hard to address via microwave spin manipu-
lation. Here, we show via analytical and numerical results that the presence of a
central nuclear spin can lead to anon-trivialmixing of electronic-spin states, while
preserving the defect symmetry. The interplay between a small applied magnetic
field and hyperfine coupling opens up magnetic microwave transitions that are
forbidden in the absence of hyperfine coupling, enabling efficient manipulation of
the electronic spin. We also find that an electric microwave field parallel to the
c-axis can be used to manipulate the electronic spin via modulation of the relative
strength of the dipolar hyperfine term.

5.1. Introduction

S olid-state defects and molecular centers with optically addressable spin pro-
vide versatile platforms for the implementation of quantum technologies [2–

9]. When placed in a crystal lattice, transition metal (TM) defects with active spins
show strong analogy to molecular metal-organic centers [10–18]. Their spin prop-
erties arise from electrons strongly localized at the 𝑑-orbitals of the TM core, sub-
ject to the relevant point-group symmetries. The V andMo defects in hexagonal SiC
have been extensively investigated recently, motivated by the fact that their optical
transitions are near or at telecom-standard wavelengths, and that SiC is an indus-
trially mature semiconductor platform [14, 19–23]. When these defect centers are

Parts of this chapter have been published in New Journal of Physics 23, 083010 (2021) [1].
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in a charge state with one localized 𝑑-electron, they are largely analogous to each
other, both having ground states with electronic spin-1/2 behavior.

Group theory predicts limited possibilities for driving spin transitions in these
defect centers atmoderatemagnetic fields, compatiblewith the long spin-relaxation
observed for Mo defects [19–21]. Nevertheless, experimental results [16, 17, 23,
24] demonstrate efficient electron-spin resonance on V defects with an oscillating
magnetic field parallel to the symmetry axis. These results seem inconsistent, and
have puzzled the community. Phenomenological interpretations of experiments
[23] have considered a role for the central nuclear spin, but these are incompati-
ble with the spatial symmetry of the defect.

Here, we develop a bottom-up analytical and numerical model of a single elec-
tron in the 𝑑-orbitals of the TM core, and include hyperfine interaction with the
central nuclear spin. We focus on the energy levels and transitions between ground-
state spin-1/2 levels of these defects, and find strong hyperfine-mediated matrix
elements for transitions that are forbidden in a description without hyperfine cou-
pling. This sheds light on the experimentally observed magnetic microwave driv-
ing. The anisotropic dipolar interaction betweenmagnetic moments of the electron
and nucleus leads to mixing between the electron-spin sublevels, which enables ef-
ficient electron paramagnetic resonance with oscillating magnetic fields parallel to
the symmetry axis of the defect centers. In addition, we find that the mechanism of
hyperfine-mediated spin resonance also allows for efficient drivingwith the electric-
field component of microwave fields. An oscillating electric field along the growth
axis of the crystal – a technologically relevant geometry with multiple fabrication
possibilities [25–29] – also leads to hyperfine-mediated electron-spin transitions.
While preserving the original uniaxial symmetry of the defects, these electric fields
modulate the spatial distribution of electron density in the ground state, which in
turn strongly influences the anisotropic dipolar interaction between nuclear and
electronic spins. For specific relevance to V andMo in SiC, we provide effective-spin
Hamiltonians for the ground-state doublets in terms of parameters relating directly
to the configuration of the defect centers. In thisway, our approach provides an easy
way to interpret these fitting parameters in terms of the microscopic configuration
of the defect centers, and is complementary to purely group-theoretical methods
[30] that yield symmetry-restricted effective-spin Hamiltonians that can be fit to
experiments. Additionally, our approach is also complementary to results from ab
initio calculations of the defects’ geometric and electronic structure [20]: here, we
include the different parts of the Hamiltonian one by one, and this allows us to de-
termine what is the particular interplay of different interactions that leads to the
experimentally observed behavior.
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5.1.1. Review of literature and defect configuration
The Mo and V defects in hexagonal SiC that are optically active in the near infrared
range are composed of a TM impurity substituting a Si atom in the lattice. Spectro-
scopic studies show that both ground and optically-excited state manifolds consist
of two and three, respectively, sets of Kramers doublets (KD, effective spin-1/2 dou-
blets), as in the right-panel schematic of Fig. 5.1(b) [14, 16, 22–24]. The two KDs
in the ground-state manifold show strongly anisotropic interaction with magnetic
fields. In particular, for the spin doublet with lowest energy, the spin-1/2 degener-
acy is easily broken by amagnetic field parallel to the crystal c-axis (which coincides
with the three-fold rotational axis of the defects), but amagnetic field perpendicular
to this direction gives rise to a Zeeman splitting that is zero (or close to zero, depend-
ing on the particular lattice site occupied by the impurity). These spectral features
can in good approximation be explained as a defect center in a Si-substitutional site
that, after bonding to the lattice (and ionization in the case of Mo), is left with one
unpaired electron spin in the 𝑑-orbitals of the TM core. In this case, the strongly
anisotropic Zeeman spectrum is a consequence of a combination of the defect three-
fold rotational symmetry and spin-orbit coupling [14, 19–21, 24], which gives rise
to two ground-state KDs transforming as the Γ4 and Γ5,6 irreducible representations
of the double group 𝐶̄3v, and separated in energy due to spin-orbit coupling. These
two doublets are spin-orbit split, such that they are respectively formed by states
having orbital angular momentum antiparallel or parallel to the electron spin. As
far as symmetry is concerned, a doublet transforming as Γ4 transforms as stateswith
spin projection along the symmetry axis 𝑚𝑠 = ±1/2. Thus, these states may have
contributions from orbitals with zero angular momentum (see also Sec. 5.5.1). In
contrast, a doublet transforming as Γ5,6 transforms as states with𝑚𝑠 = ±3/2. Thus,
all orbitals that make up Γ5,6 states have orbital angular momentum non-zero.

For KDs transforming as Γ5,6, interaction with a magnetic field perpendicular to
the rotational axis of the defect is strictly symmetry forbidden [19, 21]. Earlier work
found it thus plausible that the KD of lowest energy should be the KD that trans-
forms as Γ5,6, due to the observed 𝑔⊥ parameter being 0 [14, 16, 19, 24]. Progressing
insight from this and parallel work [20, 30], however, shows that the KD with low-
est energy is in fact the Γ4 KD after all. Here, 𝑔⊥ can also be near zero, but this
only occurs for a certain parameter range for spin-orbit coupling and crystal-field
strengths [21]. Spin doublets transforming as Γ4 may thus also interact very weakly
withmagnetic fields perpendicular to the crystal c-axis, giving rise to near-zero Zee-
man splittings, smaller than the accuracy of most experimental setups at magnetic
fields below 1T. Thus, the𝑔-parameter alone cannot be used to distinguish between
KDs of the two kinds in this magnetic field range. However, the two types of KDs
are distinguishable via their hyperfine structure, since the effective-spinHamiltoni-
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ans associated with them differ significantly and give qualitatively a different spec-
trum, as recently observed [23] (see below for more details). This conclusion was
obtained in parallel also using a purely group-theory approach [30]. Both V and
Mo have naturally abundant isotopes with non-zero nuclear spin. Whereas 25% of
stablemolybdenumnuclei have spin-5/2 (the remaining isotopes have nuclear spin
zero), over 99% of naturally occurring vanadium nuclei have spin-7/2. In this way,
measurements on V ensembles at low magnetic fields [23] provide direct access to
the defects’ hyperfine structure, which allows us to determine that the lowest energy
KD of V defects in SiC transforms as Γ4.

5.2.Methods
Wemodel the spin properties of the systemby considering a single electron in the 𝑑-
orbitals of the TM core. The 𝑑-orbitals of the TM core on itself are isolated in energy
from other orbital states due to the Coulomb interaction with the nucleus, and are
five-fold degenerate in the presence of spherical symmetry. Via a Hamiltonian of
the type

𝐻 = 𝐻crystal + 𝐻SOC + 𝐻HF + 𝐻Zee (5.1)

we consider the crystal-field potential arising from interactionwith the lattice, spin-
orbit coupling, hyperfine interaction with the central nuclear spin and Zeeman in-
teraction with an external magnetic field, respectively, acting on these states.

We note that the full description of the electronic wavefunctions must be ob-
tained from first-principles calculations that take hybridization with nearby atomic
orbitals and the core orbitals of the TM core into account [20]. However, modeling
the ground-state KDs as an electron localized in the 𝑑-orbitals of the TM provides
a good approximation [14, 19, 20, 22, 24]. The approach of our work thereby en-
compasses and provides intuition into the relevant physical processes at play at low
computational cost. Additionally, since we include the contributions to the Hamil-
tonian one by one, our approach also provides insight into how the combination
of different interactions (crystal field, SOC, Zeeman and hyperfine) leads to non-
trivial eigenstates. When considering the optically-excited states, the contribution
from bonding with lattice states is more significant [20, 22], and the validity of our
model for theseKDs is limited. For this reason, we focus our analysis on the ground-
state properties of these defect centers.

5.2.1.Crystal field potential
A TM impurity in a Si-substitutional site is surrounded by carbon atoms arranged
in a tetrahedral configuration around it, such that the strongest contribution to the
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Figure 5.1: (a) Transition metal (TM) defects in hexagonal SiC in a substitutional site are composed of a
central TM impurity (yellow in the inset) surrounded by nearest neighbors lattice atoms (pink in the in-
set) distributed in a tetrahedral configuration. This symmetry splits the five-fold degenerate 𝑑-orbitals
of the transition metal core into a ground state orbital doublet and an excited state orbital triplet, sep-
arated by an energy Δ. These orbitals are most intuitively expressed in terms of cubic harmonic func-
tions, where the 𝑧-axis points between two of the tetrahedral bonds. (b) The second-nearest neighbors
and third-nearest neighbors are distributed in a trigonal prismatic configuration, which splits the ex-
cited state triplet into a doublet and a singlet, and rotates the natural basis associated with the crystal
field. The trigonal-prismatic contribution to the crystal field is most intuitively expressed in the basis
of spherical harmonics with a 𝑧-axis along the three-fold rotational axis. This three-fold rotational axis
coincides with the crystal c-axis. Spin-orbit interaction further splits both doublets into two Kramers
doublets, each transforming as the irreps Γ4 and Γ5,6 of the double group 𝐶̄3v. (c) We model the TM
defect in SiC by considering the contributions of both a tetrahedral crystal field and a trigonal crystal
field, with relative strengths provided by the parameter 𝜂. By varying both 𝜂 and the strength of spin-
orbit coupling, we can extract ranges where the model agrees with the experimentally measured energy
splittings in the ground state (colored areas in the plot). (d) At the region where the model provides
reliable spin-orbit and Zeeman energy splittings for the ground state KD (where all three shaded areas
overlap, circled), the electronic wavefunctions of both ground state Kramers doublets have the electron
density concentrated slightly above or below the transition metal ion. In the graphical representation of
the wavefunctions, the color corresponds to a phase according to the scale bar in Fig. 5.2(b).

crystal field has tetrahedral symmetry (𝑇d). This crystal potential splits the five-fold
degenerate 𝑑-orbitals into a ground state orbital doublet (2E) and an excited state
orbital triplet (2T2), separated by an energy splitting Δ, and with natural quantiza-
tion along the high symmetry axis 𝑧̂ pointing between two of the tetrahedral bonds
(Fig. 5.1(a)). In hexagonal polytypes of SiC, the second and third nearest neighbors
of the TM impurity are arranged in a trigonal configuration. On their own, these
lattice atoms give rise to a crystal field with 𝐶3v symmetry that splits the 𝑑-orbitals
into 2 orbital doublets (2E) separated by an energy ΔE and an orbital singlet (2A1)
separated from the top doublet by an energy ΔA1 . In this case, the eigenstates are
given by linear combinations of the spherical harmonics with 𝑙 = 2, with 𝑧̂ pointing
along the three-fold rotational axis (see Fig. 5.1(b)). Although the trigonal crys-
tal field arises from the second and third nearest neighbors of the TM impurity,
experimental results show that it is of significant importance for determining the
spectral properties of the defect spin [20, 24]. For this reason, we do not include
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it as a perturbation, but rather diagonalize the full crystal field Hamiltonian with
both trigonal and tetrahedral contributions. We parameterize the energy term ΔE
arising from the trigonal crystal field in terms of the energy term Δ arising from the
tetrahedral crystal field, such that ΔE = 𝜂Δ (Fig. 5.1), where 𝜂 provides the rela-
tive strength between the trigonal and tetrahedral crystal field contributions. We
can include the effect of electric fields or strain parallel to the three-fold rotational
symmetry by considering deformations that preserve trigonal symmetry via small
changes of 𝜂.

5.2.2. Spin-orbit coupling
We include the effect of spin-orbit coupling (in the same manner as Tissot et al.,
[21]) via a Hamiltonian of the type

𝐻SOC = 𝜆𝑘L ⋅ S (5.2)

where 𝜆 is the reducedmatrix element indicating the strength of the spin-orbit inter-
action, L is the orbital angular momentum operator, which acts on the spatial part
of the wavefunction, and S is the spin operator acting directly on the electron spin.
The parameter 𝑘 accounts for an empirical reduction of the orbital angular momen-
tum of the electronic states due to bonding to nearby atoms or dynamic Jahn-Teller
effects, for example.

In first-order, this spin-orbit coupling Hamiltonian gives rise to an additional
splitting between the orbital doublets defined by the crystal field. Within the ground
state space, two Kramers doublets arise, transforming as Γ4 and Γ5,6 respectively,
and separated by an energy Δ𝐺𝑆 (see Fig. 5.1(b)) [14, 16, 19, 21]. Such a KD is an
effective spin-1/2 system. Its overall spin properties depend on both the intrinsic
spin of the electron and its orbital angular momentum [20].

5.2.3.Hyperfine interaction
We include the interaction with a central nuclear spin via a Hamiltonian of the type

𝐻HF = 𝐴(𝑘L ⋅ I+ 3
(S ⋅ 𝑟)(I ⋅ 𝑟)

𝑟2 − S ⋅ I) (5.3)

where 𝑟 is the vector fromnucleus to electron, and I is the nuclear spin operator. We
define the term 𝐴 ≡ 𝜇0

4𝜋
𝑔𝑒𝜇𝐵𝑔𝑛𝜇𝑁

ℎ2
1
𝑟3 , where 𝜇0 is the vacuum permeability, 𝑔𝑒 (𝑔𝑛)

is the electronic (nuclear) g-parameter, 𝜇𝐵 (𝜇𝑁) is the electron (nuclear) magnetic
moment and ℎ is Planck’s constant. This Hamiltonian includes the classical dipolar
interaction between the magnetic moments of the nucleus and electron, as well as
the effective magnetic field at the nucleus due to the orbital angular momentum of
the electron. We do not include the electric quadrupolar interaction since, to first
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order, it does not lead to mixing between two states belonging to a KD [31].

Here, we do not take into account the Fermi contact interaction between nu-
clear and electron spins. In an approach focused solely on the 𝑑-orbitals of the TM
core, this term is zero due to the vanishing electron density at the nucleus associ-
ated with these orbital states. In a more general approach, this approximation is
not valid since contributions from bonding with neighboring atoms, and exchange
interaction with core 𝑠-orbitals of the TM will lead to a non-zero electron density
at the nucleus. Exchange contributions from 𝑠 orbitals are symmetry forbidden for
a Γ5,6 doublet, but may arise for a doublet transforming as Γ4. This approximation
does not, however, change the main conclusions of this work. When presenting our
results, we will address the consequences of this approximation in more detail.

In our numerical calculations, we always consider a nuclear spin-5/2. We do
this for simplicity and lean presentation in figures, since it reduces the number of
electron-nucleus coupled states to consider, while it does not qualitatively change
the results obtained. Note that the relevant isotopes for Mo and V defects have
nuclear spins 5/2 and 7/2, respectively.

Finally, we note that the electronic spin can also interact with nuclear spins of
neighboring lattice Si or C atoms. However, within an ensemble of TM impurities,
only a fraction of the defects have a neighboring non-zero nuclear spin. Addition-
ally, defects with different nuclear spin environments are spectrally resolvable [23],
and SiC can be fabricated with high isotopic purity, such that one can in principle
choose to experimentally address defects with only spin-zero neighboring nuclear
spins.

5.2.4. Zeeman interaction
The Zeeman Hamiltonian acts on the spin-orbit coupled states via a Hamiltonian
of the type

𝐻Zee = −
𝜇𝐵
ℎ B ⋅ (𝑘L+ 𝑔𝑒S) −

𝑔𝑛𝜇𝑁
ℎ B ⋅ I (5.4)

where B is the applied magnetic field with components 𝐵𝑥, 𝐵𝑦 and 𝐵𝑧, and magni-
tude 𝐵.

At small magnetic fields (such that 𝐵𝜇𝐵/ℎ ≪ 𝜆𝑘) this Hamiltonian takes the
shape of an effective-spin Hamiltonian for each Kramers doublet of the kind

𝐻Zee = −
𝜇𝐵
ℎ (𝑔∥𝐵𝑧 ⋅ 𝑆̃𝑧 + 𝑔⊥(𝐵𝑥 ⋅ 𝑆̃𝑥 + 𝐵𝑦 ⋅ 𝑆̃𝑦)) −

𝑔𝑛𝜇𝑁
ℎ B ⋅ I (5.5)

where S̃ is the effective spin-1/2 operator.
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5.2.5.Numerical and analytical methods
Below, we present both numerical and analytical results based on the model pre-
sented so far. On the one hand, we numerically obtain the matrix elements for var-
ious time-dependent perturbations arising from the interaction of the defects’ elec-
tric and magnetic dipole moments with oscillating electric and magnetic fields. We
achieve this by calculating these perturbations in terms of the basis states defined
by the static Hamiltonian of Eq. (5.1). On the other hand, we obtain the analyti-
cal effective-spin Hamiltonians associated with each KD by investigating the effect
of the hyperfine and Zeeman interactions on each KD independently. The basis
states for each KD are obtained by diagonalizing the crystal-field Hamiltonian (see
Sec. 5.5.1). We include SOC to zeroth-order, that is, we consider how it breaks the
degeneracy between the two ground-state KDs, but disregard how it mixes ground
and optically-excited manifolds.

5.3. Results
5.3.1. Parameters consistent with experiment
In the model presented so far, based on Eq. (5.1), there are several free-parameters
(Δ, 𝜂, ΔA1 , 𝑘 and 𝜆) which must be obtained either from first-principles calcula-
tions or from comparison with experimental results. We choose to take the latter
approach to restrict the parameter space where our model effectively describes the
ground states of Mo and V defects. We focus on V defects at the site associated with
the 𝛼 line in 4H-SiC [22, 32], since these are the defect centers most similar to Mo
defects, which have promising features for quantum applications such as long spin-
relaxation times in the ground-state [19]. Additionally, the experimental parame-
ters for this particular defect are well established, with reproducible measurements
from various groups being present in literature [17, 23]. A similar analysis for other
V configurations can be found in Sec. 5.5.5.

The parameters Δ and ΔA1 are only relevant to determine the energy difference
between ground and optically-excited states, and the first-order correction to the
electronic wavefunctions due to spin-orbit coupling. For this reason, we fix Δ at
1 eV, the order of magnitude of the optical energy splitting. We choose ΔA1 to be on
the order of 10meV, but this choice has no consequence for the results obtained in
the following. In contrast, the parameters 𝜂, 𝑘 and 𝜆 have significant implications
for the ground-state properties of these defect centers. In order to determine these
parameters, we compare the energy eigenstates obtained from diagonalization of
the Hamiltonian in Eq. (5.1) (without hyperfine coupling) with the experimental
parameters reported in Ref. [23] for the splitting between the two ground-state
KDs (Δ𝐺𝑆) and the Zeeman splitting of the lowest KD (determined by 𝑔∥ and 𝑔⊥).
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We consider a static magnetic field 𝐵0 = 100 mT. We do this by finding regions
where combinations 𝑘, 𝜂 and 𝜆 give ground-state energy splittings that coincide
with experiments within the experimental accuracy.

This agreement exists for 𝑘 values between 0.18 and 0.37, and is shown graph-
ically for 𝑘 = 0.3 in Fig. 5.1(c). An ab-initio approach that takes into account hy-
bridization with orbitals other than the 𝑑 orbitals as well as dynamic Jahn-Teller
effects gives an orbital reduction factor between 0.3 and 0.4 [20]. We find that using
other values for 𝑘 from this range does not alter our general conclusions, and only
leads to small shifts in the relevant numerical estimates for the hyperfine coupling
parameters (see Sec. 5.5.2). Lower 𝑘 values require increasing |𝜂| to match exper-
imental results, whereas the spin-orbit coupling parameter 𝜆 remains nearly con-
stant (see Sec. 5.5.2 for analogous plots for other values of 𝑘). At 𝑘 = 0.3, 𝜂 ≈ −0.4
and 𝜆 ≈ 15 meV constitute the parameter range that reliably reproduces the ex-
perimental properties of the ground-state electronic spin of this defect. From here
on in the text, we assume these parameters, and use these to generate the results
presented in Fig. 5.2 and Fig. 5.3.

We note that the negative sign of 𝜂 depends on the convention taken for the
energy splitting Δ𝐸. A negative 𝜂 implies that the trigonal crystal field causes the
orbitals 𝑑±1 to have the lowest energy (see also Fig. 5.1(b)), possibly due to bonding
or to the spatial distribution of electrons from the neighboring atoms [22, 33]. This
configuration leads to a ground-state Kramers doublet that transforms as the Γ4
irreducible representation of the double group 𝐶̄3v. The analytical effective-spin
Hamiltonians obtained in parallel by us in Sec. 5.3.4 and by Tissot et al. in [30]
for a doublet transforming as Γ4 are in agreement with the experimental spectra of
these V centers [23].

Fig. 5.1(d) presents for these values of 𝑘, 𝜆 and 𝜂 the approximate electronic
wavefunction of the ground state KD (and shows reasonable agreement with the
wavefunction from reference [20]). In this graphical representation of the wave-
function in cartesian space, the azimuthal phase of the wavefunction at a certain
point in space corresponds to its color according to the scale bar in Fig. 5.2(c). The
wavefunction clearly has a winding azimuthal phase, corresponding to a non-zero
orbital angular momentum parallel to the three-fold rotational axis. In this config-
uration, both ground state KDs have 𝑔⊥ that would be measured as effectively 0 at
low static magnetic fields (below 1 T). In contrast, a magnetic field parallel to the
crystal c-axis breaks the degeneracy of the KDs, giving rise to eigenstates where the
effective electronic spin points parallel or antiparallel to the magnetic field. From
here on, we denote these eigenstates as |Γ𝑖 ↑↓⟩, where Γ𝑖 corresponds to the symme-
try of the KD, and the arrows indicate the effective-spin direction.
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top view, along c-axis

(a) (b) (c)

Figure 5.2: (a) Matrix elements due to an oscillating magnetic field parallel (diagonal and upper trian-
gular elements) or perpendicular (lower triangular elements) to the c-axis, in the basis defined by the
crystal field, spin-orbit coupling and a small magnetic field (20mT) along the c-axis, for the two ground
state Kramers doublets (|Γ4 , ↑↓⟩ and |Γ5,6 , ↑↓⟩), without hyperfine coupling. White matrix elements cor-
respond to zero. Within each KD (contoured block diagonal parts of the full matrix), a magnetic field
parallel to the c-axis does not lead to magnetic microwave transitions, consistent with a picture where
the electronic spin is fully quantized along the static magnetic field direction. A magnetic field perpen-
dicular to the c-axis leads to very weak electron and nuclear spin transitions in the Γ4 doublet, and only
nuclear spin transitions in the Γ5,6 doublet. (b) Same as (a), but with the hyperfine interaction between
electron and the central nuclear spin added to the static Hamiltonian. In this case, the electronic spin
can flip via magnetic microwave transitions driven by an oscillating field parallel to the c-axis. (c) Top
view of the wavefunction presented in Fig. 5.1(d). The arrows indicate the direction of the dipolar field
caused by the central nuclear spin at the points of high electron density. For this particular electron
distribution, the dipolar part of the hyperfine interaction favors a perpendicular orientation of the spins,
such that the eigenstates are superpositions of up and down effective-electronic spin.

5.3.2. Interaction with oscillatingmagnetic fields
In order to determine which spin transitions can be driven by oscillating magnetic
fields, we numerically investigate the matrix elements of the Zeeman operator be-
tween the effective-spin eigenstates associated with a Hamiltonian including the
crystal-field potential, spin-orbit coupling and the interactionwith a staticmagnetic
field (𝐵0 = 20mT) parallel to the c-axis (Fig. 5.2(a,b)). We focus on the two ground-
state KDs, such that the basis used in the matrix representation corresponds to the
24 lowest eigenstates associated with the two effective-spin-1/2 doublets, coupled
to a nucleus with spin-5/2. We investigate the matrix elements arising from the in-
teraction with an oscillating magnetic field parallel (diagonal elements, and upper-
triangular elements) and perpendicular (lower-triangular elements) to the static
magnetic field and the symmetry axis of the defect. Additionally, in Fig. 5.2(b) we
include hyperfine interaction to the static Hamiltonian.

When hyperfine coupling between the electron and nuclear spin is not present,
the Γ5,6 doublet (bottom right block diagonal) is fully protected from effective-spin
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transitions due to oscillating magnetic fields (Fig. 5.2(a)). This is characterized by
the absence of off-diagonal elements between states |Γ5,6 ↑⟩ and |Γ5,6 ↓⟩ when con-
sidering magnetic fields in either direction. Magnetic fields perpendicular to the
defect symmetry axis may lead to nuclear-resonance transitions, as well as transi-
tions between the Γ5,6 and Γ4 doublets. However, driving these latter transitions
requires oscillating fiels in the sub-THz range. In contrast, within the Γ4 doublet,
a magnetic field perpendicular to the symmetry axis of the defect center gives rise
to matrix elements between the |Γ4 ↑⟩ and |Γ4 ↓⟩ due to the small but non-vanishing
𝑔⊥. These resonances, however, have very small Rabi frequencies due to the very
weak interaction withmagnetic fields in the plane. For an oscillatingmagnetic field
with magnitude 𝐵1 = 100 𝜇T, we expect a Rabi frequency on the order of 1 kHz.

When we include the hyperfine interaction with the central nucleus in the static
Hamiltonian that determines the basis states for representation of the Zeeman per-
turbations, the matrix representation of the Zeeman operators shows significant
changes (Fig. 5.2(b)). Most notably, off-diagonal matrix elements appear for in-
teraction with oscillating magnetic fields parallel to the symmetry axis of the de-
fect (and the static magnetic field), for both ground-state effective-spin doublets.
This indicates that the hyperfine coupling leads tomixing between the two effective-
electronic-spin eigenstates |Γ𝑖 ↑⟩ and |Γ𝑖 ↓⟩. An oscillating magnetic field parallel to
the symmetry axis of the defect modulates the amount of mixing, and this leads to
efficient effective-spin transitions. This hyperfine-induced mixing arises from the
anisotropic hyperfine interaction.

In our model, the main contribution to this anisotropic interaction is the dipo-
lar coupling between nuclear and electronic magnetic-dipole moments. Figs. 5.1(d)
and 5.2(c) show the spatial configuration of the ground-state electronic wavefunc-
tion. We indicate with arrows the direction of the dipolar field at the points of high
electron density due to a magnetic moment at the origin and parallel to the sym-
metry axis of the defect center. Due to the particular spatial distribution of the
electronic wavefunction around the nucleus, this dipolar field tends to align the
electronic and nuclear magnetic moments perpendicular to each other. A mag-
netic field along the symmetry axis of the defect, however, favors the alignment
of both magnetic moments along its direction. These two effects compete, leading
to a strong dependency of the eigenstate composition on themagnitude of the static
mangetic field when the hyperfine and electronic-Zeeman energies are comparable
(Fig. 5.3(a)). Thus, the influence of hyperfine is strongly dependent on the mag-
nitude of the static magnetic field, and is most relevant for magnetic fields below
100mT. Figure 5.3 presents this for the Γ4 KD, which is lowest in energy. As a con-
sequence, the Rabi frequencies for resonant driving with oscillating magnetic fields
along the crystal c-axis decrease significantly as the magnitude of the static field in-
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(a) (b)

(c)

(d)

Figure 5.3: (a) Energies of the 12 eigenstates corresponding to the Γ4 ground-state electronic-spin dou-
blet, hyperfine-coupled to a central nucleus with a spin-5/2, as a function of the static magnetic field 𝐵0
applied parallel to the c-axis. Results were obtained numerically (colored lines), and by diagonalizing
the effective-spin Hamiltonian associated with a Γ4 doublet (dashed line). (b-d) Microwave resonance
lines obtained numerically for an oscillatingmagnetic field parallel (b) or perpendicular (c) to the c-axis,
or an oscillating electric field parallel (d) to the c-axis. The thickness of the resonance lines correspond
to their Rabi frequencies, with different scales in each figure. Scales are provided by the labels and ar-
rows, indicating the Rabi frequency at a certain point. (b) If the static field is small (Zeeman splitting
comparable to hyperfine coupling strength), a small oscillating magnetic field (𝐵1 ≈ 100 𝜇T) parallel to
the c-axis leads to very efficient electronic-spin transitions with Rabi frequencies on the order of 1MHz.
These resonances weaken significantly as the static magnetic field increases. (c) In a Γ4 doublet, direct
interaction with an oscillating field perpendicular to the c-axis leads to electronic microwave transitions
withRabi frequencies that are largely independent of the applied static field, but small due to the reduced
𝑔⊥. (d) A large enough electric field parallel to the c-axis mixes ground and optically-excited states and
deforms the electron density, modulating the influence of the anisotropic dipolar hyperfine coupling and
leading to electronic-spin transitions.

creases. At low static magnetic fields (20 mT), Rabi frequencies as high as 1MHz
can be obtained for oscillating fields of 𝐵1 = 100 𝜇T. At a static magnetic field of
100 mT, this value decreases by an order of magnitude (Fig. 5.3(b)). In contrast,
when the oscillating field is perpendicular to the crystal c-axis and the static mag-
netic field, effective spin-transitions within the Γ4 doublet arise from the non-zero
𝑔⊥, and are very small but largely independent from the magnitude of the static
magnetic field (Fig. 5.3(c)).

5.3.3. Interaction with oscillating electric fields
Wenow turn to consideringwhether the electric component of a resonantmicrowave
field can also drive spin transitionswithin the ground-state KD.Oneway to consider
the interaction of the ground-state KDs with oscillating electric fields is to investi-
gate the matrix representation of the Hamiltonian

𝐻el = −𝑒𝐸⃗ ⋅ 𝑟 (5.6)

where 𝑒 is the electron charge and 𝐸⃗ is the electric-field vector, and 𝐻el is obtained
in the dipolar approximation. However, when we only consider the 𝑑-orbitals of
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the TM, this operator has all-zero matrix elements due to the spatial parity of these
orbitals. Nonetheless, we know that the defect center does not have inversion sym-
metry, such that dipolar interactions with electric fields are in principle symmetry-
allowed and will likely arise due to mixing with other orbital states (𝑝-orbitals, for
example). Additionally, the defect shows bright optical transitions between ground
and optically-excited states, such that thematrix elements of the electric dipolemo-
ment between these states must be non-zero. To remedy this discrepancy we in-
clude the interaction with electric fields parallel to the symmetry axis of the crystal
by considering an extra contribution to the crystal-field potential via a change of the
parameter 𝜂.

Hence, we model an electric field in this direction as an additional contribution
to the crystal field that alters the relative strengths between the original tetrahedral
(Fig. 5.1(a)) and trigonal fields (figura 5.1(b)). Although an interaction of this type
does not change the symmetry of the eigenstates, it does lead to mixing between
ground and optically-excited states. In turn, this changes the spatial distribution of
the electron density. Figures 5.1(d) and 5.2(c) show that the hyperfine interaction
depends strongly on the spatial configuration of the electronicwavefunctions. Thus,
an electric field along this direction modulates the relative strength of the isotropic
and anisotropic components of the hyperfine interaction via modulating the spatial
configuration of the electronic wavefunction. Overall, this causes that an electric
field drives effective-spin transitions within the ground-state KDs (Fig. 5.3(c)). No-
tably, this effect only arises if hyperfine coupling is present. In its absence, effective-
spin transitions are protected by Kramers theorem, even upon modulations of 𝜂.

Since these transitions arise from mixing between the ground and optically-
excited states, the Rabi frequencies associated with this effect depend linearly on
the ratio between the additional 𝐶3v contribution to the crystal field and the orig-
inal splitting between ground and optically-excited state (approximately Δ). Nu-
merically, we estimate that a trigonal contribution of approximately 1meVwill give
rise to Rabi frequencies of hundreds of kHz (Fig. 5.3(d) and Sec. 5.5.4). In order to
estimate the magnitude of the electric fields necessary to drive the spin transitions
at these rates, we need to have a reliable estimate for the relevant transition dipole
moment 𝑑𝑔−𝑒 = −𝑒 ⟨Γ𝑔𝑖 |𝑧|Γ𝑒𝑖 ⟩, where Γ

𝑔,𝑒
𝑖 correspond to the Γ𝑖 eigenstates in ground

and optically-excited states, respectively. This can be determined experimentally or
via first-principles calculations. Given that the TM defects have radiative lifetimes
on the order of 100 ns [22, 23], a conservative estimate for the transition dipolemo-
ment gives a magnitude of about 𝑑𝑔−𝑒 ≈ 1D ≈ 0.2 𝑒Å. For this value, an oscillating
electric field with magnitude 𝐸𝑧 = 50 V/𝜇m will drive effective-spin transitions at
sub-MHz rates.
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5.3.4. Effective-spin Hamiltonians
We can obtain analytical effective-spin Hamiltonians for the two ground state KDs
based on the model presented so far. These expressions can be fit to experiments,
directly connecting the theory developed here to experimental observations. In or-
der to do this, we diagonalize the crystal-fieldHamiltonian including both the tetra-
hedral and trigonal contributions, and focus on the two lowest Kramers doublets.
(This is done explicitly in Sec. 5.5.6.) We include spin-orbit coupling in zeroth or-
der – that is, we consider the energy splitting between the two KDs, but disregard
the mixing between ground and optically-excited states caused by SOC. Finally, we
investigate the effect of the hyperfine and Zeeman operators within each KD. We
obtain effective-spin Hamiltonians of the type

𝐻Γ4 = 𝐻
𝑒𝑓𝑓
HF + 𝐻𝑒𝑓𝑓Zee,el + 𝐻

𝑒𝑓𝑓
Zee,nuc (5.7)

𝐻𝑒𝑓𝑓HF = 𝑎∥,Γ4 𝑆̃𝑧𝐼𝑧 + 𝑎⊥,Γ4(𝑆̃+𝐼+ + 𝑆̃−𝐼−) (5.8)

𝐻𝑒𝑓𝑓Zee,el = −𝜇𝐵(𝑔∥,Γ4𝐵𝑧𝑆̃𝑧 + 𝑔⊥,Γ4(𝐵𝑥𝑆̃𝑥 + 𝐵𝑦𝑆̃𝑦)) (5.9)

𝐻𝑒𝑓𝑓Zee,nuc = −𝜇𝑁𝑔𝑛(𝐵𝑧𝐼𝑧 + 𝐵𝑥𝐼𝑥 + 𝐵𝑦𝐼𝑦) (5.10)

𝐻Γ5,6 = 𝐻
𝑒𝑓𝑓
HF + 𝐻𝑒𝑓𝑓Zee,el + 𝐻

𝑒𝑓𝑓
Zee,nuc (5.11)

𝐻𝑒𝑓𝑓HF = (𝑎∥,Γ5,6 𝑆̃𝑧 + 𝑎⊥,Γ5,6 𝑆̃𝑦)𝐼𝑧 (5.12)

𝐻𝑒𝑓𝑓Zee,el = −𝜇𝐵𝑔∥,Γ5,6𝐵𝑧𝑆̃𝑧 (5.13)

𝐻𝑒𝑓𝑓Zee,nuc = −𝜇𝑁𝑔𝑛(𝐵𝑧𝐼𝑧 + 𝐵𝑥𝐼𝑥 + 𝐵𝑦𝐼𝑦) (5.14)

The approximate dependency of the parameters 𝑎∥,⊥, 𝑔∥,⊥ on the parameters de-
scribing themicroscopic configuration of the system, 𝑘, 𝜂 andΔ, is given in Sec. 5.5.6.
The approximate energy levels obtained from these effective-spin Hamiltonians for
the lowest-energy KD are plotted in Fig. 5.3(a), dashed lines, and overlap well with
the numerical results.

These effective-spin Hamiltonians are different for KDs with different symme-
tries, and give rise to spectra that are clearly distinguishable (see Sec. 5.5.3 for the
energies andmagnetic resonance spectra of aKD transforming as Γ5,6). Notably,mi-
crowave resonance spectra of Γ4 doublets due to interaction with oscillating mag-
netic fields perpendicular to the crystal c-axis shows evidence of a pair of hyper-
fine sublevels whose energy depends linearly on the applied static magnetic field
(Fig. 5.3(a,c)). This is absent for Γ5,6 doublets (Sec. 5.5.3). Thus, hyperfine resolved
magnetic resonance spectra of these defects’ ground-state KDs can be used to de-
termine their symmetry properties. As mentioned before, comparison with exper-
iments shows that the lowest-energy KD of V defects in SiC transforms as Γ4. For
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the configuration considered here, we find for this doublet 𝑎∥ ≈ −63 MHz, and
𝑎⊥ ≈ 332MHz. When compared to the experimentally measured values, ourmodel
overestimates |𝑎⊥| and underestimates |𝑎∥| [30]. This could be explained by the fact
that in our model we overlook the hyperfine Fermi-contact interaction and contri-
butions from 𝑠-orbitals to thewavefunctions, which is in principle allowed for states
transforming as Γ4. The latter gives rise to an isotropic contribution with 𝑎∥ ≈ 𝑎⊥.
This could be confirmed by first-principle calculations, for example.

5.4.Discussion and conclusion
The results of the previous section show that the apparent discrepancy between the
symmetry protection of the TMspin-1/2 states (with respect to electronic-spin tran-
sitions) and the observed magnetic resonance results on V defects can be fully re-
solved by considering the interaction with a central nuclear spin. Our model, fo-
cused on an electron localized in the 𝑑-orbitals of the TM core, encompasses this
behavior and shines light on the underlying physical mechanisms. For defects with
a central nuclear spin, the hyperfine Hamiltonian is a combination of isotropic and
anisotropic terms. Whereas the former favors parallel alignment of nuclear spin
and electronic effective spins, the latter favors perpendicular alignment between
them. A combination of both leads tomixing between the electronic-spin sublevels.
Periodicmodulation of the degree of thismixing bymicrowaves enables transitions,
when the oscillating electric and magnetic fields are parallel to the symmetry axis
of the defect. This anisotropic hyperfine interaction arises mostly from the classical
dipolar coupling between themagneticmoments of the nucleus and electron, which
is strongly dependent on the spatial configuration of the wavefunction. This depen-
dency also means that the strength of the hyperfine coupling – and consequently
also the electronic-spin eigenstates – is sensitive to local electric and magnetic in-
homogeneities. This additional hyperfine-induced mixing of electronic spins may
increase the rate of direct spin flips due to interactions with lattice phonons or with
neighboring paramagnetic impurities, possibly limiting the spin relaxation at low
magnetic fields.

This conclusion is still consistent with the seconds-long spin-relaxation times
measured for an ensemble of Mo defects [19] at temperatures where direct spin-
flips dominate the spin-relaxation processes. In this case, the most abundant Mo
isotopes (∼75%) have zero nuclear spin, such that hyperfine coupling does not play
a role for the majority of the ensemble. Additionally, direct spin flips are not the
limiting process leading to spin relaxation at low temperatures for these defects,
such that these hyperfine-mediated spin flips are still likely to be slower than the
seconds-long spin-relaxation times. For V ensembles, where all of the naturally oc-
curring isotopes have a non-zero nuclear spin, hyperfine coupling to the central nu-
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cleus is always relevant. On the one hand, this coupling enables efficientmicrowave
control of the electronic spin, which can subsequently be read out optically. On the
other hand, these hyperfine-enabled electronic-spin transitions due to oscillating
magnetic and electric fields may enhance the defect sensitivity to neighboring spins
and lattice phonons, respectively. This may play a role on determining the spin-
relaxation times of these defect centers at low magnetic fields [31], at temperatures
where direct spin-flips dominate the spin relaxation processes. For this reason, a
full characterization of the spin-relaxation time of V defects at low magnetic fields
and temperatures remains relevant to determinewhether there is indeed a trade-off
between efficient spin control and slow spin relaxation. This will allow to identify
optimal ranges or protocols for operation of these defect centers as optically ac-
tive spin-qubits, where the defect centers are still addressable but robust against
environment-mediated spin-relaxation.

For quantum operation, not only spin-relaxation times, but also spin-coherence
times have significant implications. Our results indicate that the presence of hy-
perfine coupling may be responsible for extending the latter. The competing be-
havior of the hyperfine and the Zeeman interactions gives rise to energy eigenstates
with anticrossing points. For the particular defect configuration and KD depicted
in Fig. 5.3(a), these anticrossing points happen at zeromagnetic field, and thus pro-
vide clock transitions at these points [12, 34, 35]. There, the energy levels are not
dependent (to first order) on small variations of the magnetic field. This leads to a
suppression of decoherence and dephasing processes related to spectral diffusion,
which results in prolonged coherence times for the quantum states. For defects in
SiC, these processes are already partly reduced at finite magnetic fields (when com-
pared to silicon or diamond, for example) since the lattice contains two different
types of nuclear spins, and flip-flop processes between lattice nuclei are rare [36,
37]. Nonetheless, the small dependence of the energy eigenlevels on the magnetic
field magnitude means that, in this configuration, the defects are even less sensi-
tive to the existing flip-flop events between lattice nuclei. In samples with high de-
fect concentration, where individual defect centers feel each other, this decoherence
protection is expected to be most relevant, leading to increased coherence close to
these anticrossing configurations.

The coupling between the optically addressable electron spin and the potentially
long-lived nuclear spin provides a key ingredient for advanced quantum communi-
cation and computation architectures [8, 38, 39]. In the ground-state eigenstates,
electronic and nuclear spins are fully entangled [30]. At lowmagnetic fields and for
the Γ4 doublets, the eigenstates correspond to superpositions of nuclear spin states,
which may impact the nuclear spin coherence lifetime. The detailed understand-
ing of the coupling to external fields developed herein calls for experimental stud-
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ies of the coherence properties, and the development of bespoke decoupling meth-
ods to protect the quantum states. Conversely, these characteristics offer a wealth
of opportunities for the development of control methods which leverage the large
Hilbert space within the electron-nuclear spin manifold: the possibility of driving
spin transitions with oscillating electric fields along the symmetry axis of the defect
centers is technologically relevant, and may enable very efficient device architec-
tures [25–28]. Oscillating electric fields along this direction can be applied with
high amplitudes and in a very homogeneous manner in devices with parallel plate
capacitors, or in monolithic p-i-n junctions with defects embedded in the intrinsic
layer. Additionally, these results also indicate that strain modulation can be used
for electronic-spin control, enabling hybrid architectureswhere these defect centers
are entangled with mechanical oscillation modes [40].
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5.5.Appendices
5.5.1.Matrix representation of crystal-field Hamiltonian
A TM defect with one active spin in the 𝑑-orbitals of the TM core corresponds to
an electron with spin 𝑠 = 1/2 and orbital angular momentum 𝑙 = 2 (from the
𝑑-orbitals). Spatially, these states are affected by the combination of the cubic
and trigonal crystal fields. If we disregard the effect of bonding and assume that
these states are well-isolated from other core orbitals of the TM impurity due to
the Coulomb interaction with the nucleus, the basis states for the 𝑑 orbitals form a
complete basis set to describe the electronic wavefunction.

In free space, the 5 spherical harmonics 𝑌𝑚2 that span the 𝑑 orbital states are
degenerate. They form a 5-dimensional irreducible representation (irrep) of the
full rotation group SO(3). The 𝑑 orbital states can equally well be described by cubic
harmonics, which can be written in terms of spherical harmonics as

|𝑧2⟩ = 𝑌02 (5.15)

|𝑥𝑧⟩ = (𝑌−12 − 𝑌12 ) /√2 (5.16)

|𝑦𝑧⟩ = 𝑖 (𝑌−12 + 𝑌12 ) /√2 (5.17)

|𝑥𝑦⟩ = 𝑖 (𝑌−22 − 𝑌22 ) /√2 (5.18)

|𝑥2 − 𝑦2⟩ = (𝑌−22 + 𝑌22 ) /√2 (5.19)

In hexagonal SiC, the predominant symmetry at the TM defect is tetrahedral at
a silicon substitutional site [41]. The crystal field, which is the potential due to the
surrounding crystal with which the 𝑑 electron interacts, reflects this symmetry. The
5 spherical harmonics do not form an irrep of the cubic symmetry groups. There-
fore they are split by the crystal field into irreps of these groups. How the states
are split can be calculated using the theory of characters of representations. For
tetrahedral symmetry, the 5 states of the 𝑑 orbitals split into an orbital doublet and
an orbital triplet. The doublet is composed of the cubic harmonics |𝑥′2 − 𝑦′2⟩ and
|𝑧′2⟩, and the triplet by |𝑥′𝑦′⟩, |𝑥′𝑧′⟩ and |𝑦′𝑧′⟩. The primed cubic harmonics indi-
cate the direction of the cartesian coordinates in these functions, and are such that
the 𝑧′-axis coincides with a 4-fold rotational axis of the cubic field (between two
of the tetrahedral bonds). In the basis 𝑐𝑏′ defined by the primed cubic harmonics,
𝑐𝑏′ = {|𝑧′2⟩ , |𝑥′𝑧′⟩ , |𝑦′𝑧′⟩ , |𝑥′𝑦′⟩ , |𝑥′2 − 𝑦′2⟩}, the Hamiltonian for the cubic field is
diagonal, 𝐻𝑐𝑢𝑏 = 𝑑𝑖𝑎𝑔(𝐸𝑂𝑑 , 𝐸𝑂𝑡 , 𝐸𝑂𝑡 , 𝐸𝑂𝑡 , 𝐸𝑂𝑑), where 𝐸𝑂𝑑 and 𝐸𝑂𝑡 denote the shift
in energy of respectively the orbital doublet and triplet compared to the free 𝑑 elec-
tron.

At some lattice sites the cubic field has a trigonal distortion, which means that
the cubic symmetry is reduced to a 𝐶3v symmetry with the 𝐶3 axis along a body di-
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agonal of the cubic field, or the direction of the distortion. An adequate basis set for
this particular crystal field is the set 𝑐𝑏 = {|𝑧2⟩ , |𝑥𝑧⟩ , |𝑦𝑧⟩ , |𝑥𝑦⟩ , |𝑥2 − 𝑦2⟩}, where
the 𝑧-axis is parallel to the 𝐶3 rotational axis. This particular symmetry splits the
degeneracy of the states in 𝑐𝑏 into two orbital doublets and a singlet. The sets of
cubic harmonics {|𝑥𝑧⟩ , |𝑦𝑥⟩} and {|𝑥𝑦⟩ , |𝑥2 − 𝑦2⟩}, respectively, make up the orbital
doublets, whereas the {|𝑧2⟩} corresponds to the orbital singlet. Thus, in the basis 𝑐𝑏,
the Hamiltonian for the trigonal field is 𝐻𝑡𝑟𝑖𝑔 = 𝑑𝑖𝑎𝑔(𝐸𝐶0, 𝐸𝐶1, 𝐸𝐶1, 𝐸𝐶2, 𝐸𝐶2), where
𝐸𝐶0, 𝐸𝐶1 and 𝐸𝐶2 denote the shift in energy of respectively the orbital singlet and
doublets compared to the free 𝑑 electron.

It is useful to take the basis states with the spin of the electron included. A con-
venient basis set is the direct product of spherical harmonics and spin states. Let
𝑠𝑏 = {|2⟩ , |1⟩ , |0⟩ , |−1⟩ , |−2⟩} be a basis in terms of spherical harmonics where |𝑚⟩
denotes the spherical harmonic 𝑌𝑚2 . The basis we use is then {𝑠𝑏 |↑⟩ , 𝑠𝑏 |↓⟩}, where
|↑⟩ and |↓⟩ denote the electron-spin projection along the 𝑧-axis. In order to trans-
form 𝐻𝑐𝑢𝑏 and 𝐻𝑡𝑟𝑖𝑔 to this basis, the cubic harmonics need to be transformed to
spherical harmonics, and 𝐻𝑐𝑢𝑏 also needs to be rotated from the primed to the un-
primed basis. The transformation from cubic to spherical harmonics is given by
equations (5.15) to (5.19). The rotation from the primed to unprimed basis can be
described by the three Euler angles 𝛼, 𝛽 and 𝛾, around the 𝑧, 𝑥, and 𝑧 axis respec-
tively in this particular order. This rotation is described by 𝛽 = arccos(1/√3) and
𝛾 = 3

4𝜋. The angle 𝛼 has no effect on the direction of 𝑧-axis. However, choosing
𝛼 = 0 results in the simplest Hamiltonian. The rotation of spherical harmonics
can be done by using the Wigner D matrix with these Euler angles. After 𝐻𝑐𝑢𝑏 and
𝐻𝑡𝑟𝑖𝑔 have been transformed to the basis 𝑠𝑏, the total Hamiltonian can be written
in block-diagonal form by reordering the basis states. The matrix blocks are

ℋ1 = ℋ2 = [
1
3 (3𝐸𝐶2+𝐸𝑂𝑑+2𝐸𝑂𝑡) − √2𝑖3 (𝐸𝑂𝑑−𝐸𝑂𝑡) 0

√2𝑖
3 (𝐸𝑂𝑑−𝐸𝑂𝑡) + 13 (3𝐸𝐶1+2𝐸𝑂𝑑+𝐸𝑂𝑡) 0

0 0 𝐸𝐶0+𝐸𝑂𝑡

] (5.20)

ℋ3 =
⎡
⎢
⎢
⎢
⎣

1
3 (3𝐸𝐶1+2𝐸𝑂𝑑+𝐸𝑂𝑡)

√2𝑖
3 (𝐸𝑂𝑑−𝐸𝑂𝑡) 0 0

− √2𝑖3 (𝐸𝑂𝑑−𝐸𝑂𝑡)
1
3 (3𝐸𝐶2+𝐸𝑂𝑑+2𝐸𝑂𝑡) 0 0

0 0 1
3 (3𝐸𝐶2+𝐸𝑂𝑑+2𝐸𝑂𝑡) − √2𝑖3 (𝐸𝑂𝑑−𝐸𝑂𝑡)

0 0 √2𝑖
3 (𝐸𝑂𝑑−𝐸𝑂𝑡)

1
3 (3𝐸𝐶1+2𝐸𝑂𝑑+𝐸𝑂𝑡)

⎤
⎥
⎥
⎥
⎦

(5.21)
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with corresponding basis states

ℋ1 ∶ (|2⟩ |↑⟩ , |−1⟩ |↑⟩ , |0⟩ |↓⟩) (5.22)

ℋ2 ∶ (|−2⟩ |↓⟩ , |1⟩ |↓⟩ , |0⟩ |↑⟩) (5.23)

ℋ3 ∶ (|1⟩ |↑⟩ , |−2⟩ |↑⟩ , |2⟩ |↓⟩ , |−1⟩ |↓⟩) (5.24)

The matrix blocksℋ1 andℋ2 are the same, and both have in general three dis-
tinct eigenvalues. Thismeans that for each eigenstate ofℋ1 there is an eigenstate of
ℋ2 with the same energy. Combined, the eigenstates ofℋ1 andℋ2 describe three
doublets. The matrix block ℋ3 has only 2 distinct eigenvalues and therefore de-
scribes 2 doublets, meaning that all eigenstates of the total Hamiltonian are at least
doubly degenerate. This is in accordance to Kramers theorem, which states that
for systems with half integer spin and time-reversal symmetry every state is at least
doubly degenerate. When the nuclear spin is not included, the two electronic-spin
states in a doublet are each others time-conjugate. This is indeed the case for our
system.

5.5.2. Effect of varying parameter 𝑘
In order to restrict the parameter range that we use to model the V defects in SiC
associated with the 𝛼 line, we look at regions where the model reproduces the ex-
perimental 𝑔-parameters and the spin-orbit splitting between ground state KDs.
This agreement can be obtained for 𝑘 values between 0.18 and 0.37. The 𝑘 value
has a strong influence on the relative trigonal crystal field strength 𝜂, but not on the
SOC parameter 𝜆 (Fig. 5.4). Fig. 5.5(a-d) and 5.5(e-f) show the magneto-spectra
obtained for the parameters corresponding to Fig. 5.4(a) and 5.4(b), respectively.
The qualitative shape of the spectra does not change significantly when we consider
different values of 𝑘, and neither does the order of magnitude of the Rabi frequen-
cies obtained. We note, however, that lower 𝑘-values (which consequently require
a larger trigonal crystal field) result in lower Rabi frequencies due to interactions
with electric fields parallel to the crystal c-axis, and magnetic fields perpendicular
to this direction.
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Figure 5.4: Effect of varying the parameter 𝑘 on parameters 𝜂, 𝜆 that match experimental observations.
Values of 𝑘 between 0.18 (panel 5.4(a)) and 0.37 (panel 5.4(b)) provide parameter ranges that describe
the experimental results well. Low 𝑘 values require stronger trigonal crystal fields (larger 𝜂). In contrast,
the value of the SOC parameter (𝜆) does not depend strongly on the value of 𝑘.

Figure 5.5: Effect of varying the parameter 𝑘 on magneto-spectra of the Γ4 doublets. Results are as
presented in the main text for Fig. 5.3. We use the parameter range determined in Fig. 5.4(a) to obtain
the plots in panels 5.5(a-d), and the parameters corresponding to Fig. 5.4(b) to obtain the plots in panels
5.5(e-f).
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5.5.3. Eigenstates and allowed transitions for Γ5,6 doublet
We can numerically obtain the results presented in Fig. 5.3 of the main text for the
ground-state Γ5,6 doublet. The shape of the magneto-spectrum differs from what
Fig. 5.3 of the main text presents for the Γ4 doublet. Fig. 5.6 shows that, for the Γ5,6
doublet there are no levels whose energy increases purely linearly with the applied
magnetic field. This is the most striking feature, and would be visible in magnetic
resonance spectra. Additionally, the spacing between the hyperfine levels is larger
and more clearly resolved than for the Γ4 doublet. These features can be used to
identify the experimentally observed lowest-energy doublet as being of the Γ4 type.

Finally, we note that the Γ5,6 doublet in the defect associated with the 𝛼 line is
2.18 meV above the lowest energy KD, such that its equilibrium population is re-
duced at cryogenic temperatures according to the Boltzmann factor. Nonetheless,
a weak signal of these states’ spin properties may be visible at intermediary temper-
atures, where 𝑘𝐵𝑇 ≈ Δ𝑆𝑂𝐶 . We note that, for the Γ5,6 doublets, electronic magnetic
resonance with oscillating fields perpendicular to the c-axis (Fig. 5.6(c)) is not pos-
sible due to the symmetry restricted 𝑔⊥ = 0. Only nuclear magnetic resonance lines
are present in this case, at very low frequencies. Nonetheless, electronic magnetic
resonance with an oscillating field along the symmetry axis of the defect remains
possible (Fig. 5.6(d)).

Figure 5.6: (a) Energies of the 12 eigenstates corresponding to the Γ5,6 ground-state electronic-spin dou-
blet, hyperfine-coupled to a central nucleus with a spin-5/2, as a function of the static magnetic field 𝐵0
applied parallel to the c-axis. Results were obtained numerically (colored lines), and by diagonalizing
the effective-spin Hamiltonian associated with a Γ5,6 doublet (dashed line). (b-d) Microwave resonance
lines obtained numerically for an oscillatingmagnetic field parallel (b) or perpendicular (c) to the c-axis,
or an oscillating electric field parallel (d) to the c-axis. The thickness of the resonance lines corresponds
to their Rabi frequencies, with different scales in each plot. Scales are provided by the labels and ar-
rows, indicating the Rabi frequency at a certain point. (b) If the static field is small (Zeeman splitting
comparable to hyperfine coupling strength), a small oscillating magnetic field (𝐵1 ≈ 100 𝜇T) parallel to
the c-axis leads to very efficient electronic-spin transitions with Rabi frequencies on the order of 1MHz.
These resonances weaken significantly as the static magnetic field increases. (c) In a Γ5,6 doublet, di-
rect interaction with an oscillating field perpendicular to the c-axis is symmetry forbidden. Only nuclear
spin transitions are observed in this case. (d) A large enough electric field parallel to the c-axis leads to
electronic spin transitions as explained in the text.
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5.5.4. Interaction with electric fields
We obtain the matrix representation of the effect of an oscillating electric field by
investigating the matrix elements of a trigonal crystal field as in equations (5.20,
5.21), with 𝐸𝑂𝑑 = 𝐸𝑂𝑡 = 0 and 𝐸𝐶2−𝐸𝐶1 = 𝐸𝐶0 = 1meV.We use, as basis states, the
|Γ𝑖 , ↑↓⟩ as defined in the main text (see caption of Fig. 5.2 in the main text).

Figure 5.7: (a) Matrix elements due to an oscillating electric field parallel to the c-axis, in the basis
defined by the crystal field, spin-orbit coupling and a small magnetic field (20 mT) along the c-axis,
for the two ground state Kramers doublets (|Γ4 , ↑↓⟩ and |Γ5,6 , ↑↓⟩), without hyperfine coupling. White
matrix elements correspond to zero. Within each KD (contoured block diagonal parts of the full matrix),
an electric field parallel to the c-axis does not lead to electric microwave transitions, consistent with the
restrictions from Kramers theorem [19, 21]. (b) Same as (a), but with the hyperfine interaction between
electron and the central nuclear spin added to the static Hamiltonian. In this case, the electronic spin
can flip via electric microwave transitions driven by an oscillating field parallel to the c-axis.

5.5.5. Results for 𝛽-line V defects
In 4H-SiC, V can occupy two different lattice sites, which gives rise to defects with
distinct optical transitions and electronic configurations [17, 22–24]. The defect
associated with the 𝛼 line is subject to the strongest trigonal crystal field and shows
the largest values for spin-orbit splitting between the two ground-state KDs. We
base our analysis in the main text on this lattice site, since it is most similar to the
recently explored Mo defects [14, 19]. Nonetheless, we can repeat the procedure of
the main text for the defects associated with the 𝛽 line as well, which we present
here. Fig. 5.8 shows that in order to reproduce the experimentally observed energy
splittings for the ground state of these defect centers, we need to take much weaker
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trigonal fields (𝜂 = −0.2 for the 𝛽 line, versus 𝜂 = −0.4 for the 𝛼 line, with the same
value of 𝑘). Also the spin-orbit parameter 𝜆 is reduced from 17 meV in the 𝛼-line
defect to ∼5 meV in the 𝛽-line defect.

Although the hyperfine spectra obtained with these parameters are qualitatively
similar to those shown in the main text for the 𝛼 defect, there are some differ-
ences that are worth noting. At large magnetic fields, the energies of the hyper-
fine sublevels of the Γ4 doublet are more closely spaced (Fig. 5.9(a)), giving rise to
magneto-resonance spectra where the hyperfine lines are less clearly distinguish-
able (Fig. 5.9(b-d)). This may have consequences for experimental schemes that
rely on being able to resolve these spin transitions and address them independently.
Additionally, we note that for the Γ5,6 KD of the V defect in the 𝛽 configuration,
electronic-spin transitions due to oscillating magnetic fields perpendicular to the
symmetry axis of the defect arise (Fig. 5.9(g)). This is in contrast to what Fig. 5.6(c)
presents for the 𝛼 line. In the 𝛽-line defect, since the SOC splitting between ground-
state doublets is small, a magnetic field perpendicular to the symmetry axis canmix
the Γ4 and Γ5,6 doublets. This causes that the symmetry protection with regards to
spin transitions due to oscillating magnetic fields perpendicular to the c-axis ob-
served for the 𝛼-line defect is not as effective at the 𝛽-line defect.

Figure 5.8: Parameters that reproduce the ground-state energy splittings of a V defect responsible for
the 𝛽-line in 4H-SiC [23], for 𝑘 = 0.3.
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Figure 5.9: Hyperfine level structure and allowed microwave transitions of the Γ4 (a-d) and Γ5,6 (e-h)
doublets in a 𝛽-line defect with parameters as obtained in Fig. 5.8.

5.5.6. Effective-spin Hamiltonian

In order to obtain analytical expressions for the effective-spin Hamiltonians, we
diagonalize the Hamiltonians in equations (5.20, 5.21) algebraically. To do this, we
parametrize the terms 𝐸𝑂𝑑,𝑂𝑡 and 𝐸𝐶0,𝐶1,𝐶2, such that

Δ = 𝐸𝑂𝑡 − 𝐸𝑂𝑑 (5.25)

Δ𝐸 = 𝐸𝐶1 − 𝐸𝐶2 = 𝜂Δ (5.26)

𝜖𝑇𝑑 = (𝐸𝑂𝑡 + 𝐸𝑂𝑑)/3 (5.27)

𝜖𝐶3 = (𝐸𝐶1 + 𝐸𝐶2) (5.28)

and pick 𝜖𝑇𝑑, 𝜖𝐶3 such that the energies are centered at zero.

This results in a crystal-field Hamiltonian in terms of the parameters 𝜂, Δ and
Δ𝐴 (as defined in the main text)
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(5.30)

Within the ground state manifold, composed by the lowest-energy Γ4 and Γ5,6 dou-
blets, this Hamiltonian has eigenstates [20, 21]

|Γ𝑔4 , ↑⟩ = sin(𝜙) |2, ↑⟩ + 𝑖 cos(𝜙) |−1, ↑⟩ (5.31)

|Γ𝑔4 , ↓⟩ = sin(𝜙) |−2, ↓⟩ + 𝑖 cos(𝜙) |1, ↓⟩ (5.32)

|Γ𝑔5,6, ↑⟩ = sin(𝜙) |−2, ↑⟩ + 𝑖 cos(𝜙) |1, ↑⟩ (5.33)

|Γ𝑔5,6, ↓⟩ = sin(𝜙) |2, ↓⟩ + 𝑖 cos(𝜙) |−1, ↓⟩ (5.34)

in terms of the parameter

𝜙 = atan( 2√2

1 − 3𝜂 + 3√1 + 𝜂2 − 2
3𝜂
) (5.35)

The parameter 𝜙 thus indicates the relative strengths of the trigonal and tetrahe-
dral crystal fields. For 𝜂 = 0, where there is no trigonal component in the crystal
field, 𝜙 = 35.26𝑜. In contrast, if the trigonal contribution is much larger than the
tetrahedral contribution, 𝜂 = ±∞, such that 𝜙 = 90𝑜 and 𝜙 = 0𝑜, respectively. In
these latter cases, the eigenstates fully coincide with the spherical harmonics with
the 𝑧-axis along the 𝐶3 symmetry axis.

In order to obtain the analytical expressions for the effective-spin Hamiltonians
presented in the main text, we include spin-orbit coupling to first order. That is,
we assume that the SOC energy splitting is big enough to isolate the KDs Γ𝑔4 and
Γ𝑔5,6 from each other, but disregard the effect of SOC in mixing ground and optically
excited-state doublets. We then write the Hamiltonians corresponding to the Zee-
man energy and the hyperfine interaction in the basis given by {|Γ4,(5,6), ↑↓,𝑚𝑖⟩}),
where𝑚𝑖 corresponds to the nuclear spin projection along the 𝑧-axis.

We obtain the effective-spin Hamiltonians presented in Eqs. 5.7-5.10, with pa-
rameters
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⎧
⎪

⎨
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⎩
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7𝐴(7𝑘 − 1)(3 sin

2(𝜙) − 1)
𝑎⊥ = 6

7𝐴 cos
2(𝜙)

𝑔∥ = 2(𝑘(3 sin2(𝜙) − 1) + 1)
𝑔⊥ = 0

(5.36)

Γ5,6

⎧
⎪

⎨
⎪
⎩

𝑎∥ = 2
7𝐴(7𝑘 + 1)(3 sin

2(𝜙) − 1)
𝑎⊥ = 6

7𝐴 sin(2𝜙)
𝑔∥ = 2(−𝑘(3 sin2(𝜙) − 1) + 1)
𝑔⊥ = 0

(5.37)

with parameteres 𝐴, 𝑘 as defined in the main text. A first-order correction to the
wavefunctions due to spin-orbit coupling modifies 𝑔⊥ for the Γ4 doublet, giving rise
to a small non-zero 𝑔⊥ on the order of (𝑘𝜆/Δ). This does not happen for the Γ5,6
doublet.

To obtain these values, we have relied on the fact that the hyperfine coupling
and the Zeeman interaction with the magnetic fields are both much smaller than
the spin-orbit related energy splitting between the KDs. This is valid in the case of
the 𝛼-line defect. For the defects responsible for the 𝛽 and 𝛾 lines, where the SOC
splitting is smaller, mixing between the Γ4 and Γ5,6 KDs due to magnetic fields and
interactionwith the nuclear spin become relevant, and the validity of these effective-
spin-1/2 Hamiltonians in describing the energy levels and allowed transitions is
limited.
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chapter 6
Spectroscopy and dynamics of vanadium
defects in SiC

Transition metal defects in SiC give rise to localized electronic states that can be
optically addressed in a material system widely used in the semiconductor indus-
try. Vanadium defects in the neutral charge state in particular have optical tran-
sitions directly in the telecom O-band. Here, we characterize the optical spectrum
of these defect centers based on emission and absorption techniques. We analyze
these spectra in light of the electronic structure of the defect and experimentally
determine the oscillator strength of the optical transitions. We characterize the
spin structure of ground and excited states via two-laser spectroscopy. Based on
time-resolved experiments, we show that these defects have ground-state spin re-
laxation times on the order of a ms at 2 K. The magnetic-field dependence of the
spin-relaxation time provides evidence for hyperfine-induced pathways for spin
relaxation.

6.1. Introduction

D efects in semiconductors that are optically active (color-centers) and have sta-
ble ground-state spins are an interesting platform for the implementation of

quantum technologies [1–7]. Spins in these platforms can be entangled over long-
distances via optical pulses [8–11] and integrated in semiconductor devices [12–
15]. These are two important features for the development of quantum repeaters
[6], which promise to extend the maximum entanglement distance in a quantum
network via intermediary nodes capable of temporarily storing and extending the
entangled state. Integrating the repeater networkwith existing telecommunications
infrastructure is facilitated by spin-active color centers that have optical transitions
in the telecom bands. Vanadium defects in SiC combine this last feature with an
electronic spin-1/2 ground state and a naturally abundant spin-7/2 nucleus and
have attracted significant interest in recent years [16–21]. The coupled electronic-
nuclear spin system may lead to a hybrid qubit that benefits from the optical ad-
dressability of electronic spins and memory-compatible long coherence times of
nuclear spins [22–25].
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Recent work on these defect centers has unraveled a bright defect [16, 17] with
a rich ground-state electronic structure due to the coupled nuclear and electronic
spins. Combined, the large number of available hyperfine-coupled eigenlevels and
the relatively short spin-relaxation times (𝜇s) of these defects at 4 K [16] contribute
to low contrast in optical experiments aimed at unraveling the defect level struc-
ture [26]. Additionally, V is an amphoteric (it is stable in several different charge
states depending on the Fermi level of the crystal) impurity in the SiC lattice [27],
such that disentangling charge and spin dynamics may be a challenge. Thus, the
full characterization of the magneto-optical spectrum relies on both extending the
spin-relaxation time, and designing and implementing spin-initialization protocols.
The former requires identifying the physicalmechanisms responsible for spin relax-
ation, whereas the latter requires characterization of the hyperfine-coupled spec-
trum with high contrast.

Here, we characterize an ensemble of V defects in 4H-SiC with respect to their
optical transitions using all-optical techniques based on both emission and novel
absorption approaches. The absorption spectra obtained allow us to experimen-
tally determine the magnitude of the transition dipole moment for transitions be-
tween ground and optically-excited states in these defect centers, on the order of
0.1 to 1 D (1 D ≈ 0.2 𝑒Å). Furthermore, we show that absorption techniques pro-
vide increased contrast in two-laser spectroscopy experiments that allow us to ac-
cess the spin-resolved optical transitions within the inhomogeneously broadened
ensemble. These results allow us to improve on the previous determination of spin-
Hamiltonian parameters [16, 20, 28]. Finally, we show that the spin-relaxation
time of these defects is extremely temperature dependent in the few-kelvin range,
improving by an order of magnitude when cooling from 3 to 2 K. The magnetic-
field dependence of the spin-relaxation time shows that the spin-relaxation rate is
maximum when the electronic Zeeman energy is comparable to the magnitude of
the hyperfine interaction. This provides evidence that hyperfine-induced mixing
of electronic states leads to additional relaxation pathways that dominate the spin-
relaxation processes at these temperatures, as predicted in chapter 5.

6.1.1. The 𝛼-line V defect: review of earlier results
Vanadium defects in SiC that are optically active in the telecom bands are com-
posed of a V impurity substituting a Si atom in the lattice (Fig. 6.1(a)). The substi-
tutional impurity may occupy lattice sites with varying local symmetries, giving rise
to defects that are optically active at different wavelengths. In 4H-SiC, two lines are
present, denoted as 𝛼 and 𝛽 depending on their photon energy (the 𝛼-line happens
at higher photon energy than the 𝛽-line). The 𝛼-line associated with V defects cor-
responds to optical transition at approximately 1278 nm or 0.968 eV (Fig. 6.1(c)).
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These lines are associated with a defect center with the symmetries of the point
group 𝐶3v. Initial results assigned this line to a defect where V substitutes a Si atom
in a quasi-hexagonal lattice site (Fig. 6.1(a)) in the SiC lattice [16, 29]. This was due
to the fact that the quasi-hexagonal site has second-nearest neighbors distributed
in a trigonal-prismatic geometry. Recent ab initio results [17, 19], however, have
shown that the quasi-cubic site (Fig. 6.1(b))may have stronger influence of a crystal
field with 𝐶3v symmetry due to the protruding 𝑝𝑧 orbital of the third-nearest neigh-
bor. To avoid confusion and be consistent with the existing literature we will refer
to the defect as the 𝛼-line V defect.

As discussed previously in Sec. 5.1.1, the ground and optically-excited states of
these defects are each composed of a set of twoKramers doublets (KDs) arising from
spin-orbit-split orbital doublets [16, 19, 29, 30] (see Fig. 6.2(a,b)). The spin-orbit
splitting is on the order of 2meV in the ground state and 1meV in the excited state.
This electronic structure arises from an electron localized in the 𝑑 orbitals of the
transition metal (TM), in an environment with the symmetries of the point group
𝐶3v and strong spin-orbit coupling. Each Kramers doublet behaves as an effective
spin-1/2 system (where the effective-spin properties depend on both orbital and
spin degrees of freedom), such that the degeneracy is broken in the presence of a
static magnetic field.

We will denote each Kramers doublet according to their symmetry properties
(that is, the irrep of point group 𝐶3v that describes how these states transform) as
Γ4 or Γ5,6 (see Tab. A.1 and Fig. 6.2(b)). These symmetry properties lead to well-
defined selection rules for optical excitation and emission (Fig. 6.2(b), and see also
Sec. 4.5.4). They also determine how the effective electronic spin couples to ex-
ternal magnetic fields. States transforming as Γ5,6 only have contributions from
orbital wavefunctions that have a non-zero orbital angular momentum projection
along the symmetry axis of the defect. These states always have the electron spin
and orbital angular momentum projections along the crystal c-axis, with spin pro-
jection pointing parallel or antiparallel to the orbital angular momentum projec-
tion [18, 19, 30, 31]. Due to symmetry, these states have identically-zeromatrix ele-
ments for the Zeeman interactionwithmagnetic fields perpendicular to the symme-
try axis of the defect center. These symmetry restrictions for interaction with mag-
netic fields perpendicular to the natural symmetry axis were also shown to suppress
spin-relaxation mechanisms in the case of Mo defects in SiC (which are analogous
to 𝛼-line V defects, see chapter 3 or Ref. [30]). In contrast, states transforming as
Γ4 may have contributions from orbital states with zero orbital angular momentum
projection along the symmetry axis of the defect centers. These states may interact
(albeit very weakly in some defect configurations) with magnetic fields perpendic-
ular to the crystal c-axis.
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Figure 6.1: Defect geometry and photoluminescence spectrum. (a,b) Possible lattice sites oc-
cupied by a substitutional V defect in 4H-SiC. (c) Photoluminescence spectrum showing the 𝛼-line
associated with V defects and its temperature dependence. The zero-phonon line has photon energy
of ∼ 0.97 eV and its first phonon-replica, ∼0.95 eV. The phonon replica is surrounded by broad and
temperature-dependent phonon-sideband emission. Photoluminescence is collected in a direction per-
pendicular to the excitation direction. The 𝛼-line is related to a defect with strong 𝐶3v symmetry, with
the rotational axis parallel to the crystal c-axis. It has been proposed that it is related to a defect where
the V impurity substitutes a Si in a quasi-hexagonal (a) or quasi-cubic (b) lattice site.

Theparticular ordering of the doubletswith respect to their symmetries has been
a subject of confusion in recent literature. The magneto-optical spectra related to
this defect showed no Zeeman splitting in the ground state when subject to an exter-
nal magnetic field perpendicular to the crystal c-axis. This led to initial identifica-
tion of the lowest-energy ground-state doublet as being of the Γ5,6 type [16, 18, 29].
Ab initio results, however, suggested that the lowest-energy ground-state doublet
should be of the Γ4 type [19]. These findings were corroborated by a comparison
of the hyperfine-resolved spectrum with the effective-spin Hamiltonians obtained
theoretically for KDs of different symmetry types ([20, 21] and chapter 5).

For analysis of the hyperfine effects, it should be noted that over 99% of natu-
rally occurring vanadium is of a single isotope type, with a nucleus with spin-7/2.
The hyperfine interaction is much smaller than the spin-orbit energy splitting be-
tween different KDs [16], such that we can disregard hyperfine-induced mixing of
different KDs. The form of the hyperfine coupling term in each KD depends on
the KD symmetry as well, such that the effective-spin Hamiltonian of each doublet
is irrep-dependent [20, 21], and can be found in Sec. 5.3.4. In chapter 5 we built
on this to predict that the hyperfine interaction leads to additional spin-relaxation
pathways for the electronic spin.

6.2.Ordering of states and optical-transition line prop-
erties

We characterize the electronic structure of the V defects associated with the 𝛼-line
in 4H-SiC using various optical spectroscopy techniques. Initial characterization
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of the photoluminescence spectra related to these defects (see Sec. 6.6 for details
on the measurement setup) shows a narrow zero-phonon line (ZPL) at approxi-
mately 0.97 eV (∼ 1278 nm), followed by broad phonon-sideband (PSB) emission
between 0.97 and 0.9 eV (1278 and 1377 nm). Spectroscopy with higher resolution
(below) shows that the ZPL line consists in fact of multiple lines close in energy.
The phonon-sideband emission is suppressed, but not absent, at low temperatures.
Additionally, we can identify a sharp peak at∼ 0.945 eV, corresponding to a phonon
replica of the zero-phonon line. This phonon replica indicates that the defects’ elec-
tronic states couple to quantized vibrational modes that are well-localized around
the defect center. Besides this phonon replica, the phonon sideband also contains
a very broad feature that starts (almost) at the ZPL energy. This broad feature
indicates that the defect can also decay optically into vibrational states where the
electronic ground state is coupled to very low-energy delocalized lattice vibrational
modes. This is in contrast to what we observed forMo defects (chapter 4), for which
there is a gap between the ZPL and the onset of the phonon-sideband emission [31].

We investigate these defect centers using photoluminescence-excitation (PLE)
and absorption spectroscopy at zeromagnetic field (Fig. 6.2(d-g)) in order to resolve
the different Kramers doublets pertaining to ground and optically-excited states.
In these measurements, we excite the defect centers at resonance with a tunable
continuous-wavelength (CW) laser whilemeasuring the phonon-sideband emission
or power of the transmitted laser beam (see Fig. 6.2(c)). Details of themeasurement
geometry and setup are provided in Sec. 6.6. We vary the polarization of the excita-
tion laser such that the electric field is polarized parallel (Fig. 6.2(d,e)) or perpen-
dicular (Fig. 6.2(f,g)) to the crystal c-axis. This axis coincides with the three-fold
rotational axis of the defects. In the PLE spectra (Fig. 6.2(d,f)), we plot the nor-
malized phonon-sideband emission as a function of laser energy. In contrast, in the
absorption spectra (Fig. 6.2(e,g)) we plot the negative log of the transmitted power,
normalized to the off-resonance transmitted power.

In these spectra, we can identify 4 optical transition lines, at energies 967.3,
968.1, 969.5 and 970.3 meV. The two lines at the highest energies are present at
all temperatures in both PLE and absorption spectra. In contrast, the two lines of
lowest energies are absent in both PLE and absorption spectra at low temperatures
(2 K), and only appear as the sample is warmed up. This is evidence that these two
latter optical transition lines arise from excitation of defects that are in the doublet
|G2⟩, where we use the notation of Fig. 6.2(a). This doublet is not thermally popu-
lated at 2 K. In this way, we can determine the spin-orbit energy splitting between
the two Kramers doublets in the ground and optically-excited states to be respec-
tively 2.2 and 0.8meV, in agreement with previous experimental results [16, 29].

The selection rules for the optical transitions allow us to unequivocally deter-
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Figure 6.2: Photoluminescence-excitation and absorption spectroscopy. (a) Electronic struc-
ture of the defects, arising from a single electron in the 𝑑-orbitals of the transition metal impurity in
an environment with strong 𝐶3v symmetry and spin-orbit coupling. (b) Ground and optically-excited
states are each composed of two KDs, with specific symmetry-related selection rules for optical transi-
tions due to electric fields parallel or perpendicular to the crystal c-axis. (c) Experimental geometry for
PLE (spectra in d,f) and absorption (spectra in e,g) detection. (d,f) Sample phonon-sideband emission
as a function of the excitation laser photon energy for optical electric fields polarized parallel (d) and per-
pendicular (f) to the crystal c-axis. (e,g) Power of a transmitted beam through the sample as a function
of the excitation laser photon energy, for optical electric fields polarized parallel (e) and perpendicular
(g) to the crystal c-axis. The temperature and polarization dependence of the spectra (see main text)
allow us to determine that the ordering of ground and excited state doublets with regards to symmetry
properties is as shown in (b). The excited state |ES3⟩ is far above |ES2⟩ in energy [16, 17] and cannot be
seen in these spectra.

mine what the symmetry character of each doublet is. Group theory determines
that transitions between two doublets transforming as Γ5,6 are only allowed with
light polarized parallel to the symmetry axis of the defect. Transitions between a
doublet transforming as Γ4 and a doublet transforming as Γ5,6 (and vice-versa) are
only allowed with light polarized perpendicular to this symmetry axis, and transi-
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tions between two doublets transforming as Γ4 are allowed with light polarized both
parallel and perpendicular to the symmetry axis (see Fig. 6.2(b), Sec. 4.5.4). We
check this via PLE and absorption spectroscopy. It should be noted that in absorp-
tion, since we measure the power of the transmitted laser beam, the polarization
of the excitation beam is homogeneous throughout the addressed ensemble. This
provides maximum dependency of the line strength on the polarization of the ex-
citation beam. In contrast, PLE signals may have contributions from defects that
are optically driven by scattered light. Thus, these measurements show weaker de-
pendence on the polarization of the excitation beam. Inspection of the PLE and
absorption spectra in Fig. 6.2(d-e) shows that the outer optical transition lines (at
967.3 and 970.3 meV) appear when we excite the sample with light polarized par-
allel to the symmetry axis of the defects. In contrast, the inner lines (at 968.1 and
969.5meV) appear when the excitation laser is polarized perpendicular to the crys-
tal c-axis. Thus, we conclude that the lowest Kramers doublet in the ground-state
manifold has Γ4 symmetry character, in agreement with predictions based on ab
initio calculations and analysis of the hyperfine structure of the doublet ([19–21]
and chapter 5). In the optically-excited state manifold, the ordering of the doublets
is inverted, such that the Γ5,6 doublet is lowest in energy (see Fig. 6.2(b,d)).

The homogeneous linewidth associated with these defects is expected to be or-
ders of magnitude narrower than the ensemble-broadened inhomogeneous lines
[16, 17]. Thus, the PLEand absorption linewidths are dominated by inhomogeneous
broadening of the optical transitions. In both PLE and absorption spectra, each of
the four different optical transition lines is broadened by different amounts, indicat-
ing that the KDs differ in how sensitive they are to lattice inhomogeneities. The Γ4 →
Γ4 transition is the broadest in both PLE and absorption spectra, whereas the Γ5,6 →
Γ5,6 transition is the narrowest. In the absorption spectrum in Fig. 6.2(e), these
optical transitions have full widths at half maximum of 0.17 meV and 0.05 meV,
respectively (corresponding to 41 and 14 GHz). This indicates that the energies of
states transforming as Γ4 are more susceptible to inhomogeneous broadening due
to varying local environments. According to symmetry, the energy of states trans-
forming as Γ5,6 should be, in first order, insensitive to electric fields perpendicular
to the symmetry axis of the defect (see Sec. 4.5.4 and Tab. A.2). This is not true for
states transforming as Γ4.

Finally, we can estimate the transition dipolemoments for the optical transitions
based on the absorption spectra in Fig. 6.2(e,g) (see Sec. 6.7.1). This estimation de-
pends inversely on the square root of concentration of defect centers responsible
for the optical transitions. As we mentioned before, V defects can occupy different
lattice sites, and can exist in different charge states. The ratio of defects in differ-
ent sites depends on the formation energy for each defect configuration and crystal
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growth temperature [32–34]. We do observe in our samples photoluminescence
from both 𝛼 and 𝛽 defect configurations with similar efficiency, which indicates
significant population of both types of defects. The distribution of charge states
depends mainly on the Fermi level of the SiC crystal, but also on the strain con-
figuration of the lattice. In our experiments, we could see no slow ionization of the
defects [30, 35–37], indicating that the optically addressed charge state is relatively
stable. Our samples are specified to be semi-insulating, with total V concentration
on the order of 1017 cm-3. This value provides an estimate for the transition dipole
associated with the Γ4 → Γ5,6 transition at 969.5 eV on the order of 0.1 D. Since only
part of the vanadium impurities occupies the correct lattice site and charge state,
this value provides a lower bound for the actual transition dipole moment associ-
ated with these defect centers. Thus, this value is in reasonable agreement with an
estimate obtained based on the radiative lifetime of the optically-excited state [17,
21] (≈ 1 D).

6.3.Hyperfine structure
In order to characterize the hyperfine-coupled energy levels associated with these
defect centers we use a two-laser spectroscopy technique [39–41]. Here, we apply
a magnetic field at an angle 𝜙 with respect to the crystal c-axis, as shown in the in-
set of Fig. 6.3(a). We use two excitation beams to excite the sample, and we scan
the detuning between the photon energies in each beam with sub-MHz resolution
(see Sec. 6.6 for details). We focus on the optical transition at 969.5 eV, since this
line showsmoderate inhomogeneous broadening and is related to the lowest-energy
ground-state doublet. This means that we focus on characterizing the spin proper-
ties of the Γ4 ground-state doublet and the Γ5,6 excited-state doublet. Both excitation
beams are polarized perpendicular to the crystal c-axis. We use a lock-in setup and
temporal modulation of the excitation beams (Fig. 6.3(a), and Sec. 6.6 for details)
to greatly reduce the influence of single-laser absorption processes in our signal,
focusing instead on the component of the transmitted signal due to simultaneous
excitation with the two optical fields.

Using this technique, we can resolve energy splittings smaller than the inhomo-
geneous broadening of the optical transition lines. This is due to the fact that the
splitting between hyperfine-coupled sublevels is much less sensitive to crystal in-
homogeneities than the splitting between ground and optically-excited states. Due
to the inhomogeneous broadening of the optical transition line, a single laser drives
transitions from different ground-state hyperfine-coupled spin sublevels in differ-
ent defects in the ensemble. If the optical field is sufficiently strong, the single laser
depletes the population of this hyperfine-coupled spin sublevel in each defect after
a few optical excitation and decay cycles [16, 30]. If the rate at which the defect’s
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Figure 6.3: Two-laser spectroscopy. (a) Details on the measurement geometry. We use two laser
beams to excite the sample simultaneously. Independent temporal modulation of each beam allows us
to detect only the two-laser transmission through the sample via lock-in filtering techniques. We apply a
magnetic field (as labeled) at an angle 𝜙 with respect to the crystal c-axis (inset) and vary the difference
in photon-energy between the two optical fields (detuning 𝛿). (b) Two-laser spectra of the defect centers
at a sample temperature of 2 K and various magnetic field amplitudes. We can identify several features
relate them to two-laser driving schemes based on the energy eigenlevels of ground and optically-excited
states (c). We obtain these energy eigenlevels based on symmetry-specific effective-spin Hamiltonians
(see main text) and parameters present in literature [16, 38]. See main text also for color coding.

ground-state electronic spin is changed through optical excitation and decay cycles
exceeds the rate at which the original ground-state spin sublevel is repopulated (the
spin-relaxation rate), excitationwith a single laser leads to a suppression of the pho-
toluminescence and absorption signals. When a second detuned laser is brought
onto the ensemble, if the difference between the photon energies in the two optical
fields (the detuning) matches one of the many available hyperfine-resolved energy
splittings within the ground or optically-excited states, this second laser modifies
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the rate at which the original ground-state hyperfine-coupled sublevel is repopu-
lated. Thus, an absorption spectrum as a function of the detuning between the two
optical fields shows increased or decreased absorption features as the detuning be-
tween the levels matches the energy splittings between the hyperfine-coupled spin
sublevels.

This results in two-laser spectra as shown in Fig. 6.3(b). Here, we plot the two-
laser transmission at various magnetic field amplitudes. The magnetic field direc-
tion is almost perpendicular to the crystal c-axis, with 𝜙 = 87∘, and the sample is
kept at 2 K. We chose this geometry in order to maximize the probability of spin-
flipping optical transitions (see Sec. 3.10.6). The spectra at each magnetic field am-
plitude are normalized by themaximum transmission of the combined data set, and
are offset for clarity. We can identify several peaks and dips in this data (the sharp
dip at ∼1100 MHz is related to an artifact from the measurement setup). These
features become shallower and broader as the magnetic field increases. This trend
continues at larger magnetic fields (see Fig. 6.5), and eventually all features disap-
pear at approximately 60mT. Additionally, we cannot see any two-laser features at
higher temperatures (above 2.5 K). At these temperatures, the spin-relaxation time
is significantly shortened, leading to reduced two-laser contrast.

The various possible two-laser driving schemes are depicted as vertical lines in
Fig. 6.3(c). In a Λ-scheme (brown vertical lines), the two excitation beams drive
transitions from two different ground-state sublevels to a common excited-state
sublevel. A V-scheme (green vertical lines) corresponds to the case where the two
excitation beams couple a single ground-state sublevel to two different excited-
state sublevels. Finally, X and Π-schemes (pink vertical lines) correspond to detun-
ings where the two optical fields couple two different ground-state sublevels to two
different excited-state sublevels. These driving schemes are overlayed on theory-
predicted ground (lowestmanifold) and excited state (highestmanifold) eigenlevels.
In order to obtain the energy eigenstates as a function of external magnetic fields,
we diagonalize the effective-spin Hamiltonians

𝐻 = S ⋅ A ⋅ I− 𝜇𝐵B ⋅ g ⋅ S− 𝜇𝑁𝑔𝑁B ⋅ I (6.1)

AΓ4 = [
𝑎⊥ 0 0
0 −𝑎⊥ 0
0 0 𝑎∥

] , gΓ4 = [
𝑔⊥ 0 0
0 𝑔⊥ 0
0 0 𝑔∥

] , (6.2)

AΓ5,6 = [
0 0 𝑎⊥
0 0 𝑎⊥
0 0 𝑎∥

] , gΓ5,6 = [
0 0 0
0 0 0
0 0 𝑔∥

] . (6.3)

for the ground (Γ4) and excited state (Γ5,6) manifolds, respectively [20, 21]. Here,
S and I are the effective-spin-1/2 and nuclear spin-7/2 operators, respectively, B is
the magnetic field, A and g are the hyperfine and g-parameter coupling tensors, 𝑔𝑁
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is the nuclear g-parameter for V and 𝜇𝐵 and 𝜇𝑁 are the Bohr and nuclearmagnetons.
We use for the effective-spin Hamiltonian parameters (𝑎⊥,∥ and 𝑔⊥,∥) values present
in the literature [16, 20] or obtained through private communications [26, 38], ad-
justed slightly to better fit our data (see Tab. 6.1). Based on these energy levels,
we can calculate the detuning at which the different two-laser schemes are driven
as a function of the magnetic field (see Sec. 6.7.2). We overlay, on the two-laser
spectra in Fig. 6.3(b), the position of the allowed two-laser driving schemes. This
shows that most of the features in our experimental spectra can be well-explained
by the effective-spin Hamiltonians present in literature. The discrepancies could
be mitigated with better estimates for the parameters 𝑎⊥,∥ and 𝑔⊥,∥. This is hard to
obtain from our data due to our measurement geometry: a magnetic field close to
perpendicular to the crystal c-axis provides a very small energy splitting between
the levels due to the small 𝑔⊥. Additionally, a field in this direction slightly breaks
the symmetry of the defect, leading to many possible optical transitions as the field
increases. At magnetic fields of ∼60 mT we can no longer resolve the many pos-
sible optical two-laser driving schemes, preventing us from identifying individual
features (see Fig. 6.5). Reproducing this experiment in a geometry where the mag-
netic field is along the natural symmetry axis of the defect centers, however, should
provide a high-contrast picture of the evolution of the hyperfine-coupled eigenlevels
as a function of the magnetic field (in progress at time of this writing). This would
lead to a more accurate estimate for the effective-spin Hamiltonian parameters.

6.4. Evidence for hyperfine-mediated spin relaxation
Finally, we characterize the spin-relaxation time of these defects at various temper-
atures and magnetic fields with time-resolved techniques based on both emission
(Fig. 6.4(a,c)) and absorption (Fig. 6.4(a,b)). Data obtained via time-resolved PLE
experiments (see Fig. 6.6(b)) provides direct access to the timescales related to opti-
cal excitation, excited-state lifetime, optically-driven spin flips and spin-relaxation
processes. In contrast, the absorption-based measurements aided by a lock-in am-
plifier presented here only inform us about the spin-relaxation dynamics, but can
be performed in a fraction of the time and allow us to characterize a much bigger
parameter space. For this reason, we choose to combine both techniques.

At an intermediatemagnetic field orientation (𝜙 = 54∘), wemeasure the phonon-
sideband emission in a time-resolved manner as we excite the sample resonantly at
the ZPL with pump and probe pulses. Details on the creation of the pulses and
detection geometry are provided in Sec. 6.6. The ensemble response to the pump
pulse shows a sharp initial photoluminescence peak proportional to the equilib-
rium population of the different optically driven ground-state sublevels across the
inhomogeneous ensemble. This initial peak is followed by a plateau of lower pho-
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toluminescence, indicating that a single laser drives dissipative optical spin-flips
within the first 50 𝜇s of optical excitation. As the pump pulse is turned off, the en-
semble evolves towards its equilibrium configuration. We denote the characteristic
timescale in which this happens as 𝑇1. If the delay between pump and probe pulses
𝜏 is smaller or comparable to 𝑇1, this leading-edge peak in the photoluminescence
response will be reduced when the probe pulse excites the sample. We character-
ize the population recovery at each delay 𝜏 by the ratio of the integrated number of
photons emitted by the sample within the first 15 𝜇s of the probe (𝐼𝑝𝑟𝑜𝑏𝑒) and pump
(𝐼𝑝𝑢𝑚𝑝) pulses, 𝐼𝑝𝑟𝑜𝑏𝑒/𝐼𝑝𝑢𝑚𝑝. We obtain the spin-relaxation time by fitting this ra-
tio as a function of delay 𝜏 to a monoexponential recovery function (see Fig. 6.7 and
caption).

At a geometry where 𝜙 = 87∘, we use time-resolved absorption measurements
to investigate the spin-relaxation times (Fig. 6.4(a,c)). In these measurements, we
directly detect the integrated absorption during a 30 𝜇s probe pulse. Each probe
pulse is applied after a pump pulse of 1ms, with a delay of duration 𝜏 between them.
Details on this measurement can be found in Sec. 6.6. In this case, the transmission
signal decreases as 𝜏 increases. At short delays, defects that have not relaxed back to
their equilibrium configuration cannot absorb photons, increasing the transmitted
power. Thus, we fit this data set (normalized) to a monoexponential decay function
(see Fig. 6.6 and caption).

Both absorption and emission measurements show a significant decrease of the
spin-relaxation time as the sample temperature is increased from 2 to 3 K. Fig-
ure 6.4(a) shows the spin-relaxation rate (Γ = 𝑇−11 ) as a function of the sample
temperature in various configurations. Allmeasurements show a one-order ofmag-
nitude increase of the spin-relaxation rate as the temperature increases by only one
kelvin. This sharp superlinear dependence (see also inset of Fig. 6.4(a), where the
green data is presented in a linear scale) indicates that, at these temperatures, two-
phonon processes assisted by a low-lying excited state are the dominating mecha-
nisms for spin-relaxation [31, 42] (see also Sec. 4.5.7). Our measurements at 1.8 K
indicate that this trend continues towards lower temperatures (that is, the spin-
relaxation time is further extended at lower temperatures). In themillikelvin range,
these two-phonon processes should be suppressed, allowing for significantly longer
spin-relaxation times. The low-lying excited states that mediate rapid spin relax-
ation could be both vibrational or orbital states (see chapter 4). Our measurements
do not cover a wide-enough temperature range to identify which particular states
are involved in these processes.

In Mo defects in SiC, a highly analogous system to 𝛼-line V defects but with
74.5% naturally abundant nuclear-spins zero, we found that spin relaxation was
suppressed in the ground-state KD, leading to seconds-long spin relaxation times at
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2 K. This was due to the fact that, within a KD, time-reversal symmetry prevents di-
rect spin-flips due to interactions that preserve time-reversal symmetry. Addition-
ally, the defect does not interact with magnetic fields perpendicular to the crystal
c-axis, such that it is also insensitive to magnetic field perturbations in this direc-
tion [31] (see also chapter 4). In chapter 5 we showed that the hyperfine interaction
enables otherwise forbidden direct spin flips between states pertaining to an elec-
tronic KD [20, 21]. Thus, these observations in the case of Mo defects are expected
to be only partially observed for 𝛼-line V defects.

We investigate the dependence of the spin-relaxation times on the applied mag-
netic field at 2 K (Figs. 6.4(b,c)). At zero magnetic field, the 16 hyperfine-coupled
states are split by the hyperfine coupling (see Fig. 6.3(c)). Thus, we expect to ob-
serve a time-resolved signal indicating optical depletion of spin sublevels and the
subsequent recovery of the equilibrium distribution of the population also at zero
magnetic field. This is in fact observed (see Fig. 6.4(a), green data), and gives a re-
laxation time of approximately 700 𝜇s at 2 K. In this configuration, we cannot dis-
tinguish between nuclear and electronic spin-relaxation times, since the ground-
state eigenstates associated with the Hamiltonian in Eq. 6.1-6.2 at zero field are
composed of strongly entangled nuclear and electronic spins [20]. Increasing the
magnetic field modifies the mixing between the different hyperfine-coupled states,
as evidenced by the anticrossing points in the energy levels presented in Fig. 6.3(c)
and Fig. 6.4(b). Experimentally, we observe a peak in the spin-relaxation rate as
a function of the applied magnetic field at the field value where the electronic Zee-
man energy is comparable to the hyperfine coupling energy (Fig. 6.4(c,d)). Since the
Zeeman interaction is strongly anisotropic, this peak happens at differentmagnetic-
field amplitudes depending on the angle 𝜙 (Fig. 6.4(b-d)). At high magnetic fields
almost perpendicular to the crystal c-axis (Fig. 6.4(c)), the spin-relaxation rate sat-
urates at a value larger than the zero-field rate. This does not happen when the
field is at a smaller angle with respect to the c-axis (Fig. 6.4(d)). The magnetic field
component perpendicular to the c-axis leads to mixing with the second KD in the
orbital ground state manifold (|GS2⟩ in Fig. 6.2(a)) [18, 31], and this could lead to
faster spin relaxation.

6.5.Discussion and conclusion
The results of the previous section constitute important but non-exhaustive mile-
stones for the implementation of telecom-compatible quantumcommunicationpro-
tocols based on V defects in SiC. Storing single-photons in solid-state defect en-
sembles based on the DLCZ protocol [43, 44] requires optically thick samples with
highly homogeneous ensembles, where the interaction between the ensemble and
the optical signals can be detected in transmission with high quality. Here, we
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Figure 6.4: Temperature and magnetic field dependence of spin-relaxation rates. (a) The
spin-relaxation rate increases by an order of magnitude as the temperature increases from 2 to 3 K
in various measurement geometries (see main text). The inset presents the green data between 1 and
10 kHz in a linear scale, showing the superlinear temperature dependence of the relaxation rate. The
trend continues to lower temperatures (see point at 1.8 K), indicating that the spin-relaxation times
should be significantly longer at millikelvin temperatures. (b) Energy eigenlevels of the ground-state
doublet hyperfine-coupled levels as a function of the magnetic field amplitude, for fields in two different
directions. The anisotropic interaction with magnetic fields leads to the situation where the mixing of
hyperfine levels due to an applied magnetic field – evidenced by the anticrossing points in the energy
eigenlevels – depends strongly on the orientation of the field. (c) Spin relaxation rate measured in ab-
sorption as a function of the field amplitude, for a field oriented at𝜙 = 87∘. (d) Peak height ratio between
the leading edge peaks observed in the PLE response of the sample to pump and probe optical pulses
with a fixed 300𝜇s delay between the pulses, at various magnetic field amplitudes. The magnetic field
is oriented at an angle 𝜙 = 54∘ with respect to the c-axis. As a function of the applied magnetic field,
the spin-relaxation rate shows a non-trivial behavior at 2 K. We see a peak in the spin-relaxation rate at
magnetic fields where the electronic Zeeman energy is comparable to the hyperfine coupling constants.
Since the electronic Zeeman energy is highly anisotropic, the position of the peak in the spin-relaxation
rate as a function of the magnetic field depends on the magnetic field direction identified by 𝜙.

demonstrate several of these requirements. Based on absorption techniques, we
have shown that V defects in fact interact strongly with optical fields. We estimate
for these defect centers an electric dipole moment between ground and optically-
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excited states on the order of 0.1 to 1 D, comparable to well-established quantum
emitters like NV centers or SiV in diamond [45]. Additionally, our results show that
the inhomogeneous broadening of the optical transition is a factor 3 smaller when
addressing the Γ5,6 optically-excited state instead of the Γ4 optically-excited state,
due to the fact that Γ5,6 doublets are symmetry-protected with respect to interac-
tions with external electric fields perpendicular to the crystal c-axis. A defect with a
ground-state doublet transforming as Γ5,6 could provide a defect platformwith even
narrower inhomogeneous linewidths. Therefore, from a theoretical perspective, it
is worthwhile to explore similar substitutional transition metal defects with a sin-
gle active 𝑑-shell electron or hole with regards to their stability and ground-state
electronic wavefunction symmetry properties.

Although the nuclear spin-7/2 of the V defects offers interesting possibilities for
quantum information storage [23, 24, 46, 47], controlling the high nuclear spin also
proves challenging. Optical pumping of the spin population into a single ground-
state sublevel is hindered by the relatively short spin-relaxation times (between
10 𝜇s and 1 ms at the temperatures and magnetic fields investigated here) when
compared to the radiative lifetime of the optically-excited state [17]. We show that
two-phonon processes assisted by low-lying orbital or vibrational excited states are
responsible for the rapid increase of the spin-relaxation rates at the few-kelvin range.
Thus, enhanced optical initialization of the ensemble should be achievable at mil-
likelvin temperatures, where these two-phonon processes are not thermally achiev-
able. Additionally,more accurate determination of the ground andoptically-excited-
state Hamiltonians will enable theoretical investigation of single ormulti-laser pro-
tocols for efficient ground-state spin initialization and advanced multi-pulse se-
quences aimed at decoupling the defect centers from their environments [23, 25,
48–52].

Finally, the data presented here provides evidence that hyperfine-mediated spin
relaxation plays an important role in the relaxation processes of the ground-state
electronic spin of V defects in SiC, as predicted in chapter 5. The hybrid electronic-
nuclear spin system can relax via processes that are symmetry forbidden in the
case of the isolated electronic spin. This is evidenced by the magnetic-field de-
pendence of the spin-relaxation rate that we present in this work. Although this
coupling between electronic and nuclear spins is detrimental to the spin-relaxation
times observed for these defects at certain magnetic field configurations, it is also
a necessary component for resonantly addressing and controlling the ground-state
spin via microwaves [21]. Additionally, it offers a path to using highly coherent nu-
clear spin states for quantum state storage [22, 53], if the electronic and nuclear
spins can be (partially) decoupled at high magnetic fields or due to ionization of the
defect center to remove the spin-active electron. In magnetic field configurations
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where electronic and nuclear spins are strongly coupled, a counter-intuitive situa-
tion may arise where the spin-relaxation time is shortened by the presence of the
central nuclear spin, but the coherence times associated with the hybrid electronic-
nuclear spin system are lengthened due to the presence of clock-transitions [54–
56]. At some anticrossing points, the ground-state energy levels may have limited
sensitivity to time and spatially varying local electric and magnetic fields, leading
to increased coherence. These considerations call for a full characterization of the
coherence properties of these defect centers.

Finally, we note that other defects in SiC may have similar properties to V de-
fects in SiC, but with a much simpler electronic structure. Tungsten defects, for
example, are stable in 4H and 6H-SiC and have optical transitions just below the
O-band (1240 nm) [57, 58]. These defects have an odd number of 𝑑-shell valence
electrons and symmetries analogous to those of V and Mo defects. Additionally, W
has a single stable nuclear isotope with nuclear spin-1/2. Thus, ensembles of these
defects would benefit from the intrinsic nuclear spin for long-term storage of quan-
tum states, but with much cleaner optical transition spectra that may enable more
reliable mechanisms for ground-state spin initialization.

6.6.Materials and experimental methods
Samples We study two 4H-SiC samples doped with V. The first sample, used to
obtain the results in Fig. 6.1(b) was provided by academic collaborators (group of
N. T. Son at Linköping University). This sample has a concentration of V on the
order of 1017 cm−3, but strong EPR signal from the negatively charged V defect. All
other results were obtained on a commercial sample from II-VI Semiconductors.
This sample also has nominal V concentration on the order of 1017 cm−3. The sam-
ples were cooled in a liquid-helium flow cryostat with optical access and equipped
with a superconducting magnet system.

Optical characterization
Photoluminescence We excite the defects with 900 nm (1.37 eV) photons, and
collect the light emitted by the sample in a direction orthogonal to the propagating
direction of the excitation beam (see Fig. 6.1(b), inset). The 5mW excitation beam
is focused to a 100 𝜇m spot size. The photoluminscence from the sample is detected
by a table-top near-infrared spectrometer with 0.4 nm resolution.

Photoluminescence excitation We excite the defects resonantly with a CW
diode laser tunable from 1260 to 1330 nm. The specified laser linewidth is below
50 kHz, and the energy of the laser emission is stabilized within 1 MHz via active
feedback. The beam diameter at the sample is approximately 100 𝜇m. We vary the
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polarization of the laser at the sample. The sample emission in a direction perpen-
dicular to the propagation of the excitation beam is collected using a high-NA lens,
and detected using a single-photon counting avalanche photodetector. Scattered
excitation light and emission into the zero-phonon line is filtered out from the de-
tected light using a series of three 1300 nm long-pass filters (Fig. 6.2(c)), such that
only phonon-sideband emission from V defects is really detected.

Absorption We excite the defects in the same setup as in PLE experiments, and
detect the transmitted laser beamusing a near-infrared variable gain photodetector.
Additionally, we temporally modulate the excitation beam with an optical chopper.
The chopper frequency is fed as a reference to a lock-in amplifier. The lock-in am-
plifier extracts from the photodetector output signal the component that oscillates
at the reference frequency. This is done to remove from the signal backgrounds
related to scattered light in the optical table, and electrical drift and noise. We nor-
malize the transmitted power at resonance by the off-resonance transmitted power.

Two-laser excitation We excite the sample with two laser fields. The first beam
(control beam) is obtained from the laser directly, and has the same wavelength
stability as discussed above. The second beam (probe beam) is obtained from the
same laser. This second beam is modified by an electro-optical phase modulator
controlled by an RF signal to create sidebands at a certain detunings (determined
by the RF frequency) from the laser output frequency. Themost intense sideband is
transmitted through a Fabry-Perot cavity that filters out the remaining sidebands.
Wemodulate control and probe beams in time with different frequencies (𝑓1 and 𝑓2,
respectively, typically between 100 and 200 Hz) by physically chopping the beams
(see Fig. 6.3(a)). The beams have similar powers (on the order of 20 𝜇W). They
are merged in a beam-splitter and focused into a 100 𝜇m spot in the sample. The
transmitted beam is detected with a near-infrared photodetector. With the help of a
lock-in amplifier, we detect the component of the transmitted signal that oscillates
at the sum frequency 𝑓1+𝑓2. This provides the transmitted signal in the presence of
the twobeams only, and filters out background effects due to single-laser absorption
or scattered light.

Time-resolved PLE We create pulses from the CW laser output with the help
of a digital-delay generator (DDG), the EOM and the Fabry-Perot cavity. The EOM
creates sidebands detuned from the central laser frequency, where the detuning is
determined by the RF frequency. The FP cavity is tuned such that it only transmits
one of the detuned sidebands. The DDG controls the RF source. As the RF source
turns on (off), the detuned sidebands appear (or disappear), such that the optical
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signal is also modulated on/off. The pulse sequence rise/fall time is estimated to be
on the order of 20 ns. The sample emission into the phonon sideband is collected
as in the PLE experiment, and detected in a time-resolved manner with a single-
photon counting avalanche photodetector. An additional trigger pulse is used to
identify the zero-time of each cycle. Each cycle is composed of a trigger pulse (to
identify the zero-time), a pump pulse and a probe pulse separated by a delay 𝜏 and
a recovery time following the probe pulse. The recovery time used is approximately
10 times the estimated spin-relaxation time.

Time-resolved absorption We create pulses from a CW laser output in the
same manner as above, in the time-resolved PLE experiment. We detect the full
time dependence of the power of the transmitted beam through the sample in a
near-infrared variable gain photodetector, with estimated 5 MHz bandwidth. We
modify the pulse sequence such that each cycle contains two long pumppulses (1ms
long) separated by a fixed recovery time (15ms, much longer than any observable
spin dynamics). Between the first and the second pump pulses, we add a short
30 𝜇s long probe pulse. In this way, the pump pulse occurs at a frequency 2𝑓𝑟𝑒𝑓,
whereas the probe pulse occurs at a frequency 𝑓𝑟𝑒𝑓 (see Fig. 6.4(b)). With the help
of a lock-in amplifier, we detect the component of the absorption signal oscillating
at a frequency 𝑓𝑟𝑒𝑓. This removes from the signal the background due to absorption
of the pump pulses.
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6.7.Appendices
6.7.1. Estimating the transition dipole moment
According to Beer’s Law [59, 60], a beam traveling a distance 𝐿 in a sample with
density of absorbers 𝑁 has its intensity attenuated such that

𝐼 = 𝐼0𝑒−𝜎𝑁𝐿 . (6.4)

Here, 𝐼0 is the intensity of an off-resonance beam traveling the same path (that is,
it takes into account attenuation mechanisms other than resonant excitation, like
reflection from interfaces), 𝐼 is the transmitted intensity of the on-resonance beam
and 𝜎 is the scattering cross-section for a single defect. In this way, − log(𝐼/𝐼0) =
𝜎𝑁𝐿.

The scattering cross section 𝜎 depends on fundamental constants, the wave-
length of the interacting light and the transition dipole moment between the two
states taking part in the transition. The frequency-integrated absorption cross sec-
tion, 𝜎̂ = ∫∞∞ 𝜎𝑑(𝜈), is given by [60]

𝜎̂1−2 =
2
3ℎ

𝜋2
𝜖0𝑐

𝜈1−2| − ⟨𝜓2|𝑒r|𝜓1⟩ |2 (6.5)

where ℎ is Planck’s constant, 𝜖0 is the vacuum permittivity, 𝑐 is the speed of light,
𝜈1−2 is the frequency of the photons associated with the optical transition. We de-
note the matrix element of the transition dipole moment between states |𝜓1⟩ and
|𝜓2⟩ by − ⟨𝜓2|𝑒r|𝜓1⟩. In this way, we can integrate the absorption line to obtain the
transition dipole moment between the two states involved in the transition. In our
estimates, we use the sample length of 0.5 cm and a vanadium defect concentration
of 1017 cm-3. The defect concentration is likely an over estimate of the concentra-
tion of V defects in an 𝛼-line configuration as stated in the main text.

6.7.2. Two-laser driving schemes and high-field data
In order to estimate the energy of the two-laser driving schemes, we restrict our-
selves to considering combinations of allowed optical transitions. Since the ground-
state is an electronic doublet of the Γ4 type and the optically-excited state is of the
Γ5,6 type, optical transitions between ground and optically-excited states are allowed
with light polarized in the plane perpendicular to the symmetry axis of the defect
centers. For light circularly polarized, stricter selection rules arise [18, 20]. In
our experiment, however, we use light linearly polarized in this plane, such that
both spin-conserving and spin-flipping optical transitions are allowed. That is, for
the electronic part of the wavefunction, all optical transitions between |Γ4, ↑↓⟩ and
|Γ5,6, ↑↓⟩ are possible. For the nuclear spin part of thewavefunctions, we assume that
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Figure 6.5: Two-laser transmission sig-
nal at higher fields Two-laser transmit-
ted power as a function of detuning between
the photon energies in the two optical beams
(see Fig. 6.3 and main text for details and
color coding), at various magnetic field am-
plitudes for a field at 87∘ from the crystal c-
axis. The transmission signal is normalized
and offset for clarity. On the data, we over-
lay the position of the expected two-laser fea-
tures. At higher fields, the magnetic field
near-perpendicular to the symmetry axis of
the defect gives rise to many possible two-
laser driving schemes. These many driving
schemes are no longer resolvable at fields
above ∼60 mT and thus the features in the
two-laser signal disappear.

optical transitions preserve the nuclear spin, such that an optical transition between
two hyperfine-coupled spin sublevels in ground and excited states is only allowed if
both states involved have a component with identical nuclear spin projection𝑚𝑖.

Table 6.1: Effective-spin Hamiltonian parameters. Parameters used to obtain the energy eigen-
states in Fig. 6.3(c) and 6.4(b), based on the effective-spin Hamiltonians in Eqs. 6.1.

𝑔∥ 𝑔⊥ 𝑎∥ (MHz) 𝑎⊥ (MHz)

ground 1.75 0 −228 165
excited 2.25 0 −220 50

6

164



6.7. Appendices

6.7.3. Time-resolvedmeasurement details

Figure 6.6: Details of the time-resolved absorption experiments (a) Measurement geometry for
time-resolved absorption experiments. We measure the integrated transmitted laser beam signal in a
photodetector with the help of a lock-in setup. We create pulse sequences of the type pump-probe-pump,
such that in time the pump beam is modulated at twice the frequency of the probe pulse. In the lock-
in we detect the component of the photodetector voltage modulated at the probe-pulse frequency. The
probe pulse is 30 𝜇s long, and two subsequent pump pulses are separated by a fixed recovery time of
15ms (see also Sec. 6.6). (b) Lock-in signal as a function of the delay 𝜏 between pump and probe pulses.
The lock-in signal decays as a function of the delay between pump and probe pulses. We fit this decay
to a function of the type 𝐼𝑜𝑢𝑡 = 𝐴𝑒(−𝜏/𝑇1) + 𝐶 to allow for a saturation of the transmission signal above
zero at large delays.

Figure 6.7: Details of the time-resolved PLE experiments (a) Measurement geometry for time-
resolved PLE experiments. We measure the photons emitted by the sample into the phonon-sideband
in a time-resolved manner with a single-photon counter. We create from a CW laser pump and probe
pulses separated by a delay 𝜏 (see Sec. 6.6). Between the probe and the next pump pulse the sample is
allowed to recover for a time that is at least 10 times larger than themeasured relaxation time. (b) Photon
emission by the sample versusmeasurement time. The photons are collected in a time-resolvedmanner,
providing information on the dynamics of excitation, emission and spin relaxation of the defects. From
each data set we subtract the background counts (such that we count 0 photons when the sample is
not illuminated) and we normalize it by the 95th percentile of the data set. We determine the peak
height ratio for each measurement run by calculating the ratio of the photon emission by the sample
during the first 15 𝜇s of illumination by probe and pump pulses respectively (gray shaded regions). The
error in the peak height-ratio obtained is related to the Poisson statistics of the number of photons in
each time bin, and close to 3%. (c) The peak height ratio as a function of the delay between the pump
and probe pulses recovers in a monoexponential fashion. We fit this recover to a function of the type
𝐼𝑝𝑟𝑜𝑏𝑒/𝐼𝑝𝑢𝑚𝑝 = 1 − 𝐴𝑒(−𝜏/𝑇1) + 𝐶. The parameter 𝐴 indicates that only partial darkening of the sample
emission happens upon illumination (see also Sec. 4.5.1).
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chapter 7
Symmetry evolution of spin scattering
processes in TMDs

Transition metal dichalcogenides (TMDs) combine interesting optical and spin-
tronic properties in an atomically-thin material, where the light polarization can
be used to control the spin and valley degrees-of-freedom for the development of
novel opto-spintronic devices. These promising properties emerge due to their
large spin-orbit coupling in combination with their crystal symmetries. Here,
we provide simple symmetry arguments in a group-theory approach to unveil
the symmetry-allowed spin scattering mechanisms, and indicate how one can use
these concepts towards external control of the spin lifetime. We perform this anal-
ysis for both monolayer (inversion asymmetric) and bilayer (inversion symmet-
ric) crystals, indicating the different mechanisms that play a role in these sys-
tems. We show that, in monolayer TMDs, electrons and holes transform funda-
mentally differently – leading to distinct spin-scattering processes. We find that
one of the electronic states in the conduction band is partially protected by time-
reversal symmetry, indicating a longer spin lifetime for that state. In bilayer and
bulk TMDs, a hidden spin-polarization can existwithin each layer despite the pres-
ence of global inversion symmetry. We show that this feature enables control of
the interlayer spin-flipping scattering processes via an out-of-plane electric field,
providing a mechanism for electrical control of the spin lifetime.

7.1. Introduction

T hin layers of transition metal dichalcogenides (TMD) offer the possibility of
electrically and optically addressing spin, valley and layer degrees of freedom

of charge carriers [2–6]. This has led to increased interest in thesematerials for ap-
plications in novel electronic and spintronic devices [7–12]. These properties arise
from the symmetries of these intrinsically two-dimensional crystals, combinedwith
the large spin-orbit coupling imprinted on electrons by the heavy transition metal
atoms in the lattice [2, 5, 13]. Several experimental and theoretical works explore

Parts of this chapter have been published in Physical Review B 103, 115410 (2021) [1].
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the spin and valley lifetimes in monolayer, bilayer, and bulk TMDs, with often con-
trasting results. In the particular case of spin lifetime in TMDs, experimental values
span over 5 orders of magnitude [14–19]. Group-theory-based analysis of the sym-
metries in this class of materials has been useful in unraveling their optical [14, 20,
21] and spintronic [22–24] properties, including how electrons, holes and excitons
couple to phonons and external magnetic fields, for example. This approach can
be very powerful to connect and compare seemingly contrasting results, as well as
giving powerful symmetry-based predictions for the design of future experiments.
However, literature still lacks a pedagogical derivation of the mechanisms leading
to spin scattering in monolayer and, particularly, bilayer TMDs based solely on the
symmetry of these materials. Moreover, a careful analysis and understanding of
the impact of crystal symmetries on the spintronic properties of thesematerials can
lead to better device engineeringwhich exploit symmetry breaking for active control
over the spin information.

Here, we apply group-theoretical considerations to obtain the symmetry of the
electronicwavefunctions at the edges of the bands in these semiconductors, for both
monolayer and bilayer systems. In order to do this, we use double groups to unravel
the transformation properties of the Bloch wavefunctions including spin at the high
symmetry points in the Brillouin zone (BZ), in the absence of external fields. Based
on these results, we derive the first-order selection rules for spin-scattering pro-
cesses in a single-particle picture. This allows us to determine how electron and
hole spins couple to phonons and external fields, and which mechanisms domi-
nate spin-flipping processes at low temperatures. Based on these results, we find
that electrons and holes in these materials transform differently. In particular, a
combination of rotational symmetry and strong spin-orbit coupling (SOC) strongly
suppresses low-temperature spin scatteringmechanisms for conduction-band elec-
trons in monolayer TMDs. For bilayer (and few-layer) systems where individual
layers are partially decoupled, we find that an electric field enhances interlayer
spin-scattering processes, enabling electrical control of an optically created spin
polarization. Despite being based on several approximations, the group-theoretical
framework developed here allows us to intuitively understand various spin proper-
ties of this class of materials in a straight-forward manner, and in line with recent
experimental results.

This paper is organized as follows: in part I, we focus on monolayer TMDs and
their symmetries. We obtain the transformation properties of the Bloch wavefunc-
tions including spin at the high-symmetry points of theBZ.Based on the symmetries
of these wavefunctions, we derive which perturbations (electromagnetic fields and
lattice phononmodes) can couple eigenstates with opposite spin, which allows us to
determine the processesmost likely to lead to spin flips at low temperatures. In part
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Figure 7.1: Symmetry of the group of the
wave vector at the K and K’ points. Lattice
structure in real and reciprocal space for mono-
layer (a-b) and bilayer (c-d) TMDs. The symmetry
of the full crystal (that is, the symmetry at the Γ
point in the BZ) is 𝐷3h for the monolayer, and 𝐷3d
for the bilayer, for which the symmetry operations
are shown explicitly. Operations that, although
present in the Γ point of the BZ, are absent in the
K and K’ points (b,d) are shown in light gray. The
absence of these symmetry operations at theK and
K’ points reduces the symmetry at these points to
the point groups 𝐶3h for monolayers and𝐷3 for bi-
layers.

II, we repeat this analysis for bilayer TMDs. Finally we summarize themain conclu-
sions and elaborate on the impact of our findings on past and future experiments
in the field.

7.2.Monolayer TMD
7.2.1. Symmetries of the spatial eigenstates
In order to derive the spin-scattering selection rules at the edges of the bands, one
must first obtain the symmetry properties of the eigenstates at the K andK’ points of
the BZ. These properties are determined by the point group describing the crystal-
lographic symmetry at these points, the orbital character of the wavefunctions and
the spin of the charge carriers in these states [13]. In this way, we can classify the
electronic eigenstates at the band edges in these materials by their transformation
properties, which are summarized by the irreducible representation (irrep) of the
suitable point group.

A TMD monolayer (ML) is composed of transition metal and chalcogen atoms,
arranged in a hexagonal lattice. Although the coordination between these atoms
can vary, themost widely studied TMDpolytypes (2H types) have a transitionmetal
atom bound to 6 chalcogen atoms in a trigonal prismatic geometry (Fig. 7.1(a)), giv-
ing rise to the crystallographic point group 𝐷3h. However, the edges of the valence
and conduction bands in ML TMDs are located at the K and K’ points of the BZ,
where not all symmetries of the lattice are preserved. Here, only the three-fold rota-
tional symmetry axis (𝐶3), the horizontal mirror plane (σh), and their combinations
are valid symmetry operations, such that the wavefunctions at the K and K’ points
of the BZ transform according to the point group 𝐶3h [13, 20, 22]. Figure 7.1(a)
shows the symmetry operations at the K and K’ points in black, and the additional
symmetry operations in the Γ point in gray.
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Ab-initio calculations and tight-bindingmodels of thesematerials show that the
orbital character of the electronic wavefunctions at the K and K’ points are largely
composed of the 𝑑-orbitals of the transition metal atoms [25–27]. The valence
band wavefunctions are composed predominantly of linear combinations of 𝑑𝑥2−𝑦2
and 𝑑𝑥𝑦 orbitals, while the conduction band wavefunctions are composed predom-
inantly of the 𝑑𝑧2 orbital localized at the transition metal atoms. Based on this,
we can visualize the transformation properties of the wavefunctions at the edges of
the valence and conduction bands (Fig. 7.2(a)). To obtain the symmetry adapted
eigenstates delocalized through the lattice, one takes the wavefunction centered at
a single transition metal atomic-site and performs on it all symmetry-group oper-
ations. Due to the nonzero momentum at the K and K’ point, a symmetry oper-
ation that changes the atomic-site of the orbital incurs an additional phase factor
(𝑒±𝑖2𝜋/3). The total (symmetry-adapted) eigenstate is found by summing the results
of all symmetry operations, including these phase factors (Fig. 7.2(b)). Additionally,
a phase factor must also be considered when the atomic orbital itself is rotated,
which depends on its azimuthal phase (represented by the color in Fig. 7.2(a,b)).
The conduction band states at the K (K’) points are formed mainly by 𝑑𝑧2 orbitals,
which do not have any azimuthal phase. For these eigenstates, the only phase con-
tribution when combining orbitals in different lattice sites arises from the wind-
ing of the k-vectors, leading to an out-of-site phase winding. Thus, the conduction
band wavefunctions at the K (K’) points transform according to the E’+ (E’-) irrep of
the point group 𝐶3h. In contrast, valence band states are formed predominantly by
linear combinations of the 𝑑𝑥2−𝑦2 and 𝑑𝑥𝑦 orbitals. These states are combined ei-
ther as (𝑑𝑥2−𝑦2 + 𝑖𝑑𝑥𝑦) or as (𝑑𝑥2−𝑦2 − 𝑖𝑑𝑥𝑦), such that they have an orbital angular
momentum-like phase winding within the atomic orbital (small arrows in 7.2(b),
lower panel). This is in contrast with the out-of-site phase winding of the conduc-
tion band states, which gives implications to the spin-orbit coupling as explained in
the following paragraphs. These linear combinations gain a phase factor of 𝑒𝑖2𝜋/3
or 𝑒−𝑖2𝜋/3, respectively, when subject to a three-fold rotation. Combined with the
phase acquired due to the winding of the k-vector, this gives rise to a wavefunction
composed of a fully in-phase linear combination of orbitals in adjacent lattice sites.
In symmetry terms, these valence band wavefunctions transform as the A’ irrep of
the 𝐶3h point group. We note that, to describe the full microscopic character of the
VB and CB wavefunctions, we should also consider contributions from the chalco-
gen orbitals. We chose not to do this in our approximation since it will not impact
the symmetry character of the wavefunctions, although being relevant for quanti-
tatively estimating matrix elements and energy splittings.
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Figure 7.2: Electronic wavefunctions at the K and K’ points. We can obtain the symmetry of the
wavefunctions at the K and K’ points by applying the symmetry operations of the system to the atomic
𝑑-orbitals localized around the TM atoms (a). In amonolayer, the electronic wavefunction at the edge of
the conduction band is mainly composed of TM |𝑑𝑧2 ⟩ atomic orbitals, which has constant azimuthal
phase. (In (a) and (b), the magnitude of the wavefunction in real space is indicated by the surface,
whereas the color corresponds to the azimuthal phase according to the scale in the color bar). When
considering also the phase acquired due to translation, the electronic wavefunction at the K (K’) point
transforms as theE’+ (E’-) (b, top). In the valence band, the electronicwavefunction at theKandK’ points
is mostly composed of TM |𝑑𝑥2−𝑦2 ⟩ and |𝑑𝑥𝑦⟩ atomic orbitals, which can be combined into the spherical
harmonics with 𝐿 = 2,𝑚𝑙 = ±2. The phases acquired due to rotation of the spherical harmonics and
translation cancel out, to give a final state that transforms asA’ in bothK andK’ points (b, bottom). When
considering also the properties of the spin under rotation, we obtain the symmetry of the spin-orbit split
wavefunctions in valence and conduction bands by multiplying the irreps of (b) with the irreducible
representations associated with spin up and down (K7 and K8, respectively) (c). Hybridization with
other orbitals will not change the particular symmetry of the wavefunctions.

7.2.2. Symmetries of the spin-orbit coupled eigenstates
Finally, we must also take into account the electron and hole spin when obtaining
the symmetry of the wavefuntions. This can be done by the use of a double group
approach [28]. The symmetry of the spin-orbit coupled wavefunction can be ob-
tained by taking the product Γ𝑠𝑝𝑎𝑡𝑖𝑎𝑙 × Γ𝑠𝑝𝑖𝑛, where Γ𝑠𝑝𝑎𝑡𝑖𝑎𝑙 is the irrep describing
the transformation properties of the spatial wavefunction, and Γ𝑠𝑝𝑖𝑛 describes the
transformation properties of a spin 1/2. A free spin up transforms as the irrep 2𝐸̄3 of
the double group 𝐶̄3h, whereas a free spin down (its time-reversal conjugate) trans-
forms as irrep 1𝐸̄3. Note here that a rotation by 2𝜋 adds a phase of −1 on the spin
1/2 state. Based on this, we can obtain the symmetry properties of the spin-resolved
wavefunctions at the edges of the valence and conduction bands at K and K’ points,
shown in Fig. 7.2(c).
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All irreps of the double group 𝐶̄3h are non-degenerate. This means that, as has
been widely established [2, 5, 16, 22, 29], spin and valley degrees of freedom are
coupled in both valence and conduction bands, giving rise to non-degenerate spin-
polarized states. In this way, spin-up and spin-down states in both valence and
conduction bands are split by a spin-orbit energy splitting. The sign andmagnitude
of this spin-orbit energy splitting depends on the material properties and cannot
be obtained from this purely group-theoretical approach. Despite the differences
between the various TMDs, however, this spin-orbit splitting is in general an or-
der of magnitude larger in the valence band (usually hundreds of meVs) than in
the conduction band (usually tens of meVs) [26]. We can understand this order-
of-magnitude difference based on the considerations above. For wavefunctions in
the valence band, the orbital angular momentum arises from the atomic orbitals
themselves, which show an azimuthal phase winding around the transition metal
nuclei (as indicated by the color and small arrows in the lower panel of Fig. 7.2(b)).
This is clear if we rewrite the linear combinations of 𝑑𝑥2−𝑦2 and 𝑑𝑥𝑦 in terms of
spherical harmonics. This large and well defined orbital angular momentum, local-
ized around the nuclei, gives rise to a large spin-orbit coupling energy. In contrast,
in the conduction band states, there is an intercellular angular momentum arising
from phase-winding between different lattice sites [30, 31]. In addition to that, we
note that hybridization with 𝑝-orbitals also plays a role on the SOC magnitude in
the valence band, which is not explicitly considered here.

We note that the ordering of states as depicted in Fig. 7.2(c) is valid for tungsten
based TMDs; for molybdenum based TMDs, the order in energy of CB1 and CB2
is reversed [26]. Nonetheless, the group-theoretical considerations presented here
do not depend on the energy ordering of states, and remains valid for both cases.
In what follows, we will focus on the symmetry-restricted scattering processes for
charge carriers in the top sub-band of the valence band (VB1, transforming as K7, 8),
and in the two sub-bands of the conduction band (CB1,2 transforming as K9 − 12).
We disregard the impact of states belonging to the lower sub-band of the valence
band (VB2) due to the large SOC energy splitting of hundreds of meV. Nonetheless,
since these states also transform as K7, 8, this does not incur in any loss of generality
since all scattering mechanisms obtained involving VB1 would be the same as the
ones involving VB2.

7.2.3. Selection rules
Given the symmetries of the variouswavefunctions at the band-edges, we can obtain
the selection rules governing the spin-flipping scattering processes in these mate-
rials at low temperatures. According to Fermi’s golden rule, a charge carrier in a
state |𝜓𝑖⟩ can only scatter into a state |𝜓𝑓⟩ due to a perturbation 𝐻′ if the matrix
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Figure 7.3: Symmetries of spin-flipping scat-
tering mechanisms in ML and BL TMDs.
In monolayer TMDs, only operators transform-
ing as the E” and A” irrep of the 𝐶3h group can
lead to either intra-valley (a) or inter-valley (b)
spin-flipping scattering processes. In these ma-
terials, states transforming as K11, 12 distinguish
themselves since energy conserving scattering be-
tween these states is forbidden by time-reversal
symmetry (see text). In contrast, in bilayer TMDs,
additional inter-layer spin-flipping scattering pro-
cesses arise (c,d), that can couple to external fields
transforming as either the A or E irrep of the 𝐶3
point group. Here, optical transitions are denoted
by a dashed line.

element ⟨𝜓𝑖|𝐻′|𝜓𝑓⟩ is nonzero. In symmetry terms, this means that the scattering
is only possible when the product of irreps Γ∗𝑖 ⊗Γ𝐻′⊗Γ𝑓 contains the fully symmet-
ric representation, i.e. A’. Here, Γ𝑖(𝑓) indicates the irrep of the initial (final) states,
whereas Γ𝐻′ indicates the irrep of the operator responsible for the perturbation. Ad-
ditionally, we note that phonons interact with electrons via the electric fields cre-
ated by atomic displacements. In this way, we can also consider selection rules for
phonon-driven transitions by looking at the symmetries of these electric fields. Us-
ing this, we can determine which spin-flipping scattering processes a perturbation
can cause, just by looking at the symmetry of the perturbation. In the following we
focus on the spin flipping mechanisms at the K and K’ points of the BZ. In Sec. 7.5.1
we provide the product tables and the analysis also for spin-conserving transitions
and scattering into other points of the BZ.

These selection rules (for spin-flipping transitions only) are presented compre-
hensively for a monolayer TMD in Fig. 7.3(a,b). Only operators transforming as A”
and E” can generate spin-flipping transitions in ML TMDs. In Fig. 7.3, dashed ar-
rows indicate optical transitions. These transitions can be actively driven by electro-
magnetic fields in the optical spectrum, or arise from radiative electron-hole recom-
bination. Comparison with Tab. 7.1 shows that spin-flipping direct optical transi-
tions are associated with absorption or emission of electric fields polarized perpen-
dicular to the plane of the TMD layer. The creation of these so-called ’dark’ excitons
via this process has been demonstrated by illuminating the TMDmonolayer with a
parallel beam polarized out-of-plane [32]. Additionally, it has been shown that an
external in-plane magnetic field can also ’brighten’ these transitions, which can be
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Table 7.1: Symmetries of
operators and phonon modes
according to the group of
the wavevector at the K and
K’ points for monolayer
TMDs. LA (LO), TA (TO)
and ZA (ZO) correspond
to longitudinal, transverse
and out-of-plane acoustic
(optical) phonon modes,
respectively, [13, 34]

𝐶3h
irrep

EM
fields

Acoustic phonons Optical phonons

Γ,q = 0 𝐾,q ≠ 0 Γ,q = 0 𝐾,q ≠ 0
A’ B⊥ LA/TA ZO LO/TO

A” E⊥ ZA ZO LO/TO

E’ E∥ LA/TA LA/TA LO/TO LO/TO

E” B∥ ZA LO/TO LO/TO/ZO

understood as a mixing between the two states belonging to CB1 and CB2 [20, 33].

Besides this spin-flipping optical transition, only operators transforming as E”
of the 𝐶3h point group can give rise to spin-scattering transitions between electronic
states at the various band edges in ML TMDs. These operators correspond to mag-
netic fields in the plane of theML, out-of-plane phonons at the K-point of the acous-
tic phonon band and optical phonons at both Γ- and K-points, for example (see
Tab. 7.2). These phonon modes have energies on the order of hundreds of meVs
[13, 34]. Thus, they will be very weakly populated at cryogenic temperatures, lead-
ing to a suppression of phonon-related upwards scattering processes. We note that
this is valid also forMo-based TMDs, despite their small SOC splitting between CB1
and CB2. In this case, even though the bands are close in energy, hot phonons are
required to drive the transition. In contrast, downwards scattering processes (K12
→K10) can happen via the emission of a phonon even at low temperatures. This pro-
cess should be distinct for molybdenum and tungsten based TMDs, since the order
of the two bands are interchanged, while the optical transition used to generate a
spin-valley population (K8 → K12) is the same. Our analysis then indicates that,
at low temperatures, the spin lifetime for electrons in molybdenum-based TMDs
should be in principle longer thanwhen compared to tungsten-based ones. This can
be used to understand the long spin-lifetimes recently reported for MoSe2, which
persist up to room temperature [18]. We do note that in-plane magnetic fields will
be more effective in driving intra-valley spin-flips of spins in the CB of Mo-based
TMDs, when compared to W-based TMDs. This is because the energy splitting be-
tween CB1 and CB2 is much smaller in the former, and thus easier to overcome by
Zeeman-like energy terms.

When considering inter-valley scattering processes, we must note that addi-
tional selection rules arise due to time-reversal symmetry and Kramers theorem.
Kramers theorem states that, if time-reversal symmetry is preserved, wavefunc-
tions connected by conjugation have the same energy, that is, a spin-up in a K valley
and the corresponding spin-down in the K’ valley have the same energy. This im-
plies that energy-conserving spin-flipping scattering processes between the K and
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K’ valleys (inter-valley) can only arise due to perturbations that break time-reversal
symmetry. Transitions between time-conjugate pairs transforming as K7 ↔ K8
and K9 ↔ K10 can arise due to perturbations transforming as E”. Since in-plane
magnetic fields and K-phonons transforming as E” break time-reversal symmetry,
these scattering processes are thus fully allowed, also by time-reversal (TR) sym-
metry [35]. This is in line with the experimental observations that identify out-
of-plane K-phonons as the main sources of hole spin-valley depolarization in both
W and Mo-based TMDs [3, 4, 16]. In contrast, transitions between states trans-
forming as K11 ↔ K12 are allowed – considering only spatial symmetry – when
these states interact with external fields transforming as A”. Out-of-plane electric
fields and Γ-point phonons (see Tab. 7.1) preserve time-reversal symmetry, such
that they cannot drive these transitions. In contrast, chiral K-phonons in the optical
phonon bands [35] do break time-reversal symmetry and could drive these transi-
tions. Nonetheless, these are high-energy phonon modes which are not populated
at low temperatures.

The results of the last paragraphpoint to a fundamental asymmetry in the behav-
ior of electron and hole spin scattering processes in these materials, and are in line
with existing literature. For example, the selection rules obtained above provide an
intuitive interpretation of theoretical and experimental results showing that, inMo-
based TMDs, phonon-related spin decay affects holes in VB1 much more efficiently
than electrons in CB1 at low temperatures [18] (note that inMo-based TMDs, states
in CB1 transform as K11, 12). Additionally, despite the seemingly simplistic single-
particle picture presented here, these results also provide an explanation for the
recently observed asymmetry between bright and dark excitons concerning direct
to indirect exciton scattering in W-based TMDs [36], where indirect excitons are
composed of an electron and a hole in opposite valleys.

Finally, the selection rules derived in this section imply that, inmonolayer TMDs,
spin scattering is relatively robust with respect to the presence of noisy electric
fields, such as randomly-distributed Coulomb scatterers and local strain. Only out-
of-plane electric fields can cause spin-flipping scattering transitions; however, these
transitions are either in the optical range – such that they must be actively driven
or arise from electron-hole radiative recombination – or forbidden by the require-
ments of Kramers theorem. Thus, in the low energy scattering regime, local (due
to the electrostatic environment, strain of the material, substrate effects, etc.) or
global electric fields will have limited influence on the prevalence of various spin-
scattering processes. This alsomeans that spin scattering rates inML TMDs should
not be greatly influenced by the symmetry breaking created by a particular sub-
strate. In contrast, in-plane magnetic fields, either extrinsic or intrinsic to the sam-
ple due to spin-active defects or nuclear spins, can cause both intra- and inter-valley
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spin flips. On the one hand, these results indicate that the spin-lifetimes in ML de-
vices can be enhanced by ensuring a low concentration of deep-level spin-active
lattice defects. On the other hand, they also indicate that control over the spin-
polarization in these materials relies on externally applying magnetic fields, which
is a slow and practically challenging process.

7.3.Bilayer TMDs

7.3.1. Symmetries and eigenstates

Figures 7.1(c,d) show the symmetries of bilayer 2H-TMDs in both real and recipro-
cal space (symmetry operations valid at the Γ point but absent at K and K’ points are
shown in gray). When compared to monolayer crystals, bilayer stacks of 2H-TMDs
have some notable symmetry changes (see Fig. 7.1) [13]. In particular, bilayers lack
a horizontal mirror plane, but do have an inversion point which brings the top layer
into the bottomone. The presence of inversion symmetrymeans that, if we consider
the entire stack, spin-valley coupling is not allowed to exist – electronic eigenstates
at the K and K’ points are spin degenerate. However, a local spin polarization of the
bands may arise when inversion symmetry is present at a global scale, but is locally
broken [37]. Since interlayer coupling is small compared to the other intrinsic en-
ergy scales in 2H-TMDs [29, 38], this local spin polarization arises within each ML
making up the multilayer stacks, giving rise to a spin-valley-layer coupling [37, 38]
which has been experimentally observed [39–42]. These results are evidence that
the layers are partially decoupled, such that the system can be approximately de-
scribed by a stack of two distinguishable monolayers whose crystallographic sym-
metry corresponds to point-group 𝐶3v. The horizontal mirror plane and two-fold
axes in Fig. 7.1(a,b) are not valid symmetry operations anymore, since the top and
bottom environments of each layer differ. At the K and K’ points, this symmetry is
reduced to 𝐶3, such that the electronic eigenstates at the edges of the bands in each
layer transform as irreps of the double group 𝐶̄3. Since the bottom layer is inverted
with respect to the top layer, the direction of phase winding of the eigenstates at the
K and K’ points of the BZ happens in opposite directions for each of the layers. This
means that, at a given energy and at a given point of the BZ, eigenstates in differ-
ent layers will have opposite orbital and spin angular momentum. This results in
a alternating spin-valley ordering according to the layer number, i.e. the top of the
valence band of the valley K of one layer has the same spin (and symmetry) as the
top of the valence band of the opposite valley (K’) of the adjacent layer. The result-
ing band structure, with the respective symmetries of each of the eigenstates, can
be found in Sec. 7.5.2.
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𝐶3
irrep

EM
fields

Acoustic phonons Optical phonons

Γ,q = 0 𝐾,q ≠ 0 Γ,q = 0 𝐾,q ≠ 0
A E⊥, B⊥ ZA LA/TA ZO LO/TO

E E∥, B∥ LA/TA LA/TA/ZA LO/TO LO/TO/ZO

Table 7.2: Symmetries
of operators and phonon
modes according to the
group of the wavevector
at the K and K’ points for
bilayer TMDs.

7.3.2. Selection Rules
Treating the layers as distinguishable does notmean that they are fully independent.
This means that the additional layer degree-of-freedom of TMD bilayers allows for
additional inter-layer scattering processes. The intra-layer scattering processes are
the same as the ones treated in detail in Sec. 7.2 and will not be repeated here. The
selection rules for the inter-layer processes can be obtained in the same manner
as before, now considering eigenstates and operators transforming as irreps of the
double group 𝐶̄3. These additional spin-flipping scattering pathways are shown in
Fig. 7.3(c,d).

Notably, the situation is drastically different for spins that are protected from
energy-conserving spin-flipping scattering processes in a ML due to TR symmetry.
These states transform as K11, 12 in aML, and as K6 in the bilayer. These charge car-
riers can now flip their spin by going from one layer into the other after interacting
with an operator transforming as the A irrep of the point group 𝐶3. This is because,
for states in the K valley for example, a spin-up in the top layer and a spin-down
in the bottom layer are not TR conjugates of each other, such that this scattering is
not protected by TR symmetry. These scattering processes can arise from electro-
magnetic fields perpendicular to the layer plane, or due to out-of-plane acoustic
phonons, which enhance the interlayer coupling (see Tab. 7.2). The availability of
acoustic phonons at the Γ point at low temperatures and the presence of environ-
mental charge noise implies that spins in CB2 (CB1) states in W based (Mo based)
TMDs will suffer from significantly faster relaxation than their counterparts in ML
TMDs.

Additional inter-layer energy conserving spin-flipping scattering processes also
arise for states transforming as K4, 5. These processes must be driven by operators
transforming as the E irrep of the point group 𝐶3, corresponding to electromagnetic
fields in the layer plane, and longitudinal and transverse acoustic phononmodes in
the Γ point (Tab. 7.2). Again, these processes are expected to be prevalent even at
low temperatures, leading to fast spin relaxation.

Finally, additional inter-layer spin-flipping processes thatmodify the linearmo-
mentum of charge carriers, i.e. inter-layer inter-valley processes (Fig. 7.3(d)), also
arise. Due to requirements of momentum conservation, these processes must be
accompanied by the emission or absorption of a K-phonon. Since they involve a
change in the energy of the charge carriers of at least a few tens of meVs, upward
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scattering processes (CB1 → CB2) are likely suppressed at low temperatures. Re-
laxation of hot carriers accompanied by a spin flip and change in linear momentum
(CB2→ CB1) however may arise via the emission of K-phonons transforming as E.
Additionally, in-plane momentum transfer from the the CB at the K point of one
layer into the VB at the K’ point of the other layer (transitions denoted by dashed
lines in Fig. 7.3(d)), are only allowed by second-order processes involving a photon
and a phonon, transforming as the irrep A of group 𝐶3. Therefore, these transitions
should be suppressed at low temperatures.

The considerations in the past paragraphs imply that inter-layer scattering pro-
cesses in bilayers (or few-layer stacks) lead to additional spin relaxation channels,
hindering their application in the field of spintronics. However, they also imply
that, in these materials, we have additional control over spin-flipping processes.
Kerr rotation experiments in W based bulk TMDs show that the spin polarization
in these materials decays within tens of ps [39]. Although much shorter than their
counterparts in ML samples [19, 43, 44], these spin lifetimes still enable optical de-
tection with high resolution. The group-theoretical results of this section indicate
that externally applied electric fields, for example, could be used to manipulate the
spin scattering rates in these materials, allowing us to turn these optically induced
spin signals on/off electrically [38, 43]. Furthermore, in-plane and out-of-plane
electric fields studies could unravel the charge character of the spin polarization.
This results from the fact that in-plane electric fields will impact the spin-scattering
processes of optically created holes, whereas out-of-plane electric fields will impact
the scattering processes of optically created electrons.

Several approaches could be used to enhance the spin lifetimes in bilayer TMDs.
On the one hand, we expect that encapsulating bilayer and bulk devices with van der
Waals insulators like hBN will be important in reducing the electrostatic influence
of substrate or adsorbed charges. The electrostatic environment of the BL could
be further controlled by gating, possibly leading to longer spin lifetimes. On the
other hand, heterostructures of TMDs will have different interlayer coupling and
interfacial electric dipoles, depending on the particular combination of materials.
Engineering these parameters, for example, could significantly suppress interlayer
scattering mechanisms, leading to spin lifetimes more similar to those found inML
TMDs [45]. Additionally, the phonon spectra can also be modified by strain or the
coupling to other van der Waals materials in heterostructures. In these devices,
one could think of deliberately enhancing interlayer scattering processes via applied
electric fields, combining the long spin lifetimes observed in ML TMDs with the
enhanced electrical control of spin polarization provided by multilayer stacks.

Finally, we note that optical fields, such as circularly polarized light, will couple
to a certain spin species according to the selection rules established above. When
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one applies an additional static electric or magnetic field that induces state mixing
between different layers, this picture still does not change, i.e. circularly polarized
light will still couple to the same spin species. However, when the optical field is
turned off, the spin polarization will evolve according to the coupled Hamiltonian
given by the perturbing static electric or magnetic field. This leads to an oscilla-
tion between the two states in time, reminiscent of what is observed in experiments
studying the coherent evolution of optically created spins in III-V and II-VI semi-
condictors, for example [46, 47]. These (Rabi) oscillations will decay according to
the characteristic spin relaxation and dephasing times [38].

7.4.Conclusion
Group theory is a powerful tool in the analysis of both equilibrium and out-of-
equilibrium physical processes in a variety of materials, including TMDs. It allows
one to gain insight into complex physical phenomena from a mathematically sim-
ple and comprehensive tool, without needing the specifics of the material of inter-
est. Additionally, it allows one to broadly generalize insights obtained for one ma-
terial or set of electronic eigenstates without additional computational cost. This
approach is simplistic, and relies on a series of approximations. Nonetheless, we
have shown here that it helps to unveil the fundamental processes at play in vari-
ous experiments on TMDs. Even the behavior of excitons – for which the presence
of exchange interaction is not encompassed by the single-particle approach under-
taken here – can often be explained qualitatively by this group-theoretical model,
by treating the electron and hole separately [20].

Based on this group-theoretical approach, we could identify fundamental sym-
metry properties of spins in TMDs and the subsequent selection rules for spin-
scattering processes. In ML TMDs, charge carriers in each of the sub-bands of the
CB behave in a fundamentally different manner: for one of the CB sub-bands, en-
ergy conserving spin-flipping processes are forbidden byTR symmetry, suppressing
most of the phonon-related spin-flips at low temperatures. This is not true for the
other sub-band of the CB, and for the VB, such that charge carriers in these states
can have their spin flipped via scattering from a K-phonon. Thus, in Mo-based
TMDs – where the states that are symmetry protected with regards to spin-flips
sit at the bottom of the CB and the SOC splitting in the CB is smaller – magnetic
impurities should be the main source of spin-flipping scattering at low tempera-
tures. In these materials, the quality of the sample can drastically enhance the spin
lifetime of electrons in the edge of the CB, possibly explaining the broad variation
of spin lifetimes reported in literature. Additionally, we find that spin-scattering in
ML TMDs is very robust with respect to electric fields, with only fields in the optical
range actually giving rise to spin-flips, and for a restricted set of states. In con-
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trast, in BL TMDs, all electronic states can undergo spin-flips after interacting with
electric fields that cause interlayer momentum-conserving transitions. Thus, noisy
electric fields, an inhomogeneous electrostatic environment, and acoustic phonons
are expected to greatly suppress a spin polarization induced in these materials, and
decrease their lifetime. Nonetheless, this feature can also be harnessed to gain con-
trol over optically created and detected spin polarization in thesematerials via elec-
trostatic gating, for example. There, one can use an out-of-plane electric field to
efficiently control the spin relaxation in these materials, making it a viable option
for spin-based information processing.
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7.5.Appendices
7.5.1. Eigenstates and selection rules for monolayer TMDs
Here, we present the derivation of the symmetry of the electronic eigenstates at the
high symmetry points of the Brillouin Zone (BZ), and the subsequent symmetry
restricted selection rules for spin scattering processes for the monolayer. The sym-
metries of the group of the wave vector at various points of the BZ were previously
derived and can be found also in literature [13]. These symmetries are presented
in more detail and can be visualized in Fig. 7.1 of the main text. At the Γ point of
the BZ, wavefunctions have the symmetries of the point group 𝐷3h. At the K and K’
points, this symmetry is reduced to 𝐶3h. At the Q and Q’ points, it is further reduced
to 𝐶s𝑥𝑦 (also denoted by 𝐶1h).

In order to account for the transformation properties of spin-half states, we
make use of the double groups with the symmetries mentioned above [28]. The
character tables referring to these double groups are shown explicitly in App. A.We
obtain the symmetries of the electronic eigenstates at the high symmetry points of
the BZ based on the symmetry of the crystal (Γequiv) and of the atomic orbitals most
prevalent in each of the eigenstates (Γorb). Finally, we use the symmetries of these
eigenstates to obtain the selection rules regarding spin-scattering processes.

Character tables
In Appendix A, we provide the character tables for the double groups of interest
here. We denote the irreducible representations (irrep) by the point of the BZ as-
sociated with each particular group (Γ, K and Q). In parenthesis, we also provide
the Mulliken symbol associated with each irrep. The irreps indicating the transfor-
mation properties of spin-1/2 states (or spin 𝑁/2, with odd 𝑁) are indicated by an
overbar. The symbol 𝜔 corresponds to 𝑒2𝜋𝑖/3, whereas 𝜔∗ corresponds to 𝑒−2𝜋𝑖/3.

The character tables for the point groups 𝐷3h, 𝐶3h and 𝐶1h are presented, respec-
tively, in Tabs. A.3, A.4, A.5.

Band structure and symmetry
As stated in the main text, the atomic orbital character of the electronic eigenstates
in the high symmetry points of the BZ has been obtained in literature based on both
tight-binding and density functional theorymodels [22, 26, 27]. Table 7.3 presents,
for the three high symmetry points of the BZ, the point-group associated with the
group of the wave vector (GWV) in column PG (for point-group), the atomic orbital
character and its symmetry (Γorb) and the symmetry of the equivalent representa-
tion (Γequiv). Combined, this information allows us to obtain the symmetry of the
delocalized Bloch wavefunction at each high-symmetry point of the BZ, given by
Γspatial. For the states in the K and K’ points, this derivation is performed visually
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and explained thoroughly in the main text. For the valence band states in the K
and K’ points, the 2-fold degenerate atomic orbitals, combined with the 2-fold de-
generate equivalent representation gives rise to a total of 4 spatial wavefunctions.
Nonetheless, only those transforming as A’ are of importance here, since the other
ones (identified in parenthesis in the last column of Tab. 7.3) are much lower in
energy, deep into the VB.

Table 7.3: Spatial character of the wavefunctions at edges of CB and VB at various points of the BZ of
monolayer TMDs and their symmetries.

BZ point PG Atomic Orbital Γorb Γequiv Γspatial = Γequiv⊗Γorb
Γ, VB 𝐷3h 𝑑𝑧2 A′1 2A′1 2A′1

K (K’), VB 𝐶3h 𝑑𝑥𝑦,𝑥2−𝑦2 E′+ + E′− E′+ + E′− 2A′ + (E′+ + E′−)
K (K’), CB 𝐶3h 𝑑𝑧2 A′ E′+ + E′− E′+ + E′−
Q (Q’), CB 𝐶s𝑥𝑦 𝑑𝑥𝑦,𝑥2−𝑦2 2A′ A′ 2A′

The double groups 𝐶̄3h and 𝐶̄1h do not have any irrep of dimension 2 or greater.
This means that all eigenstates in the K (K’) or Q (Q’) of the BZ are non-degenerate,
even when spin is included. Degeneracy here is restricted to cases where two states
have the same energy at the same point of the BZ (thus, states with the same en-
ergy but at K and K’ points are not considered degenerate). In contrast, at the Γ
point, spin up and down states must be degenerate in the presence of time-reversal
symmetry, since all spin-1/2 irreps of the group 𝐷3h are two-fold degenerate.

In tables 7.4 and 7.5 we present, respectively for valence and conduction band
states, the symmetries of the electronic eigenstates including spin. This is given in
column Γspatial⊗Γspin. This information is also compiled visually in Fig. 7.4. In order
to obtain the selection rules between states at different points in the BZ (which have
different symmetries), we must take into account the compatibility relations be-
tween different point groups [28]. These compatibility relations state how an irrep
of a certain point group splits into a sumof irreps of a different group upon lowering
the symmetry. In tables 7.4 and 7.5, we also provide the compatibility relations for
the irreps corresponding to the electronic eigenstates at each high symmetry point
of the BZ, for all three point groups of interest.
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Table 7.4: For valence band wavefunctions, we can obtain the symmetry of the electronic eigenstates
including spin by considering the irreps of the double groups. We present also the compatibility relations
for irreps of the double groups 𝐷3h, 𝐶3h and 𝐶1h.

BZ point VB wf Γspatial⊗Γspin 𝐷3h 𝐶3h 𝐶1h
Γ A′1⊗ E1/2 Γ7 K7 + K8 Q3 +Q4

K (K’) A′⊗ E1/2↑ K7 Γ7 Q3
A′⊗ E1/2↓ K8 Q4

Table 7.5: For conduction band wavefunctions, we can obtain the symmetry of the electronic eigenstates
including spin by considering the irreps of the double groups. We present also the compatibility relations
for irreps of the double groups 𝐷3h, 𝐶3h and 𝐶1h.

BZ point CB wf Γorb⊗Γspin 𝐷3h 𝐶3h 𝐶1h
T (T’) 2A′⊗ E1/2↑ 2Q3

2A′⊗ E1/2↓ 2Q4
K(K′) E′+⊗ E1/2↑ K10 Γ8 Q3

E′−⊗ E1/2↓ K9 Q4
E′+⊗ E1/2↓ K12 Γ9 Q4
E′−⊗ E1/2↑ K11 Q3

K

K7

K9

K11

C3h

K’

K8

K10

K12

C3h

Q

Q4

Q3

C1h

Q’

Q3

Q4

C1h

Γ

Γ7

D3h

E
n
er

g
y

K7 K8

Figure 7.4: Energy diagram ML Blue lines represent spin down states, whereas red lines represent
spin up states. Lines of both colors represent degeneracies protected by symmetry. The irreps associated
with each state are those of the group of the wave vector at each point of the BZ, indicated at the top.
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Possible scattering processes
According to Fermi’s golden rule, the probability of going froman initial state |Ψ𝑖⟩ to
a final stateΨ𝑓 when interactingwith a perturbation𝐻′ is proportional to thematrix
element ⟨Ψ𝑓|𝐻′|Ψ𝑖⟩. This matrix elementmust be a scalar, that is, it must transform
as the fully symmetric representation A (or A1𝑔). Thus, thematrix element can only
be nonzero if the product of the representations Γ∗𝑓⊗Γ𝐻′⊗Γ𝑖, respectively indicat-
ing the symmetry properties of |Ψ𝑓⟩, 𝐻′ and |Ψ𝑖⟩, contains the fully symmetric rep-
resentation. When states |Ψ𝑖⟩ and |Ψ𝑓⟩ occur at different points in the BZ, we must
consider their symmetry properties according to the point group of lowest symme-
try by use of the previously mentioned compatibility relations. In this way, we can
calculate all matrix elements which may be nonzero. We do so, and compile the
results in table 7.6. Here, we classify the transitions with respect to whether they
preserve spin or valley information. Furthermore, we identify the external electro-
magnetic field component which transforms according to each of the irreps and is,
thus, capable of driving a certain transition. Optical transitions are highlighted in
red. We highlight these transitions since they involve a large change in the energy of
the electronic eigenstate and can be addressed by light. Thus, at low temperatures,
these transitions will only happen upwards if actively driven (the downwards tran-
sition can happen via spontaneous emission of a photon). Furthermore, we did not
present the selection rules for optical transitions that do not conserve linear mo-
mentum. These transitions happen in two steps, via the emission of a photon and a
phonon, such that these processes are already considered here.

Finally, wehighlight transitions between states that are each other’s time-reversal
conjugate in blue. Transitions between these states are further protected by time
reversal symmetry, according to Kramers Theorem. If two states |Ψ𝑖⟩ and |Ψ𝑓⟩ are
each other’s time reversal conjugate (and they are both spin-1/2 states), the ma-
trix element ⟨Ψ𝑓|𝐻′|Ψ𝑖⟩ is nonzero only if the perturbation 𝐻′ breaks time reversal
symmetry. Examples of such perturbations are external magnetic fields, magnetic
scatterers and circularly polarized light.
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Table 7.6: Scattering mechanisms for electrons in K and K′ points in monolayer TMDs. The abbrevia-
tions Magn. and El. stand for magnetic and electrical fields, respectively, whereas i.p. and o.o.p stand
for in plane and out of plane with respect to the TMD layer. We identify optical transitions in red, and
transitions between states connected by time-reversal conjugacy in blue.

Sym. Physical Intra-valley Intra-valley Inter-valley Inter-valley
𝐶3h Mechanism Spin cons. Spin flip. Spin cons. Spin flip.

A′ Magn. o.o.p KVB → ΓVB
K′VB → ΓVB

K(K’)CB → Q(Q’)CB
A″ El. o.o.p. KVB → KCB1 KCB2 → K′CB2

K′VB → K′CB1
(K, K)′CB → Q(Q’)CB

E′+ El. i.p. KVB → KCB2 KCB1 → K′CB2
𝜎+ KCB2 → K′CB1

K(K’)CB → Q(Q’)CB
E″+ Magn. i.p. KCB1 → KCB2 K′VB → KVB

K′CB2 → K′CB1 K′CB1 → KCB1

K′VB → ΓVB
K(K’)CB → Q(Q’)CB

E′− El. i.p. K′VB → K′CB2 K′CB1 → KCB2

𝜎− K′CB2 → KCB1

K(K’)CB → Q(Q’)CB
E″− Magn. i.p. K′CB1 → K′CB2 KVB → K′VB

KCB2 → KCB1 KCB1 → K′CB1
KVB → ΓVB

K(K’)CB → Q(Q’)CB
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7.5.2. Eigenstates and selection rules for bilayer TMDs
Here, we repeat the steps described previously for the monolayer, now applied to
the electronic states in bilayer TMDs.

Character tables
When we consider the full symmetry of the bilayer stack, the double groups of in-
terest are 𝐷̄3d at the Γ point of the BZ, and 𝐷̄3 at the K and K’ points. At the Q and Q’
points, the double group of interest is 𝐶̄2. In themain text, we explain that it is inter-
esting to look at the bilayer as a stack of twomonolayers. In this case, the symmetry
of the Γ point becomes 𝐷̄3, whereas the symmetry of the K and K’ points becomes
𝐶̄3. The character tables for these point groups are presented in the Appendix A.
These are, respectively, Tabs. A.6, A.7, A.8, A.9

Band structure and symmetries
As we did previously for the monolayer, in Tab. 7.7 we present the symmetry group
associated with the different points of the BZ (PG column), the atomic orbital char-
acter of wavefunctions at these points, and their symmetries (Atomic Orbital and
Γorb columns respectively), the irrep associated with the equivalent representation
for wavefunctions at these points (Γequiv) and, lastly, the full symmtery of the spatial
part of the Bloch wavefunctions at these points of the BZ (Γspatial).

In tables 7.8 and 7.9 we present the symmetry of the Bloch wavefunctions at the
high-symmetry points of the BZ including spin, aswell as the compatibility relations
necessary to obtain the selection rules for scattering between points of the BZ with
different symmetries.

Table 7.7: Spatial character of the wavefunctions at edges of CB and VB at various points of the BZ of
bilayer TMDs and their symmetries.

BZ point PG Atomic Orbital Γorb Γequiv Γspatial = Γequiv⊗Γorb
Γ, VB 𝐷3d 𝑑𝑧2 A1𝑔 A1𝑔 A1𝑔

K (K’), VB 𝐷3 𝑑𝑥𝑦,𝑥2−𝑦2 E E A1 + A2 + 𝐸
K (K’), CB 𝐷3 𝑑𝑧2 A1 E E

Q (Q’), CB 𝐶2 𝑑𝑥𝑦,𝑥2−𝑦2 2A A 2A

Table 7.8: For valence band wavefunctions, we can obtain the symmetry of the electronic eigenstates
including spin by considering the irreps of the double groups. We present also the compatibility relations
for irreps of the double groups 𝐷3d, 𝐷3 and 𝐶2 and 𝐶3.

BZ point VB wf Γorb⊗Γspin 𝐷3𝑑 𝐷3 𝐶2 𝐶3
Γ A1𝑔⊗ E1/2 Γ7 K4 Q3 +Q4 2 (E−1/2 + E1/2)
K A1⊗ E1/2 K4 Γ7 (Q3 +Q4) 2 (E−1/2 + E1/2)
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Table 7.9: For conduction band wavefunctions, we can obtain the symmetry of the electronic eigenstates
including spin by considering the irreps of the double groups. We present also the compatibility relations
for irreps of the double groups 𝐷3d, 𝐶2 and 𝐶3.

BZ point CB wf Γorb⊗Γspin 𝐷3𝑑 𝐶2 𝐶3
Q 2𝐴⊗ (Q3 +Q4) 2(Q3 +Q4) 2(Q3 +Q4) 2 (E−1/2 + E1/2)
K E⊗ E1/2 K4 + K5 + K6 Γ7 + Γ8 2(Q3 +Q4) 2(E−1/2 + E1/2) + 2E3/2
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E3/2 E3/2

E-1/2
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A B
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Figure 7.5: EnergydiagramBLBlue lines represent spin down states, whereas red lines represent spin
up states. Lines of both colors represent degeneracies protected by symmetry. The irreps associatedwith
each state are those of the group of the wave vector at each high symmetry point, indicated at the top.
State’s localization at each monolayer is indicated by the A and B label at the bottom.
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Possible scattering processes
Here, we derive the allowed scattering processes for electrons and holes at the high-
symmetry points of the BZ.We focus specifically on processes leading to inter-layer
scattering processes, since the intra-layer processes are analogous to those seen in
monolayer TMDs (Sec. 7.5.1). Again, we highlight optical transitions in red. Since
electronic states localized in different layers cannot be each other’s time-reversal
conjugates, here we observe no transitions that are protected by time-reversal sym-
metry.

Table 7.10: Inter-layer scattering mechanisms for electrons in K and K’ points in bilayer TMD. The ab-
breviations Magn. and El. stand for magnetic and electrical fields, respectively, whereas i.p. and o.o.p
stand for in plane and out of plane with respect to the TMD layers. We identify optical transitions in red.

Sym. Physical Intra-valley Intra-valley Inter-valley Inter-valley
𝐶3 Mechanism Spin cons. Spin flip. Spin cons. Spin flip.

A Magn. o.o.p KCB2 → KCB2 KVB → K′VB
El. o.o.p. KCB1 → K′CB1

KCB2 → K′CB2
KVB → ΓVB

K(K’)CB → Q(Q’)CB K(K’)CB → Q(Q’)CB
E+ Magn. i.p. KVB → KCB1 KVB → KCB2

El. i.p. KVB → KVB

KCB1 → KCB1

KCB1 → KCB2 KCB1 → K′CB2
KVB → ΓVB

E− Magn. i.p. K′VB → K′CB1 K′VB → K′CB2
El. i.p. K′VB → K′VB

K′CB1 → K′CB1
K′CB1 → K′CB2 K′CB1 → KCB2

K′VB → ΓVB
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chapter 8
Conclusion and afterword

O ur goal in this work was not to deliver an industry-ready material platform for
quantum communication. Instead, we aimed at shining light on the relation-

ship between the microscopic structure of defect centers and various important fig-
ures of merit for quantum-based applications. These results provide insight useful
for recently suggested novel approaches towards the engineering of defects based
on application-specific requirements [1, 2]. The possibility of various valence states
associated with transition metal (TM) impurities and the strong localization of the
active spins around the impurity leads to a situation where the probable optical
and electronic properties of a multitude of possible defect centers can be rational-
ized based on simple and computationally inexpensive group-theoretical consider-
ations. Similar approaches should be considered as an initial filter in the design of
novel defect centers with desirable properties, in order to generate a pool of poten-
tial candidates to be further explored with ab initio or experimental means. Below,
we present a summary of some lessons learned based on this work for electronic
states localized at transition metal ions. These lessons are general and could be of
relevance for related systems andmaterials, such as organometallic centers and TM
impurities in semiconductors with hexagonal symmetry. Additionally, we present
the immediate challenges concerning the direct application of TM defects in SiC for
quantum communication applications, and how these might be mitigated in other
defect centers and material platforms.

Lessons for TM-localized electronic states
• An odd number of electrons occupying doubly degenerate transition-metal
𝑑-orbitals in geometries with axial rotational symmetry give rise to Kramers
doublet states due to the strong spin-orbit coupling arising from theTM.When
isolated – in our case, when the nuclear spin can be neglected – these elec-
tronic states are protected from direct transitions between effective-spin-up
and down, leading to robust electronic spins with long spin-relaxation times
and zero dipole moments for interactions with magnetic or electric fields.

• Thermal population of localized vibrational modes (analogous to molecular
vibrational modes) leads to significant spin relaxation of TM defects in SiC
at high temperatures. Any attempt to extend the operational temperature of
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8. Conclusion and afterword

TM defects in solids must rely on defect engineering to increase the energy of
the localized vibrational modes. Alternatively, one could also consider sup-
pressing the phonon population at the relevant energies via phononic device
engineering.

• Interaction between the electronic spin and a central nuclear spin may be an
important resource for controlling the electronic-spin state via magnetic and
electric microwave excitation. There is an important trade-off, however, be-
tween the possibility of spin control and spin relaxation due to interactions
with the environment, and this additional control pathway is concurrent with
significantly shorter spin-relaxation times. This is exemplified by the shorter
spin-relaxation times observed for V defects (for which 99% of the naturally
abundant isotopes have non-zero nuclear spin) when compared toMo defects
(for which ∼ 75% of naturally abundant isotopes have zero nuclear spin).

• The interaction between electronic states and environmental perturbations
depends on the particular symmetry properties of the electronic states them-
selves. Thus, defects with various accessible optically excited states may show
optical transition lines that vary in how susceptible they are to varying local
electric fields. This may offer a path towards the engineering of defects with
narrow andhighly stable optical linewidths in crystals that lack inversion sym-
metry.

Challenges and opportunities for implementation of TMdefects in
SiC for quantum-based applications
Based on the work presented in this thesis, it becomes clear that direct application
of TM defects as a material platform for telecom-compatible quantum repeaters
requires further characterization steps. For V defects in particular, characteriza-
tion of spin-relaxation and coherence properties at millikelvin temperatures, as
well as the development of protocols for high-fidelity optical or microwave initial-
ization of the nuclear spin are the most urgent developments to be tackled. In
the few-kelvin range, for which we provide experimental data in this thesis, the
near-millisecond spin-relaxation times (significantly shorter than observed for Mo
defects with nuclear spin zero), and the large Hilbert space associated with the
hyperfine-coupled ground-state Kramers doublet lead to incomplete optical spin
initialization, severely limiting the fidelities of light-matter entanglement protocols.
Thus, any future application of these defect centers will necessarily be based on
accessible and affordable dilution-fridge technology or advanced optical pumping
schemes.

Another pressing question that has been only brieflymentioned so far is whether

8
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the stability of spin-coherence parameters of V defects depends on the doping level
of the SiC host material. It is well known that V is a very effective amphoteric im-
purity in SiC, meaning it can exist within the host material in various charge con-
figurations. On the one hand, this property may be useful for long-term storage of
quantum states in nuclear spins via ionization of the defects into an electron-spin-
free configuration enabled by device integration with electrostatic control. On the
other hand, it calls for a better understanding of how the charge dynamics of these
defect centers impacts their spin-coherence properties, and how to control this via
Fermi-level engineering.

Despite these challenges, V defects in SiC still present themselves as competitive
platforms due to their favorable optical properties. Single implanted V defects have
been observed with relatively narrow optical transition lines that are stable over the
course of hours, demonstrating that these defects are likely to preserve their optical
properties when integrated into photonic or electronic devices [3].

Related systems andmaterials
Other TMdefects in SiC A systematic investigation of the series of defects with
increasing mass composed of V, Mo, and W (and also Nb and Ta) defects in SiC
would consolidate our findings. These elements all belong to groups 5 and 6 in
the periodic table, such that they are contenders for forming defects with the same
charge state and analogous electronic structures to each other. Tungsten in particu-
lar is known to form stable and optically active defects in SiC.When compared toMo
and V, W is heavier, which may lead to defect centers with larger spin-orbit-related
energy splittings. Additionally, the larger mass of W with respect to Mo could lead
to more energetic vibrational modes, possibly extending the temperature range for
operation of these defect centers. Tungsten defects in SiC are still poorly character-
ized with respect to optical and spin properties. Nonetheless, we know that these
defects have optical transitions between the Mo and V-related lines and a ground
state composed of an odd number of active electronic spins [4]. The small distance
between the optical transition lines of these defects and the O-band (∼ 10meV for
4H-SiC) could potentially be overcome by embedding these impurities in other SiC
polytypes. Like Mo, W atoms appear in a variety of naturally abundant isotopes,
from which most have zero nuclear spin. The remaining W isotopes have a nuclear
spin-1/2. Thus, Mo and W defects in SiC obtained during growth or via ion im-
plantation with isotopically purified precursors may allow for defect centers with
deterministic zero or non-zero nuclear spins, depending on the desired properties
of the defect centers. For example, the uniaxial magnetic field sensitivity of Mo
and V defects could be interesting for applications in magnetic field sensing, and
these wouldmost likely benefit from a nuclear-spin-free environment that warrants

8
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a linear dependence between the Zeeman energy levels and the external magnetic
field. In contrast, defects with a non-zero nuclear spin could lead to robust opti-
cally addressable hybrid registers with long spin-coherence times, if the challenges
involvedwith initializing the nuclear spin can be overcome. Multi-photon protocols
to initialize the nuclear spin will likely be more easily implemented in systems with
nuclear spin-1/2, in contrast to vanadium’s nuclear spin-7/2.

Alternative material platforms Transition metal impurities in other semi-
conductor materials with hexagonal symmetry could behave similarly to the defect
centers studied in this thesis. In particular, we point out that TM impurities are
also stable in II-VI semiconductors (ZnSe, CdSe, ZnTe, and CdTe), with some being
optically active in the infrared and near-infrared ranges of the spectrum [5]. Initial
characterization of these defect centers with respect to charge stability, optical tran-
sition energies, and ground-state spin parameters was performed in the end of the
last century. We could, however, find no further thorough investigation focused on
observing and characterizing optical control of spin coherences in these platforms.
These semiconductors can be grown from isotopically purified precursors, provid-
ing host materials with a nuclear spin-free environment that are crucial for extend-
ing the spin-coherence times of embedded defect centers. Although thesematerials
are not as widely used in the semiconductor industry as Si and SiC, the larger mass
of the lattice atoms could lead to defects with larger vibrational energies, potentially
enabling quantum operation at higher temperatures.

Another class of relevant hexagonal semiconductors and insulators, namely two-
dimensional materials like TMDs and hBN, could also host defects with analogous
behavior to those studied in this thesis. These material platforms offer less flexibil-
ity in terms of large-scale materials-processing technologies but could be of impor-
tance for the integration into two-dimensional-materials-based heterostructures
and circuits.
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chapter A
Relevant character tables

A.1. 𝐶3v symmetry
Table A.1: Character table of thedouble group 𝐶̄3v. The upper bar represents an operation followed
by a 2𝜋 rotation that brings a spin ↑ into − ↑.

𝐶̄3v 𝐸 𝐸̄ 2𝐶3 2𝐶̄3 3𝜎𝑣 3𝜎̄𝑣
A1 1 1 1 1 1 1 𝑧 𝑧2, 𝑥2 + 𝑦2
A2 1 1 1 1 −1 −1 𝑅𝑧
E 2 2 −1 −1 0 0 (𝑥, 𝑦), (𝑅𝑥 , 𝑅𝑦) (𝑥2 − 𝑦2, 2𝑥𝑦), (𝑥𝑧, 𝑦𝑧)
Γ4 2 −2 1 −1 0 0

Γ5,6{
1 −1 −1 1 𝑖 −𝑖
1 −1 −1 1 −𝑖 𝑖

Table A.2: Product table of the double group 𝐶̄3v.

A1 A2 E Γ4 Γ5 Γ6
A1 A1 A2 E Γ4 Γ5 Γ6
A2 A2 A1 E Γ4 Γ6 Γ5
E E E A1⊕ A2⊕ E Γ4⊕Γ5⊕Γ6 Γ6 Γ5
Γ∗4 Γ4 Γ4 Γ4⊕Γ5⊕Γ6 A1 + A2 + E E E

Γ∗5 = Γ6 Γ6 Γ5 Γ4 E A1 A2
Γ∗6 = Γ5 Γ5 Γ6 Γ4 E A2 A1
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A. Relevant character tables

A.2. 𝐷3h symmetry
Table A.3: Character table of the double group 𝐷̄3h.

𝐷̄3h 𝐸 𝐸̄ 𝐶+3 𝐶−3 𝐶̄+3 𝐶̄−3 𝜎ℎ𝜎̄ℎ 𝑆+3 𝑆−3 𝑆̄+3 𝑆̄−3 𝐶′2𝑖𝐶̄′2𝑖 𝜎𝑣𝑖𝜎̄𝑣𝑖
Γ1 (A′1) 1 1 1 1 1 1 1 1 1
Γ2 (A′2) 1 1 1 1 1 1 1 −1 −1
Γ3 (A″1) 1 1 1 1 −1 −1 −1 1 −1
Γ4 (A″2) 1 1 1 1 −1 −1 −1 −1 1
Γ5 (E″) 2 2 −1 −1 −2 1 1 0 0
Γ6 (E′) 2 2 −1 −1 2 −1 −1 0 0
Γ7 (Ē1) 2 −2 1 −1 0 √3 −√3 0 0
Γ8 (Ē2) 2 −2 1 −1 0 −√3 √3 0 0
Γ9 (Ē3) 2 −2 −2 2 0 0 0 0 0

A.3. 𝐶3h symmetry

Table A.4: Character table of the double group 𝐶̄3h. 𝜔 = 𝑒−2𝜋𝑖/3

𝐶̄3h 𝐸 𝐶+3 𝐶−3 𝜎ℎ 𝑆+3 𝑆−3 𝐸̄ 𝐶̄+3 𝐶̄−3 𝜎̄ℎ 𝑆̄+3 𝑆̄−3
K1 (A′) 1 1 1 1 1 1 1 1 1 1 1 1
K2 (2E′) 1 𝜔 𝜔∗ 1 𝜔 𝜔∗ 1 𝜔 𝜔∗ 1 𝜔 𝜔∗
K3 (1E′) 1 𝜔∗ 𝜔 1 𝜔∗ 𝜔 1 𝜔∗ 𝜔 1 𝜔∗ 𝜔
K4 (A″) 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1
K5 (2E″) 1 𝜔 𝜔∗ −1 −𝜔 −𝜔∗ 1 𝜔 𝜔∗ −1 −𝜔 −𝜔∗
K6 (1E″) 1 𝜔∗ 𝜔 −1 −𝜔∗ −𝜔 1 𝜔∗ 𝜔 −1 −𝜔∗ −𝜔
K7 (2Ē3) 1 −𝜔 −𝜔∗ 𝑖 −𝑖𝜔 𝑖𝜔∗ −1 𝜔 𝜔∗ −𝑖 𝑖𝜔 −𝑖𝜔∗
K8 (1Ē3) 1 −𝜔∗ −𝜔 −𝑖 𝑖𝜔∗ −𝑖𝜔 −1 𝜔∗ 𝜔 𝑖 −𝑖𝜔∗ 𝑖𝜔
K9 (2Ē2) 1 −𝜔 −𝜔∗ −𝑖 𝑖𝜔 −𝑖𝜔∗ −1 𝜔 𝜔∗ 𝑖 −𝑖𝜔 𝑖𝜔∗
K10 (1Ē2) 1 −𝜔∗ −𝜔 𝑖 −𝑖𝜔∗ 𝑖𝜔 −1 𝜔∗ 𝜔 −𝑖 𝑖𝜔∗ −𝑖𝜔
K11 (2Ē1) 1 −1 −1 𝑖 −𝑖 𝑖 −1 1 1 −𝑖 𝑖 −𝑖
K12 (1Ē1) 1 −1 −1 −𝑖 𝑖 −𝑖 −1 1 1 𝑖 −𝑖 𝑖
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A.4. 𝐶1h symmetry

A.4. 𝐶1h symmetry

Table A.5: Character table of the double group 𝐶̄1h.

𝐶̄1h 𝐸 𝜎ℎ 𝐸̄ 𝜎̄ℎ
Q1 (A

′) 1 1 1 1
Q2 (A

″) 1 −1 1 −1
Q3 (1Ē) 1 𝑖 −1 −𝑖
Q4 (2Ē) 1 −𝑖 −1 𝑖

A.5. 𝐷3d symmetry

Table A.6: Character table of the double group 𝐷̄3d.

𝐷̄3d 𝐸 𝐸̄ 2𝐶3 2𝐶̄3 3𝐶2 𝑖 2𝑆6 2𝑆̄6 3𝜎𝑑
Γ1 (A1𝑔) 1 1 1 1 1 1 1 1 1
Γ2 (A2𝑔) 1 1 1 1 −1 1 1 1 −1
Γ3 (E𝑔) 2 2 −1 −1 0 2 −1 −1 0
Γ4 (A1𝑢) 1 1 1 1 1 −1 −1 −1 −1
Γ5 (A2𝑢) 1 1 1 1 −1 −1 −1 −1 1
Γ6 (E𝑢) 2 2 −1 −1 0 −2 1 1 0
Γ7 (Ē1/2) 2 −2 1 −1 0 0 √3 −√3 0
Γ8 (Ē3/2) 2 −2 −2 2 0 0 0 0 0
Γ9 (Ē5/2) 2 −2 1 −1 0 0 −√3 √3 0

A.6. 𝐷3 symmetry

Table A.7: Character table of the double group 𝐷̄3.

𝐷̄3 𝐸 𝐸̄ 2𝐶3 2𝐶̄3 3𝐶2 3𝐶̄2
K1 (A1) 1 1 1 1 1 1
K2 (A2) 1 1 1 1 −1 −1
K3 (E) 2 2 −1 −1 0 0
K4 (Ē1/2) 2 −2 1 −1 0 0
K5 (Ē−3/2) 1 −1 −1 1 𝑖 −𝑖
K6 (Ē+3/2) 1 −1 −1 1 −𝑖 𝑖
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A.7. 𝐶2 symmetry
Table A.8: Character table of the double group 𝐶̄2.

𝐶̄2 𝐸 𝐶2 𝐸̄ 𝐶̄2
Q1 (A) 1 1 1 1
Q2 (B) 1 −1 1 −1
Q3 (Ē−3/2) 1 𝑖 −1 −𝑖
Q4 (Ē+3/2) 1 −𝑖 −1 𝑖

A.8. 𝐶3 symmetry

Table A.9: Character table of the double group 𝐶̄3. 𝜔 = 𝑒−2𝜋𝑖/3

𝐶̄3 𝐸 𝐸̄ 𝐶+3 𝐶−3 𝐶̄+3 𝐶̄−3
K1 (A) 1 1 1 1 1 1
K2 (E+) 1 1 𝜔 𝜔∗ 𝜔 𝜔∗
K3 (E−) 1 1 𝜔∗ 𝜔 𝜔∗ 𝜔
K4 (Ē−1/2) 1 −1 −𝜔 −𝜔∗ 𝜔 𝜔∗
K5 (Ē1/2) 1 −1 −𝜔∗ −𝜔 𝜔∗ 𝜔
K6 (Ē3/2) 1 −1 −1 −1 1 1
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