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Transition metal dichalcogenides (TMDs) combine interesting optical and spintronic properties in an atom-
ically thin material, where the light polarization can be used to control the spin and valley degrees of freedom
for the development of novel optospintronic devices. These promising properties emerge due to their large
spin-orbit coupling in combination with their crystal symmetries. Here, we provide simple symmetry arguments
in a group-theory approach to unveil the symmetry-allowed spin-scattering mechanisms, and indicate how
one can use these concepts towards an external control of the spin lifetime. We perform this analysis for
both monolayer (inversion asymmetric) and bilayer (inversion symmetric) crystals, indicating the different
mechanisms that play a role in these systems. We show that in monolayer TMDs, electrons and holes transform
fundamentally differently—-leading to distinct spin-scattering processes. We find that one of the electronic
states in the conduction band is partially protected by time-reversal symmetry, indicating a longer spin lifetime
for that state. In bilayer and bulk TMDs, a hidden spin polarization can exist within each layer despite the
presence of global inversion symmetry. We show that this feature enables control of the interlayer spin-flipping
scattering processes via an out-of-plane electric field, providing a mechanism for electrical control of the
spin lifetime.

DOI: 10.1103/PhysRevB.103.115410

I. INTRODUCTION

Thin layers of transition metal dichalcogenides (TMDs)
offer the possibility of electrically and optically addressing
spin, valley, and layer degrees of freedom of charge carriers
[1–5]. This has led to increased interest in these materials for
applications in novel electronic and spintronic devices [6–11].
These properties arise from the symmetries of these intrin-
sically two-dimensional crystals, combined with the large
spin-orbit coupling imprinted on electrons by the heavy tran-
sition metal atoms in the lattice [1,4,12]. Several experimental
and theoretical works explore the spin and valley lifetimes in
monolayer, bilayer, and bulk TMDs, with often contrasting
results. In the particular case of spin lifetime in TMDs, ex-
perimental values span over five orders of magnitude [13–18].
Group-theory-based analysis of the symmetries in this class of
materials has been useful in unraveling their optical [13,19,20]
and spintronic [21–23] properties, including how electrons,
holes, and excitons couple to phonons and external mag-
netic fields, for example. This approach can be very powerful
to connect and compare seemingly contrasting results, as
well as giving powerful symmetry-based predictions for the
design of future experiments. However, the literature still
lacks a pedagogical derivation of the mechanisms leading to
spin scattering in monolayer and, particularly, bilayer TMDs
based solely on the symmetry of these materials. Moreover,
a careful analysis and understanding of the impact of crystal
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symmetries on the spintronic properties of these materials can
lead to better device engineering, which exploits symmetry
breaking for active control over the spin information.

Here, we apply group-theoretical considerations to obtain
the symmetry of the electronic wave functions at the edges of
the bands in these semiconductors, for both monolayer and
bilayer systems. In order to do this, we use double groups
to unravel the transformation properties of the Bloch wave
functions, including spin at the high-symmetry points in the
Brillouin zone (BZ), in the absence of external fields. Based
on these results, we derive the first-order selection rules for
spin-scattering processes in a single-particle picture. This al-
lows us to determine how electron and hole spins couple to
phonons and external fields, and which mechanisms domi-
nate spin-flipping processes at low temperatures. Based on
these results, we find that electrons and holes in these ma-
terials transform differently. In particular, a combination of
rotational symmetry and strong spin-orbit coupling (SOC)
strongly suppresses low-temperature spin-scattering mecha-
nisms for conduction-band electrons in monolayer TMDs. For
bilayer (and few-layer) systems where individual layers are
partially decoupled, we find that an electric field enhances in-
terlayer spin-scattering processes, enabling electrical control
of an optically created spin polarization. Despite being based
on several approximations, the group-theoretical framework
developed here allows us to intuitively understand various
spin properties of this class of materials in a straightforward
manner and in line with recent experimental results.

This paper is organized as follows: in Sec. II, we focus on
monolayer TMDs and their symmetries. We obtain the trans-
formation properties of the Bloch wave functions, including

2469-9950/2021/103(11)/115410(9) 115410-1 ©2021 American Physical Society

https://orcid.org/0000-0001-5318-3363
https://orcid.org/0000-0003-4623-7524
https://orcid.org/0000-0002-9843-3220
https://orcid.org/0000-0002-8150-4379
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.115410&domain=pdf&date_stamp=2021-03-05
https://doi.org/10.1103/PhysRevB.103.115410


CARMEM M. GILARDONI et al. PHYSICAL REVIEW B 103, 115410 (2021)

FIG. 1. Symmetry of the group of the wave vector at the K
and K ′ points. Lattice structure in real and reciprocal space for (a),
(b) monolayer and (c), (d) bilayer TMDs. The symmetry of the
full crystal (that is, the symmetry at the � point in the BZ) is D3h

for the monolayer and D3d for the bilayer, for which the symmetry
operations are explicitly shown. Operations that, although present in
the � point of the BZ, are absent in the K and K ′ points (b), (d) are
shown in light gray. The absence of these symmetry operations at the
K and K ′ points reduces the symmetry at these points to the point
groups C3h for monolayers and D3 for bilayers.

spin at the high-symmetry points of the BZ. Based on the
symmetries of these wave functions, we derive which per-
turbations (electromagnetic fields and lattice phonon modes)
can couple eigenstates with opposite spin, which allows us
to determine the processes most likely to lead to spin flips
at low temperatures. In Sec. III, we repeat this analysis for
bilayer TMDs. Finally, in Sec. IV, we summarize the main
conclusions and elaborate on the impact of our findings to past
and future experiments in the field.

II. MONOLAYER TMDs

A. Symmetries of the spatial eigenstates

In order to derive the spin-scattering selection rules at
the edges of the bands, one must first obtain the symmetry
properties of the eigenstates at the K and K ′ points of the BZ.
These properties are determined by the point group describ-
ing the crystallographic symmetry at these points, the orbital
character of the wave functions, and the spin of the charge
carriers in these states [12]. In this way, we can classify the
electronic eigenstates at the band edges in these materials by
their transformation properties, which are summarized by the
irreducible representation (IR) of the suitable point group.

A TMD monolayer (ML) is composed of transition metal
and chalcogen atoms, arranged in a hexagonal lattice. Al-
though the coordination between these atoms can vary, the
most widely studied TMD polytypes (2H types) have a transi-
tion metal atom bound to six chalcogen atoms in a trigonal
prismatic geometry [Fig. 1(a)], giving rise to the crystallo-
graphic point group D3h. However, the edges of the valence

and conduction bands in ML TMDs are located at the K and
K ′ points of the BZ, where not all symmetries of the lattice are
preserved. Here, only the threefold rotational symmetry axis
(C3), the horizontal mirror plane (σh), and their combinations
are valid symmetry operations, such that the wave functions
at the K and K ′ points of the BZ transform according to the
point group C3h [12,19,21]. Figure 1(a) shows the symmetry
operations at the K and K ′ points in black, and the additional
symmetry operations in the � point in gray.

Ab initio calculations and tight-binding models of these
materials show that the orbital character of the electronic
wave functions at the K and K ′ points are largely composed
of the d orbitals of the transition metal atoms [24–26]. The
valence-band wave functions are composed predominantly
of linear combinations of dx2−y2 and dxy orbitals, while the
conduction-band wave functions are composed predominantly
of the dz2 orbital localized at the transition metal atoms. Based
on this, we can visualize the transformation properties of the
wave functions at the edges of the valence and conduction
bands [Fig. 2(a)]. To obtain the symmetry-adapted eigenstates
delocalized through the lattice, one takes the wave function
centered at a single transition metal atomic site and performs
on it all symmetry-group operations. Due to the nonzero
momentum at the K and K ′ points, a symmetry operation
that changes the atomic site of the orbital incurs an addi-
tional phase factor (e±i2π/3). The total (symmetry-adapted)
eigenstate is found by summing the results of all symmetry
operations, including these phase factors [Fig. 2(b)]. Addi-
tionally, a phase factor must also be considered when the
atomic orbital itself is rotated, which depends on its azimuthal
phase [represented by the color in Figs. 2(a) and 2(b)]. The
conduction-band states at the K (K ′) points are formed mainly
by dz2 orbitals, which do not have any azimuthal phase. For
these eigenstates, the only phase contribution when combin-
ing orbitals in different lattice sites arises from the winding
of the k vectors, leading to an out-of-site phase winding.
Thus, the conduction-band wave functions at the K (K ′) points
transform according to the E ′

+ (E ′
−) IR of the point group C3h.

In contrast, valence-band states are formed predominantly by
linear combinations of the dx2−y2 and dxy orbitals. These states
are combined either as (dx2−y2 + idxy) or as (dx2−y2 − idxy),
such that they have an orbital angular momentumlike phase
winding within the atomic orbital [small arrows in Fig. 2(b),
bottom]. This is in contrast with the out-of-site phase winding
of the conduction-band states, which gives implications to the
spin-orbit coupling as explained in the following paragraphs.
These linear combinations gain a phase factor of ei2π/3 or
e−i2π/3, respectively, when subject to a threefold rotation.
Combined with the phase acquired due to the winding of the
k vector, this gives rise to a wave function composed of a
fully in-phase linear combination of orbitals in adjacent lattice
sites. In symmetry terms, these valence-band wave functions
transform as the A′ IR of the C3h point group. We note that
to describe the full microscopic character of the valence-band
(VB) and conduction-band (CB) wave functions, we should
also consider contributions from the chalcogen orbitals. We
chose not to do this in our approximation since it will not im-
pact the symmetry character of the wave functions, although it
will be relevant for quantitatively estimating matrix elements
and energy splittings.
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FIG. 2. Electronic wave functions at the K and K ′ points. (a) We can obtain the symmetry of the wave functions at the K and K ′ points
by applying the symmetry operations of the system to the atomic d orbitals localized around the TM atoms. In a monolayer, the electronic
wave function at the edge of the conduction band is mainly composed of TM |dz2 〉 atomic orbitals, which has constant azimuthal phase. [In
(a) and (b), the magnitude of the wave function in real space is indicated by the surface, whereas the color corresponds to the azimuthal phase
according to the scale in the color bar]. (b) Top: When also considering the phase acquired due to translation, the electronic wave function
at the K (K ′) point transforms as the E ′

+ (E ′
−). Bottom: In the valence band, the electronic wave function at the K and K ′ points is mostly

composed of TM |dx2−y2 〉 and |dxy〉 atomic orbitals, which can be combined into the spherical harmonics with L = 2, ml = ±2. The phases
acquired due to rotation of the spherical harmonics and translation cancel out, to give a final state that transforms as A′ in both K and K ′

points. (c) When also considering the properties of the spin under rotation, we obtain the symmetry of the spin-orbit split wave functions in
the valence and conduction bands by multiplying the IRs of (b) with the irreducible representations associated with spin up and down (K7 and
K8, respectively). Hybridization with other orbitals will not change the particular symmetry of the wave functions.

B. Symmetries of the spin-orbit coupled eigenstates

Finally, we must also take into account the electron and
hole spin when obtaining the symmetry of the wave functions.
This can be done by the use of a double group approach
[27]. The symmetry of the spin-orbit coupled wave function
can be obtained by taking the product �spatial × �spin, where
�spatial is the IR describing the transformation properties of the
spatial wave function, and �spin describes the transformation
properties of a spin 1/2. A free spin up transforms as the IR
2Ē3 of the double group C3h, whereas a free spin down (its
time-reversal conjugate) transforms as IR 1Ē3. Note here that
a rotation by 2π adds a phase of −1 on the spin-1/2 state.
Based on this, we can obtain the symmetry properties of the
spin-resolved wave functions at the edges of the valence and
conduction bands at the K and K ′ points, shown in Fig. 2(c).

All IRs of the double group C3h are nondegenerate. This
means that as has been widely established [1,4,15,21,28], spin
and valley degrees of freedom are coupled in both valence
and conduction bands, giving rise to nondegenerate spin-
polarized states. In this way, spin-up and spin-down states in
both valence and conduction bands are split by a spin-orbit

energy splitting. The sign and magnitude of this spin-orbit
energy splitting depends on the material properties and can-
not be obtained from this purely group-theoretical approach.
Despite the differences between the various TMDs, however,
this spin-orbit splitting is, in general, an order of magnitude
larger in the valence band (usually hundreds of meVs) than
in the conduction band (usually tens of meVs) [25]. We
can understand this order-of-magnitude difference based on
the considerations above. For wave functions in the valence
band, the orbital angular momentum arises from the atomic
orbitals themselves, which show an azimuthal phase winding
around the transition metal nuclei [as indicated by the color
and small arrows in the lower panel of Fig. 2(b)]. This is
clear if we rewrite the linear combinations of dx2−y2 and dxy

in terms of spherical harmonics. This large and well-defined
orbital angular momentum, localized around the nuclei, gives
rise to a large spin-orbit coupling energy. In contrast, in the
conduction-band states, there is an intercellular angular mo-
mentum arising from phase winding between different lattice
sites [29,30]. In addition to that, we note that hybridization
with p orbitals also plays a role on the SOC magnitude in the
valence band, which is not explicitly considered here.
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We note that the ordering of states as depicted in Fig. 2(c)
is valid for tungsten-based TMDs; for molybdenum-based
TMDs, the order in energy of CB1 and CB2 is reversed [25].
Nonetheless, the group-theoretical considerations presented
here do not depend on the energy ordering of states and
remains valid for both cases. In what follows, we will focus
on the symmetry-restricted scattering processes for charge
carriers in the top subband of the valence band (VB1, trans-
forming as K7,8), and in the two subbands of the conduction
band (CB1,2 transforming as K9−12). We disregard the impact
of states belonging to the lower subband of the valence band
(VB2) due to the large SOC energy splitting of hundreds of
meV. Nonetheless, since these states also transform as K7,8,
this does not incur any loss of generality since all scattering
mechanisms obtained involving VB1 would be the same as
the ones involving VB2.

C. Selection rules

Given the symmetries of the various wave functions at
the band edges, we can obtain the selection rules governing
the spin-flipping scattering processes in these materials at
low temperatures. According to Fermi’s golden rule, a charge
carrier in a state |ψi〉 can only scatter into a state |ψ f 〉 due to a
perturbation H ′ if the matrix element 〈ψi |H ′|ψ f 〉 is nonzero.
In symmetry terms, this means that the scattering is only pos-
sible when the product of IRs, �∗

i ⊗ �H ′ ⊗ � f , contains the
fully symmetric representation, i.e., A′. Here, �i( f ) indicates
the IR of the initial (final) states, whereas �H ′ indicates the IR
of the operator responsible for the perturbation. Additionally,
we note that phonons interact with electrons via the electric
fields created by atomic displacements. In this way, we can
also consider selection rules for phonon-driven transitions
by looking at the symmetries of these electric fields. Using
this, we can determine which spin-flip scattering processes a
perturbation can cause, just by looking at the symmetry of the
perturbation. In the following, we focus on the spin-flipping
mechanisms at the K and K ′ points of the BZ. In the Supple-
mental Material [31], we provide the product tables and also
the analysis for spin-conserving transitions and scattering into
other points of the BZ.

These selection rules (for spin-flipping transitions only)
are presented comprehensively for a monolayer TMD in
Figs. 3(a) and 3(b). Only operators transforming as A′′ and
E ′′ can generate spin-flipping transitions in ML TMDs. In
Fig. 3, dashed arrows indicate optical transitions. These tran-
sitions can be actively driven by electromagnetic fields in the
optical spectrum or arise from radiative electron-hole recom-
bination. Comparison with Table I shows that spin-flipping
direct optical transitions are associated with the absorption
or emission of electric fields polarized perpendicular to the
plane of the TMD layer. The creation of these “dark” excitons
via this process has been demonstrated by illuminating the
TMD monolayer with a parallel beam polarized out of plane
[32]. Additionally, it has been shown that an external in-plane
magnetic field can also “brighten” these transitions, which can
be understood as a mixing between the two states belonging
to CB1 and CB2 [19,33].

Besides this spin-flipping optical transition, only operators
transforming as E ′′ of the C3h point group can give rise to

FIG. 3. Symmetries of spin-flipping scattering mechanisms in
ML and bilayer (BL) TMDs. In monolayer TMDs, only operators
transforming as the E ′′ and A′′ IR of the C3h group can lead to either
(a) intravalley or (b) intervalley spin-flipping scattering processes. In
these materials, states transforming as K11,12 distinguish themselves
since energy-conserving scattering between these states is forbidden
by time-reversal symmetry (see text). (c), (d) In contrast, in bilayer
TMDs, additional interlayer spin-flipping scattering processes arise,
which can couple to external fields transforming as either the A or E
IR of the C3 point group. Here, optical transitions are denoted by a
dashed line.

spin-scattering transitions between electronic states at the
various band edges in ML TMDs. These operators cor-
respond to magnetic fields in the plane of the ML,
out-of-plane phonons at the K point of the acoustic
phonon band, and optical phonons at both the � and K
points, for example (see Table II). These phonon modes
have energies of the order of hundreds of meVs [12,34].
Thus, they will be very weakly populated at cryogenic

TABLE I. Symmetries of operators and phonon modes according
to the group of the wave vector at the K and K ′ points for monolayer
TMDs. LA (LO), TA (TO), and ZA (ZO) correspond to longitudi-
nal, transverse, and out-of-plane acoustic (optical) phonon modes,
respectively, [12,34].

Acoustic phonons Optical phonons

C3h IR EM fields �, q = 0 K, q �= 0 �, q = 0 K, q �= 0

A′ B⊥ LA/TA ZO LO/TO
A′′ E⊥ ZA ZO LO/TO
E ′ E‖ LA/TA LA/TA LO/TO LO/TO
E ′′ B‖ ZA LO/TO LO/TO/ZO
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temperatures, leading to a suppression of phonon-related
upwards scattering processes. We note that this is also valid
for Mo-based TMDs, despite their small SOC splitting be-
tween CB1 and CB2. In this case, even though the bands are
close in energy, hot phonons are required to drive the transi-
tion. In contrast, downwards scattering processes (K12 → K10)
can happen via the emission of a phonon even at low temper-
atures. This process should be distinct for molybdenum- and
tungsten-based TMDs since the order of the two bands are
interchanged, while the optical transition used to generate a
spin-valley population (K8 → K12) is the same. Our analysis
then indicates that at low temperatures, the spin lifetime for
electrons in molybdenum-based TMDs should, in principle,
be longer than when compared to tungsten-based ones. This
can be used to understand the long spin lifetimes recently
reported for MoSe2, which persist up to room temperature
[17]. We do note that in-plane magnetic fields will be more
effective in driving intravalley spin flips of spins in the CB of
Mo-based TMDs, when compared to W-based TMDs. This is
because the energy splitting between CB1 and CB2 is much
smaller in the former, and thus easier to overcome by Zeeman-
like energy terms.

When considering intervalley scattering processes, we
must note that additional selection rules arise due to time-
reversal symmetry and Kramer’s theorem (see Supplemental
Material [31]). Kramer’s theorem states that if time-reversal
symmetry is preserved, wave functions connected by con-
jugation have the same energy, that is, a spin-up in a K
valley and the corresponding spin-down in the K ′ valley have
the same energy. This implies that energy-conserving spin-
flipping scattering processes between the K and K ′ valleys
(intervalley) can only arise due to perturbations that break
time-reversal symmetry (see Supplemental Material [31]).
Transitions between time-conjugate pairs transforming as
K7 ↔ K8 and K9 ↔ K10 can arise due to perturbations trans-
forming as E ′′. Since in-plane magnetic fields and K phonons
transforming as E ′′ break time-reversal symmetry, these scat-
tering processes are thus also fully allowed by time-reversal
(TR) symmetry [35]. This is in line with the experimental
observations that identify out-of-plane K phonons as the main
sources of hole spin-valley depolarization in both W- and
Mo-based TMDs [2,3,15]. In contrast, transitions between
states transforming as K11 ↔ K12 are allowed—considering
only spatial symmetry—when these states interact with exter-
nal fields transforming as A′′. Out-of-plane electric fields and
�-point phonons (see Table I) preserve time-reversal symme-
try, such that they cannot drive these transitions. In contrast,
chiral K phonons in the optical phonon bands [35] do break
time-reversal symmetry and could drive these transitions.
Nonetheless, these are high-energy phonon modes which are
not populated at low temperatures.

The results of the last paragraph point to a fundamental
asymmetry in the behavior of electron and hole spin-scattering
processes in these materials and are in line with the ex-
isting literature. For example, the selection rules obtained
above provide an intuitive interpretation of the theoretical
and experimental results, showing that in Mo-based TMDs,
phonon-related spin decay affects holes in VB1 much more ef-
ficiently than electrons in CB1 at low temperatures [17] (note
that in Mo-based TMDs, states in CB1 transform as K11,12).

Additionally, despite the seemingly simplistic single-particle
picture presented here, these results also provide an explana-
tion for the recently observed asymmetry between bright and
dark excitons concerning direct to indirect exciton scattering
in W-based TMDs [36], where indirect excitons are composed
of an electron and a hole in opposite valleys.

Finally, the selection rules derived in this section imply that
in monolayer TMDs, spin scattering is relatively robust with
respect to the presence of noisy electric fields, such as ran-
domly distributed Coulomb scatterers and local strain. Only
out-of-plane electric fields can cause spin-flipping scattering
transitions; however, these transitions are either in the optical
range—such that they must be actively driven or arise from
electron-hole radiative recombination—or forbidden by the
requirements of Kramer’s theorem. Thus, in the low-energy
scattering regime, local (due to the electrostatic environment,
strain of the material, substrate effects, etc.) or global electric
fields will have limited influence on the prevalence of various
spin-scattering processes. This also means that spin-scattering
rates in ML TMDs should not be greatly influenced by the
symmetry breaking created by a particular substrate. In con-
trast, in-plane magnetic fields, either extrinsic or intrinsic to
the sample due to spin-active defects or nuclear spins, can
cause both intra- and intervalley spin flips. On the one hand,
these results indicate that the spin lifetimes in ML devices can
be enhanced by ensuring a low concentration of deep-level
spin-active lattice defects. On the other hand, they also indi-
cate that control over the spin polarization in these materials
relies on externally applying magnetic fields, which is a slow
and practically challenging process.

III. BILAYER TMDs

A. Symmetries and eigenstates

Figures 1(c) and 1(d) show the symmetries of bilayer 2H-
TMDs in both real and reciprocal space (symmetry operations
valid at the � point but absent at the K and K ′ points are shown
in gray). When compared to monolayer crystals, bilayer stacks
of 2H-TMDs have some notable symmetry changes (see
Fig. 1) [12]. In particular, bilayers lack a horizontal mirror
plane, but do have an inversion point which brings the top
layer into the bottom one. The presence of inversion sym-
metry means that if we consider the entire stack, spin-valley
coupling is not allowed to exist—electronic eigenstates at the
K and K ′ points are spin degenerate. However, a local spin po-
larization of the bands may arise when inversion symmetry is
present at a global scale, but is locally broken [37]. Since inter-
layer coupling is small compared to the other intrinsic energy
scales in 2H-TMDs [28,38], this local spin polarization arises
within each ML making up the multilayer stacks, giving rise
to a spin-valley-layer coupling [37,38], which has been exper-
imentally observed [39–42]. These results are evidence that
the layers are partially decoupled, such that the system can
be approximately described by a stack of two distinguishable
monolayers whose crystallographic symmetry corresponds to
point group C3v . The horizontal mirror plane and twofold axes
in Figs. 1(a) and 1(b) are no longer valid symmetry operations,
since the top and bottom environments of each layer differ. At
the K and K ′ points, this symmetry is reduced to C3, such that
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TABLE II. Symmetries of operators and phonon modes accord-
ing to the group of the wave vector at the K and K ′ points for bilayer
TMDs.

Acoustic phonons Optical phonons

C3 IR EM fields �, q = 0 K, q �= 0 �, q = 0 K, q �= 0

A E⊥, B⊥ ZA LA/TA ZO LO/TO
E E‖, B‖ LA/TA LA/TA/ZA LO/TO LO/TO/ZO

the electronic eigenstates at the edges of the bands in each
layer transform as IRs of the double group C3. Since the bot-
tom layer is inverted with respect to the top layer, the direction
of the phase winding of the eigenstates at the K and K ′ points
of the BZ happens in opposite directions for each of the layers.
This means that at a given energy and at a given point of the
BZ, eigenstates in different layers will have opposite orbital
and spin angular momentum. This results in a alternating
spin-valley ordering according to the layer number, i.e., the
top of the valence band of the valley K of one layer has the
same spin (and symmetry) as the top of the valence band of
the opposite valley (K ′) of the adjacent layer. The resulting
band structure, with the respective symmetries of each of the
eigenstates, can be found in the Supplemental Material [31].

B. Selection rules

Treating the layers as distinguishable does not mean that
they are fully independent. This means that the additional
layer degree of freedom of TMD bilayers allows for additional
interlayer scattering processes. The intralayer scattering pro-
cesses are the same as the ones treated in detail in Sec. II and
will not be repeated here. The selection rules for the interlayer
processes can be obtained in the same manner as before, now
considering eigenstates and operators transforming as IRs of
the double group C3. These additional spin-flipping scattering
pathways are shown in Figs. 3(c) and 3(d).

Notably, the situation is drastically different for spins that
are protected from energy-conserving spin-flipping scattering
processes in a ML due to TR symmetry. These states trans-
form as K11,12 in a ML, and as K6 in the bilayer. These charge
carriers can now flip their spin by going from one layer into
the other after interacting with an operator transforming as
the A IR of the point group C3. This is because, for states
in the K valley for example, a spin-up in the top layer and a
spin-down in the bottom layer are not TR conjugates of each
other, such that this scattering is not protected by TR symme-
try. These scattering processes can arise from electromagnetic
fields perpendicular to the layer plane or due to out-of-plane
acoustic phonons, which enhance the interlayer coupling (see
Table II). The availability of acoustic phonons at the � point
at low temperatures and the presence of environmental charge
noise implies that spins in CB2 (CB1) states in W-based (Mo-
based) TMDs will suffer from significantly faster relaxation
than their counterparts in ML TMDs.

Additional interlayer energy-conserving spin-flipping scat-
tering processes also arise for states transforming as K4,5.
These processes must be driven by operators transform-
ing as the E IR of the point group C3, corresponding to

electromagnetic fields in the layer plane, and longitudinal and
transverse acoustic phonon modes in the � point (Table II).
Again, these processes are expected to be prevalent even at
low temperatures, leading to fast spin relaxation.

Finally, additional interlayer spin-flipping processes that
modify the linear momentum of charge carriers, i.e., interlayer
intervalley processes [Fig. 3(d)], also arise. Due to require-
ments of momentum conservation, these processes must be
accompanied by the emission or absorption of a K phonon.
Since they involve a change in the energy of the charge carri-
ers of at least a few tens of meVs, upward scattering processes
(CB1 → CB2) are likely suppressed at low temperatures. Re-
laxation of hot carriers accompanied by a spin flip and change
in linear momentum (CB2 → CB1), however, may arise via
the emission of K phonons transforming as E . Additionally,
in-plane momentum transfer from the the CB at the K point
of one layer into the VB at the K ′ point of the other layer
[transitions denoted by dashed lines in Fig. 3(d)] are only
allowed by second-order processes involving a photon and
a phonon, transforming as the IR A of group C3. Therefore,
these transitions should be suppressed at low temperatures.

The considerations in the earlier paragraphs imply that
interlayer scattering processes in bilayers (or few-layer stacks)
lead to additional spin-relaxation channels, hindering their
application in the field of spintronics. However, they also
imply that in these materials, we have additional control over
spin-flipping processes. Kerr rotation experiments in W-based
bulk TMDs show that the spin polarization in these materials
decays within tens of ps [39]. Although much shorter than
their counterparts in ML samples [18,43,44], these spin life-
times still enable optical detection with high resolution. The
group-theoretical results of this section indicate that externally
applied electric fields, for example, could be used to manip-
ulate the spin-scattering rates in these materials, allowing us
to turn these optically induced spin signals on/off electrically
[38,43]. Furthermore, in-plane and out-of-plane electric field
studies could unravel the charge character of the spin polariza-
tion. This results from the fact that in-plane electric fields will
impact the spin-scattering processes of optically created holes,
whereas out-of-plane electric fields will impact the scattering
processes of optically created electrons.

Several approaches could be used to enhance the spin
lifetimes in bilayer TMDs. On the one hand, we expect that
encapsulating bilayer and bulk devices with van der Waals
insulators such as hBN will be important in reducing the elec-
trostatic influence of substrate or adsorbed charges. The elec-
trostatic environment of the BL could be further controlled by
gating, possibly leading to longer spin lifetimes. On the other
hand, heterostructures of TMDs will have different interlayer
coupling and interfacial electric dipoles, depending on the
particular combination of materials. Engineering these pa-
rameters, for example, could significantly suppress interlayer
scattering mechanisms, leading to spin lifetimes more similar
to those found in ML TMDs [45]. Additionally, the phonon
spectra can also be modified by strain or the coupling to other
van der Waals materials in heterostructures. In these devices,
one could think of deliberately enhancing interlayer scattering
processes via applied electric fields, combining the long spin
lifetimes observed in ML TMDs with the enhanced electrical
control of spin polarization provided by multilayer stacks.
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Finally, we note that optical fields, such as circularly po-
larized light, will couple to a certain spin species according
to the selection rules established above. When one applies
an additional static electric or magnetic field that induces
state mixing between different layers, this picture still does
not change, i.e., circularly polarized light will still couple
to the same spin species. However, when the optical field is
turned off, the spin polarization will evolve according to the
coupled Hamiltonian given by the perturbing static electric or
magnetic field. This leads to an oscillation between the two
states in time, reminiscent of what is observed in experiments
studying the coherent evolution of optically created spins in
III-V and II-VI semiconductors, for example [46,47]. These
(Rabi) oscillations will decay according to the characteristic
spin relaxation and dephasing times [38].

IV. CONCLUSION

Group theory is a powerful tool in the analysis of both
equilibrium and out-of-equilibrium physical processes in a
variety of materials, including TMDs. It allows one to gain
insight into complex physical phenomena from a mathemat-
ically simple and comprehensive tool, without needing the
specifics of the material of interest. Additionally, it allows
one to broadly generalize insights obtained for one material or
set of electronic eigenstates without additional computational
cost. This approach is simplistic and relies on a series of ap-
proximations. Nonetheless, we have shown here that it helps
to unveil the fundamental processes at play in various exper-
iments on TMDs. Even the behavior of excitons—for which
the presence of exchange interaction is not encompassed by
the single-particle approach undertaken here—can often be
explained qualitatively by this group-theoretical model, by
treating the electron and hole separately [19].

Based on this group-theoretical approach, we could iden-
tify fundamental symmetry properties of spins in TMDs and
the subsequent selection rules for spin-scattering processes.

In ML TMDs, charge carriers in each of the subbands of the
CB behave in a fundamentally different manner: for one of the
CB subbands, energy-conserving spin-flipping processes are
forbidden by TR symmetry, suppressing most of the phonon-
related spin flips at low temperatures. This is not true for the
other subband of the CB, and for the VB, such that charge
carriers in these states can have their spin flipped via scattering
from a K phonon. Thus, in Mo-based TMDs—where the
states that are symmetry protected with regards to spin flips
sit at the bottom of the CB and the SOC splitting in the CB
is smaller—magnetic impurities should be the main source of
spin-flipping scattering at low temperatures. In these materi-
als, the quality of the sample can drastically enhance the spin
lifetime of electrons in the edge of the CB, possibly explaining
the broad variation of spin lifetimes reported in the literature.
Additionally, we find that spin scattering in ML TMDs is
very robust with respect to electric fields, with only fields in
the optical range actually giving rise to spin flips, and for a
restricted set of states. In contrast, in BL TMDs, all electronic
states can undergo spin flips after interacting with electric
fields that cause interlayer momentum-conserving transitions.
Thus, noisy electric fields, an inhomogeneous electrostatic
environment, and acoustic phonons are expected to greatly
suppress a spin polarization induced in these materials, and
decrease their lifetime. Nonetheless, this feature can also be
harnessed to gain control over optically created and detected
spin polarization in these materials via electrostatic gating, for
example. There, one can use an out-of-plane electric field to
efficiently control the spin relaxation in these materials, mak-
ing it a viable option for spin-based information processing.
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