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Preface

This thesis presents results from four and a half years experimental research
on Josephson quantum circuits in the group of Hans Mooij at Delft University
of Technology. In December 1996, I started as a Ph.D. student in this group
in a new project entitled Quantum computation with solid state devices. The
project aimed at investigating whether small Josephson tunnel-junction devices
could be used as basic building blocks for a quantum computer. It was financially
supported by the Dutch Foundation for Fundamental Research on Matter (FOM).
For fabrication of the Josephson junction circuits the cleanroom facilities of the
Delft Institute for Micro Electronics and Submicron Technology (DIMES) were
used. At a later stage efforts were worked out in collaboration with the groups
of Terry Orlando, Seth Lloyd and Leonid Levitov at MIT. The project grew with
the arrival of a few more Ph.D. students and postdocs, when the Delft DIOC
on Novel computation structures based on quantum devices and the European
SQUBIT program were started.

In 1996, the field of quantum computation was quickly gaining momentum af-
ter Peter Shor had discovered in 1994 that a quantum computer would be able to
factorize large numbers exponentially faster than a classical computer. However,
it was already clear at that point that realizing a large quantum computer would
be very difficult, if not impossible. The scientific community was very uncertain
about the questions whether, and how a large-scale quantum computer could be
built. Since then, there has been a lot of progress in the field of quantum com-
putation, but the basic questions about the feasibility of quantum computation
are still very open today. This uncertainty has led to a wide variety of propos-
als for research on realizing a quantum computer. An important advantage of
implementing a quantum computer in microfabricated solid-state structures is,
that the step from a basic unit to a large-scale integrated computer would be
much easier than for many other proposals. This thesis reports on research that
investigates whether small superconducting tunnel-junction circuits can form the
required basic unit for a solid-state quantum computer. In the late 1980’s and
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first half of the 1990’s, the group of Hans Mooij has contributed significantly
to research on mesoscopic tunnel-junction circuits. This provided a good basis
for experimental work that aimed at demonstrating and accurately controlling
quantum coherent dynamics of such circuits. While this research was inspired by
the goal to realize a quantum computer, the results are often also very interesting
for fundamental research on the validity of quantum mechanics and decoherence.
The results in this thesis are therefore not presented with a strong emphasis on

quantum computation.

What I present in the following chapters is the result of work that I did
together with students, technicians and other colleagues. I like to use this preface
to thank all the people that contributed to this work, and colleagues that created a
pleasant and inspiring atmosphere to work in. I enjoyed working in the Quantum
Transport group very much.

First of all, I thank Hans Mooij, he has been a very stimulating Ph.D. advisor
who gave me a lot of freedom. It was very motivating that he was as excited
about our research as I was. I benefited and learned a lot from his incredible
intuition, when judging which long-term research goals were particularly inter-
esting. During my Ph.D. work, Kees Harmans became a second Ph.D. advisor
for me. With a lot of pleasure I recall many interesting discussions while working
together on the new fridge. They were very important for creating a link between
ideas about quantum physics, and getting results on the oscilloscope.

I enjoyed being the advisor of five M.Sc. students: I like to thank Hans Cool,
Paul Kuiper, Alexander ter Haar (now a Ph.D. student in our team), Thomas
Ooms and Stijn Steenbrink for their friendship an hard work. I also thank Frank
Wilhelm, a theorist who had the courage to work as a postdoc in our experimen-
tal group, for learning me a lot while working out questions about the influence
of the measurement process in our experiments. Many other colleagues in Delft
contributed to this work with help, critical questions, stimulating discussions,
and being friends during and after work. I like to mention Leo Kouwenhoven,
Peter Hadley, Herre van der Zant, Ton Wallast, Alexander van Oudenaarden,
Milena Grifoni, David Dixon, Pieter Heij, Hannes Majer, Adrian Lupascu, Irinel
Chiorescu, Tjerk Oosterkamp, Sander Tans, Henk Postma, Arnold Storm, Lies-
beth Venema, Alberto Morpurgo, Sara Cronenwett, Lucas van Gorkom, Allard
Katan, Marlies Goorden, and the visiting researchers Kostya Likharev, Michel
Devoret, Hirotaka Tanaka, Yoshihiro Shimazu and Lin Tian.

The support from several technicians in our Department has been indispens-
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able for getting results. In particular, I like to mention Raymond Schouten. He
deserves a lot of credit for designing and building the low-noise electronics that
were a crucial part of the measurement setups. Wim Schot and Willem den
Braver have provided a steady supply of liquid helium and nitrogen, and con-
tributed significantly to setting up the new sorption-pump dilution refrigerator.
Due to Bram van der Enden I never learned how to wire-bond my own sample,
and he made sure that the setup for evaporating thin layers was running. I also
like to thank Leo Lander, Bram Huis, Jan de Looff (stycast tricks) and Leo Dam
for their work and advice on various occasions. I am indebted to the people at
DIMES, in particular to Emile van der Drift, Anja van Langen, Arnold van Run
and Bert de Groot, for support and advice on sample fabrication.

In our collaboration with MIT, I worked a lot with Terry Orlando. I learned
a lot from his insights in Josephson physics, and like to thank him for all his
help. During my visits to MIT, I enjoyed working with the members of the
Orlando group, and I am very grateful for their hospitality. I also thank Seth
Lloyd and Leonid Levitov at MIT for their time and interest in my research. In
the Netherlands, I learned a lot on frequent visits to Philip Stamp in Utrecht,
and the NMR group of Jan Schmidt in Leiden. I also like to thank Jan Schmidt
and Jos Disselhorst here once more for lending microwave material to us. While
traveling, I had discussions with Yasunobu Nakamura, David DiVincenzo, Daniel
Esteve, Orly Alter and Yoshihisa Yamamoto, that were of great value to me.

It has been a pleasure for me to experience that not only physicists, but also
friends and family can get excited about what happens at a few milliKelvin.
Most notably, I like to thank my parents for always following my work with great
interest. I also like to thank my partner Annet Jantien for her support. When
recalling at this moment the years of my Ph.D. research, the strongest memory
is that you have always been my best friend.

Caspar van der Wal
Delft, June 2001
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Chapter 1

Introduction

Josephson tunnel junctions are ideal elements for research on quantum mechani-
cal behavior of electrical circuits [1]. With modern microfabrication techniques,
junctions can be realized with well-defined properties. Residual dissipative effects
of the junctions freeze out at milliKelvin temperatures, and the dynamics of the
junctions can be extremely underdamped. Furthermore, a Josephson tunnel junc-
tion is a non-linear circuit element. This can be used to engineer systems with an
effective Hamiltonian which is, for example, equivalent to that of a spin—% particle,
or a particle in a periodic potential. The non-linearity of such systems does not
only bring interesting physics and engineering possibilities. It is also convenient
for the experimental physicist: If the non-linear circuits behave quantum me-
chanically, the average values of the charge and magnetic-flux coordinates do not
follow the classical equations of motion. Quantum effects can thus be identified
by direct measurements of the average charge or flux coordinates.

During the last twenty years several groups have convincingly demonstrated
quantum effects in Josephson junction circuits [2, 3]. For example, the situation
in which a flux coordinate of a circuit (often represented by a phase coordinate of
a Josephson junction) is trapped in a metastable well has been extensively stud-
ied. In these experiments, decay of the metastable state by tunneling through
a barrier has been observed [4, 5, 6, 7] as well as discrete energy levels in the
metastable well [5, 6, 8, 9]. In circuits with a small, low-capacitance supercon-
ducting island, superpositions of single-Cooper-pair states have been observed
[10, 11], and the Heisenberg uncertainty relation for charge and Josephson-phase
degrees of freedom has been directly demonstrated [12]. Recently, Nakamura et
al. reported quantum coherent oscillations of the charge on such a small super-
conducting island [13]. However, while these results convincingly demonstrate
that quantum mechanical effects like tunneling play a role, the behavior of the

1



2 Chapter 1. Introduction

circuits is in all these experiments also strongly influenced by their coupling to
degrees of freedom in the environment. In particular, the wiring that is con-
nected to the circuit for experimental access forms an impedance that usually
dominates the damping of the circuit. In many cases the material properties of
the substrate below the sample and other parts of the sample volume play a role
as well. In this respect, the influence of offset charges and 1/ f charge noise in the
experiments with single-Cooper-pair devices is notorious. In circuits with closed
loops, the noise from flux that is trapped in nearby superconducting layers is
a known problem. In experiments on Josephson quantum circuits, the observed
phenomena are usually the result a complicated mixture of quantum effects in the
circuits, dissipative effects in the environment, and the influence of environmental

fluctuations and noise.

When comparing the research on Josephson quantum circuits to other fields
that study quantum systems, it is clear that the level of experimental control over
the quantum states of Josephson systems is far from what has been realized in
some other fields. For example in cavity quantum-electrodynamics experiments
with atoms [14], experiments with trapped ions [16], and non-linear optics [17],
the coupling to the environment is very weak. In these experiments the state of
the quantum system can be accurately controlled, and is for a long time accurately
described by the Schrodinger equation, applied to the Hamiltonian of the isolated
system. In particular the recent experiments by Nakamura et al. [13] indicate
that techniques for similar quantum-state control of Josephson junction circuits
can be developed.

This thesis presents experimental research that aimed at investigating to what
extent Josephson junction circuits can be used to realize well-defined and control-
lable quantum systems. In particular, the work aimed at realizing an artificial
spin—% system, that is very well decoupled from environmental noise. Such a
system would be most appropriate for testing whether these circuits can have
controlled quantum coherent dynamics, with a decoherence time that is much
longer than the period of the quantum oscillations of the system. Ultimately, the
question would be whether it is possible to realize arbitrary quantum coherent
states in circuits with multiple coupled spin—% systems (i. e. entangled states, sim-
ilar to Einstein-Podolsky-Rosen states for pairs of spin—% particles), and whether
non-classical correlations can be demonstrated. These questions were inspired
by three, partly overlapping research themes that are currently of interest in the

scientific community:.

First of all, this work aimed at contributing to research on quantum com-
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Figure 1.1: a) A Josephson junction consists of a thin oxide layer with a small
area between two superconductors. It can be characterized by its capacitance C' and
Josephson coupling energy E;. b) SEM picture of a Josephson junction fabricated
with shadow-evaporation techniques. The arrow points to the place where two sequen-
tially evaporated aluminum layers overlap. The layers are separated by a thin layer
of aluminum oxide. ¢) The symbols used in circuit diagrams to represent a Josephson

junction.

putation [15, 18, 19, 20]. If quantum coherent dynamics of Josephson junction
circuits could be accurately controlled, these systems would be a promising can-
didate for realizing a quantum computer. The main advantage of an approach
based on small Josephson junction circuits is that the technology for expanding
such a system to a large-scale integrated computer is already available (Fig. 1.4
shows an example of a chip with 7,000 uncoupled quantum systems). For real-
izing a large quantum computer, it is desirable that the quantum bits (qubits)
can be addressed individually by local control, and that qubit-qubit couplings
can be controlled locally as well. Because the circuits are so much larger than
quantum systems on the atomic scale, and, unlike e. g. photons, fixed in space,
it is far more likely that this can be realized with Josephson circuits than with
quantum systems of a much smaller size. However, the challenge here is to re-
alize a good basic unit. The possibility to engineer and control these systems
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at will goes along with the difficulty that it is very hard to decouple them from
environmental noise.

Secondly, this study is of interest for research on macroscopic quantum co-
herence (MQC) [21]. MQC studies the consequences of extrapolating the laws
of quantum mechanics to the macroscopic world, and follows directly from dis-
cussions on the Schrodinger cat paradox [22]. The current degrees of freedom
of Josephson circuits are macroscopic, in the sense that they correspond to the
center-of-mass motion of a very large number of microscopic charge carriers. The
circuits that we used consist typically of tens of billions of aluminum atoms, and
the number of Cooper pairs in the systems in the same range. Josephson junction
circuits therefore rank among the best systems for testing the validity of quantum
mechanics at a macroscopic scale.

Thirdly, it is very interesting that these devices are artificially fabricated quan-
tum systems. With the technology that is applied, it is possible to engineer and
control them in a wide parameter range, and to couple the systems in a controlled
manner to environmental degrees of freedom. This allows for detailed research on
the boundary between classical and quantum physics, and decoherence [23]. In
particular, several decoherence phenomena are predicted for a macroscopic spin—%
system coupled to an oscillator bath [24], and a spin bath [25].

In the rest of this introductory chapter we will shortly outline the quantum
physics of Josephson junction circuits, and introduce the experimental work on
the two Josephson junction circuits that were studied in this research.

1.1 Josephson quantum circuits

The Josephson junction devices that are used in this research consist of micrometer-
sized superconducting islands, that are interconnected by a Josephson tunnel
junction: a thin insulating oxide layer between two superconductors (Fig. 1.1).
We used aluminum circuits, with low-capacitance Al-AlyO3—Al tunnel junctions
that were fabricated with electron-beam lithography and shadow evaporation
techniques (for details see Ref. [26]).

The behavior of the Josephson junctions is in a first approximation determined
by two macroscopic parameters. One is the junction capacitance C', which results
from the parallel-plate geometry of the tunnel junctions. This capacitance domi-
nates the capacitance between superconducting islands in circuits with Josephson
junctions. For the simple circuit in Fig. 1.1a, the charge difference between the
two islands (i. e. the charge on the junction capacitance) changes with 4e when
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a single Cooper pair (with charge 2e) tunnels from one island to the other. If
the charge distribution were initially neutral, the tunnel event causes the circuit’s
electrostatic energy to increase with (4¢)2/2C. By convention, the energy scale
for the charging effects in the circuits is defined as F¢ = €2/2C. For more com-
plicated circuits, the electrostatic free energy can be adequately described with

a capacitance-matrix formalism [27].

The second junction parameter is the junction’s Josephson coupling energy
E;, which is a measure for the tunnel coupling between the two superconducting
electrodes, and it determines the supercurrent that can flow through the junc-
tions. For junctions that couple two BCS superconductors of the same type,
E; = ﬁAS, where A, the superconducting gap and Ry the normal-state
tunnel resistance of the junction. The supercurrent I through the junction is
directly related to a phase coordinate of the junction, the gauge-invariant phase
difference  [3] (7 is in fact a flux coordinate, normalized to the superconducting
flux quantum &y = % [1]). The supercurrent I; = I, sin~y, where I, = 2—;E 7 is
the critical current of the junction. The Josephson coupling energy that is stored

in the junction is U; = —E; cos 7.

The charge and flux coordinates of circuits with Josephson junctions are
conjugate variables in the sense of Hamiltonian mechanics. For example, for
the simple circuit in Fig. 1.1a (isolated junction), current conservation gives
I,siny + C(dV/dt) = 0, where V is the voltage across the junction. With
the AC Josephson relation V = 1 (dv/dt), and after taking out a factor (%),
this can be written as Ejsiny + C(4)*(d*y/dt*) = 0. This is the equation of
motion of a system with the Lagrangian L = $C(4:)*(dv/dt)* + E;cosy. The
charge difference between the two superconductors is the result of single Cooper
pairs that tunnel through the junction. We therefore express the charge differ-
ence between the two superconductors as the number of Cooper pairs n on the
capacitor, —2en = C'V. The Hamiltonian of this system can then be written as
H = 4Ecn? — Ejcos7, and the commutation relation [y, n] = i applies to these
number and phase variables. The Josephson and charge effects are orthogonal:
When the phase v and the current in the junction are well-defined, the charge
on the junctions has quantum fluctuations that are much larger than 2e. Ac-
cordingly, states with a well-defined number of Cooper pairs on the islands, must
have very large quantum fluctuations in the phase. In the intermediate regime,
where E; and E¢o are of the same order, the eigen states of the system have
comparable fluctuations in the charge and phase coordinates, and this regime is
most interesting for research on quantum effects in Josephson circuits. Typical
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Figure 1.2: SEM pictures of the two Josephson junction circuits that have been in-
vestigated. a) A three-Josephson junction loop. Near a magnetic-flux bias of half a
superconducting flux quantum this system has two stable classical persistent-current
states of opposite polarity. The system is measured by coupling it inductively to an un-
derdamped DC-SQUID (not present here). Microwave spectroscopy results show that
this system has two low-energy quantum levels that are superpositions of the two classi-
cal persistent-current states. b) A small Josephson junction array with two loops. Near
a flux bias of half a superconducting flux quantum this system has two stable classical
persistent-current states, that correspond to the presence of a persistent current in one
loop or the other loop. For a fixed flux bias, the currents of the two states flow in the
same direction, but at a different location. Controlled superconducting single-charge
effects are used to tune the ground-state quantum fluctuations in the array’s phase and
charge variables, and could be used to demonstrate a quantum superposition of the

two persistent-current states.

values for E/; and E¢o are close to 1 Kelvin, so that the level separation in the

quantum systems is in the microwave range.

1.2 This work: Persistent-current systems

We performed experiments on two different small Josephson junction devices with
closed loops, shown in Fig. 1.2. The first part of this thesis reports work on a
three-Josephson junction loop (Fig. 1.2a). The last three chapters present results
of experiments on a small two-dimensional Josephson junction array with two
coupled loops (Fig. 1.2b). The two system have in common that they both carry
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Figure 1.3: Schematic representation of the persistent-current states of the three-
junction loop (a), and the small two-dimensional array (b). Close to a flux bias of %{)0,
the Josephson energy of these systems forms a double well potential, with minimums

at different values of the gauge-invariant phase coordinates of the systems.

persistent currents when a small magnetic field is applied to the loops.

The persistent currents in the loops are a direct consequence of the fact that
the phase of the superconducting order parameter must be single-valued on a
closed loop. For a small loop with Josephson junctions, this is equivalent to the
statement that the sum of the gauge-invariant phases of the junctions on the loop
(all taken in the same direction) must equal 27® /P, (fluxoid quantization).  is
here the total magnetic flux in the loop, i. e. the sum of the externally applied
flux, and the flux that results from currents that flow in the loop. We worked
on systems with micrometer-sized loops, and junctions with a critical current
I, of a few hundred nA or less. The self-generated flux is therefore very small
in comparison to the flux quantum @, ( LI, << ®g, where L, the geometric
inductance of the loop, which is approximately 1 pH per pm loop diameter).
In this case, the externally applied flux is effectively equal to the total flux in
the loop. Each independent condition for fluxoid quantization now acts as a
constraint on the system’s phase coordinates. As a consequence, the systems
total Josephson energy U; = > . —E;,cos~y,; has for a non-zero magnetic flux
in the loop minimums at non-zero values of the phases «y, of the junctions (i is
an index labeling the junctions). That is, the stable classical solutions in the
Josephson potential U; are states with a persistent current.

By engineering the values of the Josephson energy Ej;, and by controlling
the magnetic flux in the loop, the shape of the Josephson potential can thus be
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controlled. For our two systems U forms a double well potential for flux values
close to %CI)O (Fig. 1.3). For the three-junction loop, the classical states at the
bottoms of the two wells correspond to clockwise and counter-clockwise persistent
currents in the loop. In the small array, the classical states at the bottoms of the
two wells correspond to states with a persistent current running in only one of
the two loops. Here the polarity of the two persistent-current states is the same,
but the loop that carries the persistent current is different for the two states.

The three-Josephson junction loops were realized in the regime where the
junctions’ Josephson energy E; was about a factor fifty larger than the charging
energy Fco of the junctions. For this ratio of E;/FEq & 50, a subtle balance is
struck in this device. The system’s charging effects, are still significant, and allow
for quantum tunneling between two different stable persistent-current states. At
the same time, the high ratio of F;/E¢ allows for engineering the system such
that it is very insensitive to the influence of 1/f charge noise and offset charges in
the solid-state environment of the loop. Making the system insensitive to offset
charges was one of the main design criteria. Chapter 2 describes the physics of
this system, and how it can possibly be applied as a quantum bit. Microwave
spectroscopy experiments on this system are presented in Chapter 3. The experi-
ments proof that the three-junction loop can behave as a quantum-two-level sys-
tem, and that quantum superpositions of the two macroscopic persistent-current
states occur in this system. Chapter 4 discusses the relaxation and dephasing
rates that result from the measurement setup itself in experiments on Josephson
persistent-current qubits (decoherence due to the measuring DC-SQUID, and on-
chip control circuits). The experiments on the three-junction loop are performed
on a single quantum system that is permanently coupled to a measurement appa-
ratus. In such a setup there is obviously a conflict between the possibility of long
quantum coherent behavior of the quantum system and an efficient measurement
scheme. The development of measurement strategies where the meter can be
effectively off during certain periods is discussed in Chapter 4.

An alternative approach for reducing the back action of the meter on the
dynamics of the loops is shown in Fig. 1.4. This picture shows a chip with an
ensemble of 7,000 loops, coupled to a single DC-SQUID magnetometer. Here an
NMR like measurement scheme is employed: The meter is only weakly coupled
to the loops, and the signal of an individual loop is too weak to be resolved
by the measurement apparatus. Consequently, the back action from the meter
is very low as well. The collective signal of synchronous dynamics of all 7,000
loops gives a signal that is strong enough to be detected. Preliminary results
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10 um

Figure 1.4: SEM picture of a chip with 7,000 Josephson junction loops inside the
meandering lines of a large, damped gradiometer DC-SQUID. The coupling between
the loops is here very weak (picture and sample by A. C. Wallast and Y. Shimazu).

from this approach showed the collective reversal of the persistent currents in
the loops when sweeping the flux bias in a window around %@0, and microwave-
induced transitions to excited states [28]. This work on ensembles of loops is not
addressed in this thesis.

The small two-dimensional arrays had E;/FE¢ ~ 1. These devices are thereby
very sensitive to offset charges. In the experiments on this device we used ca-
pacitively coupled gate electrodes to compensate the influence of offset charges,
and for controlling the single-Cooper pair effects in this system. Chapter 5 dis-
cusses a study of controlled single-Cooper pair charging effects in this system,
and presents the experimental techniques. This circuit has a self-dual geometry:
It can be described as two coupled islands with a high charging energy, but also
as two coupled loops that can carry a persistent current. The latter picture corre-
sponds to that of an array, in which the meshes can contain a vortex. This array
was used to study the duality between the charge and the vortex representation of
Josephson junction arrays. The possibility to control both the magnetic-flux bias
and the single-Cooper pair effects of this system, was used to tune the trade-off
between quantum fluctuations in the phase and the charge in the ground state
of this system. Chapter 6 presents how this could be used to demonstrate that
superpositions of vortex and charge states occur in this system in a dual fashion.
In Chapter 7, microwave spectroscopy experiments on this system are presented,
which provide evidence for the excited quantum levels of the array.
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Chapter 1. Introduction




Chapter 2

Josephson Persistent-Current Qubit

Abstract

A qubit has been designed that can be fabricated with conventional
electron-beam lithography and is suited for integration into a large quan-
tum computer. The qubit consists of a micrometer-sized loop with three
or four Josephson junctions; the two qubit states have persistent currents
of opposite direction. Quantum superpositions of these states are obtained
by pulsed microwave modulation of the enclosed magnetic flux by currents
in control lines. A superconducting flux transporter allows for controlled
transfer between qubits of the flux that is generated by the persistent cur-

rents, leading to entanglement of qubit information.

In a quantum computer, information is stored on quantum variables such as
spins, photons or atoms [1, 2, 3, 4]. The elementary unit is a two-state quantum
system called a qubit. Computations are performed by the creation of quantum
superposition states of the qubits and by controlled entanglement of the infor-
mation on the qubits. Quantum coherence must be conserved to a high degree
during these operations. For a quantum computer to be of practical value, the
number of qubits must be at least 10%. Qubits have been implemented in cavity
quantum electrodynamics systems [5], ion traps [6] and nuclear spins of large
numbers of identical molecules [7]. Quantum coherence is high in these systems,
but it seems difficult or impossible to realize the desired high number of inter-
acting qubits. Solid-state circuits lend themselves to large scale integration, but
the multitude of quantum degrees of freedom leads in general to short decoher-
ence times. Proposals have been put forward for future implementation of qubits

with spins of individual donor atoms in silicon [8], with spin states in quantum

This chapter is based on Refs. 2 and 3 on p. 111.
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dots [9] and with d-wave superconductors [10]; here the technology for practical
realization still needs to be developed.

In superconductors all electrons are condensed in the same macrosopic quan-
tum state, separated by a gap from the many quasiparticle states. This gap is
a measure for the strength of the superconducting effects. Superconductors can
be weakly coupled with Josephson tunnel junctions (regions where only a thin
oxide separates them). The coupling energy is given by E;(1 — cos~y), where the
Josephson energy FE; is proportional to the gap of the superconductors divided
by the normal-state tunnel resistance of the junction, and + is the gauge-invariant
phase difference of the order parameters. The current through a Josephson junc-
tion is equal to I, sin~y with I, = %E 7. In a Josephson junction circuit with
small electrical capacitance, the numbers of excess Cooper pairs on islands n;, n;
and the phase differences v;, vy, are related as non-commuting conjugate quan-
tum variables [11]. The Heisenberg uncertainty between phase and charge, and
the occurrence of quantum superpositions of charges as well as phase excita-
tions (vortex-like fluxoids) have been demonstrated in experiments [12, 13, 14].
Coherent charge oscillations in a superconducting quantum box have recently
been observed [15]. Qubits for quantum computing based on charge states have
been suggested [16, 17, 18, 19]. However, in actual practice fabricated Josephson
circuits exhibit a high level of static and dynamic charge noise due to charged
impurities. In contrast, the magnetic background is clean and stable. Here, we
present the design of a qubit with persistent currents of opposite sign as its basic
states. The qubits can be driven individually by magnetic microwave pulses; mea-
surements can be made with superconducting magnetometers (SQUIDs). They
are decoupled from charges and electrical signals, and the known sources of de-
coherence allow for a decoherence time of more than 1ms. Switching is possible
at a rate of 100 MHz. Entanglement is achieved by coupling the flux, that is
generated by the persistent current, to a second qubit. The qubits are small (of
order 1 micrometer), can individually be addressed and be integrated into large

circuits.

Our qubit in principle consists of a loop with three small-capacitance Joseph-
son junctions in series (Fig. 2.1a) that encloses an applied magnetic flux f®,
(®g is the superconducting flux quantum h/2e); f is slightly smaller than 0.5.
Two of the junctions have equal Josephson coupling energy FE;; the coupling in
the third junction is GE;, with 0.5 < § < 1. Useful values are f = 0.495 and
B = 0.75 (as chosen in Fig. 2.1a). This system has two stable classical states
with persistent circulating currents of opposite sign. For f = 0.5 the energies
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Figure 2.1: Persistent current qubit. a) Three-junction qubit. A superconducting
loop with three Josephson junctions. The junctions are indicated with the parallel
combination of the junction capacitance and the Josephson tunnel element (represented
by the crosses). The loop encloses a flux that is supplied by an external magnet. The
flux is f®g, where ®g is the superconducting flux quantum and f is 0.495 here. Two
junctions have a Josephson coupling energy E, the third junction SE;, where 3 = 0.75
here. This system has two (meta)stable states |0) and |1) with opposite circulating
persistent current I,. The level splitting is determined by the offset from %@0 of the
flux. The barrier between the states depends on the value of 3. The qubit is operated
by resonant microwave modulation of the enclosed magnetic flux by a superconducting
control line (indicated in gray). b) Four-junction qubit. The top junction of of the
circuit in a) is replaced by a parallel junction (DC-SQUID) circuit. There are two loops
with equal areas; a magnet supplies a static flux 0.330 &g to both. Qubit operations
are performed with currents in superconducting control lines (indicated in gray) on top
of the qubit, separated by a thin insulator. The microwave current I., couples only to
the bottom loop and performs qubit operations as the circuit in a). I couples to both
loops; it is used for qubit operations with suppressed o, action and for an adiabatic
increase of the tunnel barrier between qubit states to facilitate the measurement.
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of the two states are the same; the offset from 0.5 determines the level splitting.
The barrier for quantum tunnelling between the states depends strongly on the
value of (3. The four-junction version (Fig. 2.1b) allows modulating this barrier
in situ. Here, the third junction has been converted into a parallel circuit of two
junctions with each a coupling energy SFE;. The four-junction qubit behaves as
the three-junction circuit of Fig. 2.1a, with an enclosed flux (f; + % f2)®o and a
third-junction (SQUID) strength 25FE; cos(fom). The constant fluxes f®q, f1Po,
fo®o are supplied by an external static, homogeneous magnetic field. Control
lines on a separate fabrication level couple inductively to individual qubit loops.
All operations on qubits are performed using currents in the control lines.
When ~, and v, are the gauge-invariant phase differences across the left and
right junctions, the total Josephson energy U} of the four-junction qubit is:

U,
L —92428- -
E, (8 — cosy; — cosy,y 2.1)

— 206 cos( farr) cos(2fim + form 4+ 1 — ¥3)

In this expression the self-generated flux has been neglected. Although this flux
will be used for coupling of qubits, it is much smaller than the flux quantum and
only slightly changes the picture here. U; is 2m-periodic in 7, and 7, (Fig. 2.2a)
for the parameter values § = 0.75 and f; = f, = 0.330. Each unit cell has
two minima L,; and R;; with left and right-handed circulating currents of about
0.75 1., at approximate -, v, values of £0.27 7. The minima would have been
symmetric for 2f; + fo = 1, which corresponds to a three-junction loop enclosing
half a flux quantum. The set of all L minima yields one qubit state, the set of
R minima the other. In ,—y, space there are saddle-point connections between
L and R minima as indicated with solid white (intra-cell, in) and dashed white
lines (inter-cell, out). Along such trajectories the system can tunnel between
its macroscopic quantum states. The Josephson energy along the trajectories is
plotted in Fig. 2.2b. The saddle point energies U;,, and U,,; depend on 3 and fs,
lower SQUID coupling gives lower U;;,, but higher U,,;. For 23 cos(fom) < 0.5 the
barrier for intra-cell tunnelling has disappeared and there is only one minimum
with zero circulating current.

Motion of the system in 7,—y, space can be discussed in analogy with mo-
tion of a mass-carrying particle in a landscape with periodic potential energy.
Motion in phase space leads to voltages across junctions. The kinetic energy
is the associated Coulomb charging energy of the junction capacitances. The
mass is proportional to the junction capacitance C' because other capacitance
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b)

Figure 2.2: Josephson energy of qubit in phase space. a) Energy plotted as a function
of the gauge-invariant phase differences -y, and 7y, across the left and right junctions of
Fig. 2.1a. The energy is periodic with period 27w. There are two minima in each unit
cell, for the center cell indicated with Log and Rgg. The trajectory between Lgg and
Ry is indicated with the solid white line, the trajectories between Ryy and minima in
next-neighbor cells Lyg and Lg_; are indicated with the dashed white lines. b) Energy
along the solid and dashed trajectory of Fig. 2.2a. For the parameters chosen, the Ty
saddle point is significantly higher than the T, saddle point. As a result, tunnelling
from cell to cell is suppressed and the qubit is decoupled from electrical potentials.
Solid lines: I.q = I, = 0 (see Fig. 2.1b). Dotted lines: Control current I, reduces the
flux in the SQUID loop by 62 = —0.02 times the flux quantum. Dashed lines: When
[ is increased from 0.75 the T;,, saddle point goes up, while the T,,; saddle point goes
down (here drawn for §; = —0.01).
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elements are small. The effective mass tensor has principal values M, and M,
in the v; — v, = 0 and ~; + 7, = 0 directions. For the chosen values of the
circuit parameters these principal values are M, = h?/(4E¢) and M, = h?/(E¢),
where the charging energy is defined as Ec = ¢2/2C. The system will per-
form plasma oscillations in the potential well with frequencies hwy ~ 1.3/ EcE;
and hw, ~ 2.3vVEcE;. The tunnelling matrix elements can be estimated by
calculation of the action in the Wentzel-Kramers-Brillouin (WKB) approxima-
tion. For tunnelling within the unit cell between the minima L and R, the
matrix element is T}, = hwyexp (—0.641/E;/Ec), for tunnelling from cell to
cell Ty ~ 1.6hwyexp (—1.54/E;/E¢). For the qubit a subtle balance has to
be struck: the plasma frequency must be small enough relative to the barrier
height to have well-defined states with a measurable circulating current, but
large enough (small enough mass) to have significant tunnelling. The preceding
qualitative discussion has been confirmed by detailed quantitative calculations in
phase space and in charge space [20]. From these calculations the best parameters
for qubits can be determined. In practice it is possible to controllably fabricate

aluminum tunnel junctions with chosen E; and E¢ values in a useful range.

It is strongly desirable to suppress the inter-cell tunnelling 7,,;. This leads
to independence from electrical potentials, even if the charges on the islands are
conjugate quantum variables to the phases. The qubit system in phase space
is then comparable to a crystal in real space with non-overlapping atomic wave
functions. In such a crystal the electronic wave functions are independent of

momentum; similarly charge has no influence in our qubit.

Mesoscopic aluminum junctions can reliably be fabricated by shadow evapora-
tion with critical current densities up to 500 A /cm?. In practice, a junction of 100
nm by 100 nm has E; around 25 GHz and E¢ around 20 GHz. A higher F;/E¢
ratio can be obtained by increasing the area, to which E; is proportional and
E¢ inversely proportional. A practical qubit would for example have junctions
with an area of 200 nm by 400 nm, F; ~ 200 GHz, E;/Ec =~ 80, level splitting
AFE ~ 10 GHz, barrier height around 35 GHz, plasma frequency around 25 GHz,
tunnelling matrix element T}, ~ 1 GHz. The matrix element for undesired tun-
nelling 7,,; is smaller than 1 MHz. The qubit size would be of order 1 yum; with
an estimated inductance of 5 pH the flux generated by the persistent currents is
about 1073 ®.

To calculate the dependence of the level splitting on f; and f; we apply a

linearized approximation in the vicinity of f; = fo = %, defining F' as the change
of U; away from the minimum of Uy (7y, ;). This yields F/E; ~ 1.2(2(f1 — 3) +
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(f2 = 3)). The level splitting without tunnelling would be 2F. With tunnelling,
symmetric and anti-symmetric combinations are created; the level splitting is
now AE = 2,/(F?+T2). Aslong as F > Tj,, the newly formed eigen states
are localized in the minima of U;(7vq,v5)-

We discuss qubit operations for the four-junction qubit. They are driven by
the currents I, and I in the two control lines (Fig. 2.1b). The fluxes induced
in the two loops, normalized to the flux quantum, are 8; = (La11eq + Ly L)/ Po,
09 = (Laolea+ Lzl ) /Po. The control line positions are chosen such that Ly, =0
and Lys = —2Lp;. When the two loops have equal areas, f; = f, for zero control
current. We assume that the qubit states are defined with zero control current,
and that 61, 65 act as perturbations to this system. The effective Hamiltonian
operator in terms of Pauli spin matrices o, and o, for the chosen parameters is

approximately

HOP/AE ~ (8061 + 4262)0'Z — (9251 + 8362)0’1 (22)

The numerical prefactors follow from the variational analysis of the influence of
01 and 0o on the tunnel barrier and the level splitting. The terms that contain
o, can be used to induce Rabi oscillations between the two states, applying
microwave pulses of frequency AFE/h. There are two main options, connected to
one of the two control lines. Control current ., changes ¢;, which leads to a Rabi
oscillation (o, term) as well as a strong modulation of the Larmor precession (o,
term). As long as the Rabi frequency is far enough below the Larmor frequency,
this is no problem. For §; = 0.001, the Rabi frequency is 100 Mhz. This mode
is the only one available for the three-junction qubit and is most effective near
the symmetry point f = 0.5 or f; = fo = % Control current I is used to
modulate the tunnel barrier. Here the o, action is suppressed by means of the
choice Lyy/Lyy = 62/61 = —2. However, a detailed analysis shows that with &,
modulation it is easy to excite the plasma oscillation with frequency w,. One
has to restrict 6, to remain within the two-level system. Values of 0.001 for 6,
or 65 correspond to about 50 pW microwave power at 10 GHz in the control line.
These numbers are well within practical range.

Two or more qubits can be coupled by means of the flux that the circulating
persistent current generates. The current is about 0.3 pA, the self-inductance of
the loop about 5pH and the generated flux about 1073 ®,. When a supercon-
ducting closed loop (a flux transporter) with high critical current is placed on
top of both qubits, the total enclosed flux is constant. A flux change in qubit
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_____ i =

Figure 2.3: Switchable qubit coupler. A superconducting flux transporter (black) is
placed on top of two qubits (gray), separated by a thin insulator. The transporter
is a closed loop that contains two Josephson junctions in parallel (DC-SQUID) with
high critical current. In the off state, the two loops of the transporter contain an
integer number of flux quantums (main loop) and half a flux quantum (DC-SQUID
loop), supplied by a permanent magnet. The current response to a flux change is very
small. In the on state, the flux in the DC-SQUID loop is made integer by means of
a control current I (black-gray). As the transporter attempts to keep the flux in its
loop constant, a flux change induced by qubit 1 is transmitted to qubit 2. As shown
here, the two three-junction qubits experience o, ® o, type coupling. The flux values
have to be adjusted for the influence of circulating currents.

1 is transmitted approximately by half to qubit 2. One can choose to couple
the flux, generated in the main loop of qubit 1, to the main loop of qubit 2
(i. e. 0, ® 0, coupling) or to the SQUID loop of qubit 2 (i. e. 0, ® o, coupling).
A two-qubit gate operation is about as efficient as a single qubit operation driven
with 6; = 0.001. An example of a possible controlled-NOT operation with fixed
coupling runs as follows: The level splitting of qubit 2 depends on the state of
qubit 1, the values are AFEsy and AFE5,. When Rabi microwave pulses, resonant
with AFsy, are applied to qubit 2, it will only react if qubit 1 is in its |1) state. In
principle qubits can be coupled at larger distances. An array scheme as proposed
by Lloyd [1], where only nearest-neighbor qubits are coupled, is also very feasible.
It is possible to create a flux transporter that has to be switched on by a control
current (Fig. 2.3).
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The typical switching times for our qubit are 10 to 100 ns. To yield a practical
quantum computer, the decoherence time should be at least 100 us. We can
estimate the influence of known sources of decoherence for our system, but it
is impossible to determine the real decoherence time with certainty, except by
measurement. We discuss some decohering influences here. All quasiparticle
states in the superconductor have to remain unoccupied. In equilibrium, the
number is far below one at temperatures below 30 mK. Extreme care must be
taken to shield the sample from photons. Even 4K blackbody photons have
enough energy to break a Cooper pair. Adequate shielding is possible on the
time scale of our computer. Inductive coupling to bodies of normal metal has to
be avoided. By decoupling the qubit from electrical potentials, we have eliminated
coupling to charged defects in substrate or tunnel barriers. The aluminum nuclei
have a spin that is not polarized by the small magnetic fields at our temperature
of 25 mK. Statistical fluctuations will occur, but their time constant is very long
due to the absence of electronic quasiparticles. The net effect will be a small static
offset of the level splitting, within the scale of the variations due to fabrication.
The dephasing time that results from unintended dipole-dipole coupling of qubits
is longer than 1 ms if the qubits are further apart than 1 yum. Emission of photons
is negligible for the small loop. Overall, the sources of decoherence that we know
allow for a decoherence time above 1 ms.

Requirements for a quantum computer are that the qubits can be prepared in
well-defined states before the start of the computation and that their states can
be measured at the end. Initialization will proceed by cooling the computer to
below 50 mK and having the qubits settle in the ground state. For the measure-
ment, a generated flux of 1072 ®; in an individual qubit can be detected with a
SQUID if enough measuring time is available. A good SQUID has a sensitivity of
1075 g/ VHz, so that a time of 100 s is required. Usual SQUIDs have junctions
that are shunted with normal metal. The shunt introduces severe decoherence
in a qubit when the SQUID is in place, even if no measurement is performed.
We are developing a non-shunted SQUID that detects its critical current by dis-
continuous switching. For a measurement at the end of a quantum computation
scheme, the qubit can be frozen by an adiabatic increase of the tunnel barrier
between the two qubit states. As Fig. 2.2 indicates, we can increase the barrier
by a change of control current. A similar procedure as suggested by Shnirman et
al. [19] for charge qubits can be followed.

The proposed qubit should be of considerable interest for fundamental studies
of macroscopic quantum coherence, apart from its quantum computing potential.
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Compared with the RF SQUID systems that have been used in attempts to
observe such effects [21, 22] and also have been suggested as possible qubits
for quantum computation [23], the much smaller size of the qubit decouples it
significantly better from the environment.

We thank J. J. Mazo, C. J. P. M. Harmans, A. C. Wallast and H. Tanaka for
important discussions. This work is partially supported by ARO grant DAAG55-
98-1-0136, by the Dutch FOM, NSF Award 67436000IRG and by NEDO.
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Chapter 3

Quantum Superposition of Macroscopic
Persistent-Current States

Abstract

Microwave-spectroscopy experiments have been performed on two quan-
tum levels of a macroscopic superconducting loop with three Josephson
junctions. The level separation between the ground state and first ex-
cited state shows an anti-crossing where two classical persistent-current
states with opposite polarity are degenerate. This is evidence for symmet-
ric and anti-symmetric quantum superpositions of two macroscopic states;
the classical states have persistent currents of 0.5 yA and correspond to
the center-of-mass motion of millions of Cooper pairs. A study of the ther-
mal occupancies of the two quantum levels shows that the loop is at low

temperatures in a non-equilibrium state.

3.1 Introduction

When a small magnetic field is applied to a superconducting loop a persistent
current is induced, also when the loop contains Josephson tunnel junctions. The
current is clockwise or counter-clockwise, thereby either reducing or enhancing
the applied flux to approach an integer number of superconducting flux quanta ®,
[1]. In particular when the enclosed magnetic flux is close to half integer values of
®(, the loop may have multiple stable persistent-current states, with at least two
of opposite polarity. The weak coupling of the Josephson junctions then allows

This chapter is based on Refs. 6 and 7 on p. 111.
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for transitions between the states. Previous theoretical work [2, 3, 4] proposed
that a persistent current in a loop with Josephson junctions corresponds to the
center-of-mass motion of all the Cooper pairs in the system, and that quantum
mechanical behavior of such persistent-current states would be a manifestation
of quantum mechanical behavior of a macroscopic object. In a micrometer-sized
loop millions of Cooper pairs are involved. At very low temperatures, excitations
of individual charge carriers around the center of mass of the Cooper-pair conden-
sate are prohibited by the superconducting gap. As a result the coupling between
the dynamics of persistent supercurrents and many-body quasi-particle states is
very weak. Josephson junction loops therefore rank among the best objects for
experimental tests of the validity of quantum mechanics for systems containing a
macroscopic number of particles [3, 5, 6] (loss of quantum coherence results from
coupling to an environment with many degrees of freedom [7]) and for research
on the border between classical and quantum physics. The potential for quantum
coherent dynamics has stimulated research aimed at applying Josephson junction
loops as basic building blocks for quantum computation (qubits) [8, 9, 10, 11].

b)

3 um

Figure 3.1: SEM-image (a) and schematic (b) of the small superconducting loop with
three Josephson junctions (denoted by the crosses). The loop is inductively coupled
to an underdamped DC-SQUID which is positioned around the loop. The DC-SQUID
can be used as a magnetometer by applying a bias current Ip;,s to it.

We present microwave-spectroscopy experiments that demonstrate quantum
superpositions of two macroscopic persistent-current states in a small loop with
three Josephson junctions (Fig. 3.1). At an applied magnetic flux of %@0 the
system behaves as a particle in a double-well potential, where the classical states
in each well correspond to persistent currents of opposite sign. The two classical
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states are coupled via quantum tunneling through the barrier between the wells,
and the loop is a macroscopic quantum two-level system (Fig. 3.2a) [12]. The
energy levels vary with the applied flux as shown (Fig. 3.2b). Classically, the
levels cross at %(130. Tunneling between the wells leads to quantum mechanical
eigen states that at %‘Do are symmetric and anti-symmetric superpositions of
the two classical persistent-current states. The symmetric superposition state is
the quantum mechanical ground state with an energy lower than the classical
states, the anti-symmetric superposition state is the loop’s first excited state
with an energy higher than the classical states. The superposition states thus
manifest themselves as an anti-crossing of the loop’s energy levels near %‘I)o. Our
spectroscopy results show the expected anti-crossing at $®, (Fig. 3.4) [13]. We
also studied the resonance-line shapes and found behavior similar to microscopic
quantum two-level systems [15, 16] (Fig. 3.5). A study of the thermal broadening
of the transition between the two states at %‘Do shows that the loop is at low
temperatures in a non-equilibrium state (Fig. 3.6).

In our experiments, the magnetic flux generated by the loop’s persistent cur-
rent was measured with an inductively coupled direct-current superconducting
quantum interference device (DC-SQUID, see Figs. 3.1 and 3.3), while low-
amplitude microwaves were applied to induce transitions between the levels. We
observed narrow resonance lines at magnetic field values where the level separa-
tion AFE was resonant with the microwave frequency. The DC-SQUID performs
a measurement on a single quantum system. Thus we should expect that the
measurement, process limits the coherence of our system. While the system is
pumped by the microwaves, the SQUID actively measures the flux produced by
the persistent currents of the two states. Detecting the quantum levels of the
loop is still possible as the meter is only weakly coupled to the loop. The flux
signal needs to be built up by averaging over many repeated measurements on the
same system (Fig. 3.3b), such that effectively an ensemble average is determined.
We measure the level separation, i. e. energy, rather than flux, as we perform
spectroscopy, and we observe a change in averaged flux when the microwaves are
resonant with the level separation (the peaks and dips in Figs. 3.3b and 3.4a). We
also chose to work with an extremely underdamped DC-SQUID with unshunted
junctions to minimize damping of the quantum system via the inductive coupling
to the SQUID.

Similar observations were recently made by Friedman et al. [17] who per-
formed spectroscopy on excited states in a loop with a single Josephson junction
(radio-frequency SQUID). Previous experiments with single-junction loops have
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Figure 3.2: a) Schematic presentation of the loop’s double-well potential with energy
levels [12] for an applied flux ®cq below 3o (left) and at $®¢ (right). The vertical
axis is energy, the horizontal axis is a Josephson phase coordinate. In the vicinity of
Dot = %@0 the loop is a double-well system in which the two minimums correspond
to classical states with persistent currents of equal magnitude I, but with opposite
polarity. Quantum mechanically, the system has two low-energy eigen states (black
and gray) that are well separated in energy from higher excited states (dashed lines),
such that it is effectively a quantum two-level system. The shape of the wave function
of the ground state (black) and first excited state (gray) is shown at the energy level.
For ®.;; below or above %@0 the two lowest eigen states are well localized on either
side of the barrier, and correspond (apart from zero-point energy) to the classical
persistent-current states. When quantum tunneling between the wells is possible, the
loop’s eigen states are at ®gpp = %@0 symmetric and anti-symmetric superpositions of
the two persistent-current states. The schematic plots show a distribution of the levels
in the potential that is typical for the device parameters mentioned in the text. b)
Energy levels and persistent currents of the loop as a function of applied flux ®.,;. The
insets of the top plot show again the double-well potential, for ®.,; below %@0 (left),
at $®¢ (middle), and above $®¢ (right). The energies of the two localized persistent-
current states are indicated with the dashed lines, and they cross at ®ez: = %@0. The
quantum levels (solid lines) show an anti-crossing near ®cz = %@0, and are separated
in energy by AFE. The bottom plot shows the quantum mechanical expectation value
(I4) = —O0FE;/ 0Py of the persistent current in the loop, for the ground state Ey and the
excited state E1, plotted in units of the classical magnitude of the persistent currents
Ip.
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demonstrated resonant tunneling between discrete quantum states in two wells
[18, 19] and microwave-induced transitions between the wells [20, 21]. Other ob-
servations that have been related to macroscopic superposition states are tunnel
splittings observed with magnetic molecular clusters [22, 23] and quantum inter-
ference of Cgy molecules [24]. In quantum dots [25] and superconducting circuits
where charge effects dominate over the Josephson effect [26, 27, 28] superposi-
tions of charge states have been observed, as well as quantum coherent charge
oscillations [29].

Our quantum system is a low-inductance loop intersected by three Joseph-
son tunnel junctions (Fig. 3.1) [10, 11]. The Josephson junctions are extremely
underdamped, and are characterized by their Josephson coupling F; and charg-
ing energy Ec = €?/2C, where C is the junction capacitance and e the electron
charge. The critical current of a junction is Icg = Q—}fE 7, where h = % is Planck’s
reduced constant. One of the junctions in the loop has E; and C' smaller by a fac-
tor § ~ 0.8. At an applied flux ®.,; close to %CI)O the total Josephson energy forms
a double well potential. The classical states at the bottom of each well have persis-
tent currents of opposite sign, with a magnitude I, very close to I of the weakest
junction, and with energies F = +1,(®.,; — 5P0) (dashed lines in Fig. 3.2b) [30].
The system can be pictured as a particle with a mass proportional to C' in the
Josephson potential; the electrostatic energy is the particle’s kinetic energy. The
charging effects are conjugate to the Josephson effect. For low-capacitance junc-
tions (small mass) quantum tunneling of the particle through the barrier gives a
tunnel coupling ¢ between the persistent-current states. In the presence of quan-
tum tunneling and for E;/E¢ values between 10 and 100, the system should have
two low-energy quantum levels Ey and F;, which can be described using a simple
quantum two-level picture [10, 11], Eyq) = —(+)\/t2 + (Ip(CI)em — %@0))2. The
loop’s level separation AE = E; — Ej is then

AE = \/(215)2 + (2]p(<1>ewt - %fbo)>2. (3.1)

3.2 Experimental realization

The system was realized by microfabricating an aluminum micrometer-sized loop
with unshunted Josephson junctions (Fig. 3.1a). The sample consisted of a 5 x 5
pm? aluminum loop with aluminum-oxide tunnel junctions, microfabricated with

e-beam lithography and shadow-evaporation techniques on a SiO, substrate. The
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electrodes of the loop were 450 nm wide and 80 nm thick. The DC-SQUID magne-
tometer was fabricated in the same layer around the inner loop, with a 7 x 7 um?
loop and smaller Josephson junctions that were as underdamped as the junctions
of the inner loop. The DC-SQUID had an on-chip superconducting shunt capaci-
tance of 2 pF and superconducting leads in four-point configuration. The sample
was mounted in a dilution refrigerator, inside a microwave-tight copper mea-
surement box, magnetically shielded by two mu-metal and one superconducting
shield. All spectroscopy measurements were taken with the temperature stabi-
lized at 30 4+ 0.05 mK. Microwaves were applied to the sample by a coaxial line,
which was shorted at the end by a small loop of 5 mm diameter. This loop was
positioned parallel to the sample plane at about 1 mm distance. Switching cur-
rents were measured with dedicated electronics, with repetition rates up to 9 kHz
and bias currents ramped at typically 1 A /ms (further details of the fabrication
and experimental techniques can be found in Ref. [31]). Loop parameters esti-
mated from test junctions fabricated on the same chip and electron-microscope
inspection of the measured device give give I = 570+ 60 nA and C =2.6+0.4
fF for the largest junctions in the loop and 5 = 0.82+0.1, giving F;/Ec = 38+8
and [, = 450 + 50 nA. Due to the exponential dependence of the tunnel coupling
t on the mass (C') and the size of the tunnel barrier, these parameters allow for
a value for ¢/h between 0.2 and 5 GHz. The parameters of the DC-SQUID junc-
tions were Icg = 109 &= 5 nA and C' = 0.6 &= 0.1 fF. The self inductance of the
inner loop and the DC-SQUID loop were numerically estimated to be 11 + 1 pH
and 16 + 1 pH respectively, and the mutual inductance between the loop and the
SQUID was 7+ 1 pH.

The flux in the DC-SQUID is measured by ramping a bias current through the
DC-SQUID and recording the current level sy, where the SQUID switches from
the supercurrent branch to a finite voltage (Fig. 3.3a). Traces of the loop’s flux
signal were recorded by continuously repeating switching-current measurements
while slowly sweeping the flux ®.,; (Fig. 3.3b). The measured flux signal from the
inner loop will be presented as Igy,, which is an averaged value directly deduced
from the raw switching-current data, as described in the following three points:

1) Because the variance in Isy was much larger than the signature from the
loop’s flux (Fig. 3.3a) we applied low-pass FFT-filtering in ®.,-space (over 107
switching events for the highest trace, and 2 - 10® events for the lowest trace in
Fig. 3.4a). We checked that the cut-off frequency was chosen high enough not to
influence any parameters deduced from the data.

2) By applying ®.,; we also apply flux directly to the DC-SQUID. The resulting
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Figure 3.3: a) Current-voltage characteristic (inset) and switching-current histogram
of the underdamped DC-SQUID. The plot with bias current Ip;,s versus voltage V is
strongly hysteretic. The I;,s level where the SQUID switches from the supercurrent
branch to a finite voltage state —the switching current Igy— is a measure for the flux in
the loop of the DC-SQUID. Switching to the voltage state is a stochastic process. The
histogram in the main plot shows that the variance in Igy is much larger than the flux
signal of the inner loop’s persistent current, which gives a shift in the averaged Igy of
about 1 nA (see Fig. 3.3b). b) Switching-current levels of the DC-SQUID versus applied
flux. The inset shows the modulation of Isw versus the flux ®sgurp applied to the
DC-SQUID loop (data not averaged, one point per switching event). The main figure
shows the averaged level of Isy (solid line) near ®squrp = 0.76 ®g. At this point the
flux in the inner loop ®eyt ~ %@0. The rounded step at ®eyr = %@0 indicates the change
of sign in the persistent current of the loop’s ground state. Symmetrically around %@0
the signal shows a peak and a dip, which are only observed with measurements in
the presence of continuous-wave microwaves (here 5.895 GHz). The peak and dip are
due to resonant transitions between the loop’s two quantum levels (see Fig. 3.4). The
background signal of the DC-SQUID that results from flux directly applied to its loop
(dashed line) is subtracted from the data presented in Figs. 3.4a, 3.5a and 3.6a.

background signal (dashed line in Fig. 3.3b) was subtracted. We checked that
the estimated dip and peak positions in Fig. 3.4b did not depend significantly on
subtracting a background signal.

3) Applying microwaves and changing the sample temperature influenced the
switching current levels significantly. To make the flux signal of all data sets
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comparable we scaled all data sets to Isyy = 100 nA at $.,; = %CIDO. Any uncer-
tainty coming from this scaling is accounted for in the error bars in Figs. 3.4-3.6.
Data taken in the presence of microwaves could only be obtained at specific
frequencies where Isy, was not strongly suppressed by the microwaves. At tem-
peratures above 300 mK drift in the Igy-level due to thermal instabilities of the

refrigerator obscured the signal.
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Figure 3.4: a) Resonance lines in traces of the scaled switching current Tsw versus
Oz, measured at different microwave frequencies f (labels on the right). b) Half
the distance in ®.;; between the resonant peak and dip A®,.s at different microwave
frequencies f. Peak and dip positions are determined from traces as in Fig. 3.4a. The
inset zooms in on the low frequency data points. The grey line is a linear fit through
the high frequency data and zero. The black line is a fit of (1).

3.3 Results

Fig. 3.4a shows the flux signal of the inner loop, measured in the presence of low-
amplitude continuous-wave microwaves at different frequencies f. The rounded
step in each trace at %(I)o is due to the change in direction of the persistent
current of the loop’s ground state (see also Fig. 3.2b). Symmetrically around
Do = %‘IJO each trace shows a peak and a dip, which were absent when no
microwaves were applied. The positions of the peaks and dips in ®.,; depend
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on microwave frequency but not on amplitude. The peaks and dips result from
microwave-induced transitions to the state with a persistent current of opposite
sign. These occur when the level separation is resonant with the microwave
frequency, AE = hf.

In Fig. 3.4b half the distance in ®.,; between the resonant peak and dip AP,
is plotted for all the frequencies f. The relation between AE and ®.,; is linear for
the high-frequency data. This gives I, = 484 +2 nA, in good agreement with the
predicted value. At lower frequencies A®, ., significantly deviates from this linear
relation, demonstrating the presence of a finite tunnel splitting at ®.,; = %‘I)O.
A fit to Eq. 1 yields t/h = 0.33 + 0.03 GHz, in agreement with the estimate
from fabrication parameters. The level separation very close to %CI)O could not
be measured directly since at this point the expectation value for the persistent
current is zero for both the ground state and the excited state (Fig. 3.2b). Nev-
ertheless, the narrow resonance lines allow for an accurate mapping of the level
separation near %CI)O, and the observed tunnel splitting gives clear evidence for
quantum superpositions of the persistent-current states. The large uncertainty
in the predicted ¢ value does not allow for a quantitative analysis of a possible
suppression of ¢ due to a coupling between our two-level system and a bosonic
environment [33] or a spin-bath environment [34, 35]. However, the fact that
we see a finite tunnel splitting indicates that the damping of our quantum sys-
tem by environmental degrees of freedom is weak. The dimensionless dissipation
parameter « introduced by Leggett et al. [33] must be o < 1.

In Fig. 3.5 we show the dependence of the dip shape at 5.895 GHz on applied
microwave amplitude. The dip amplitude and the full width at half the maximum
amplitude (FW H M) were estimated for different microwave amplitudes by fitting
a Lorentzian peak shape to the data. Fig. 3.5b shows that the dip amplitude
increases rapidly for microwave amplitudes up to V¢ =~ 2a. u., followed by a
saturation for larger microwave amplitudes. The saturated dip amplitude is =
0.25 nA, which is close to half the full step height of the rounded step at %CI)O
(=~ 0.4 nA) in Fig. 3.4a. This indicates that on resonance the energy levels are
close to being equally populated, as expected for pumping with continuous-wave

microwaves.

Fig. 3.5c shows a linear dependence between the F'W H M and the microwave
amplitude. Qualitatively this dependence of the line shape on microwave ampli-
tude agrees with spectroscopy results on microscopic quantum two-level systems.
For negligible decoherence, spectroscopy on quantum two-level systems yields a
Lorentzian line shape and transitions between the levels occur by coherent Rabi
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Figure 3.5: a) The influence of the microwave amplitude on the shape of the resonance
dip in the scaled switching current fsw, measured at 5.895 GHz (the labels on the
left give the amplitude V4o in a. u.)). b) The dip amplitude first increases with
microwave amplitude Vy¢, but saturates at Vao > 2 a. u. ¢) The full-width-half-max
(FWHM) of the dips increases with Vjc. The linear fit through the highest data
points and zero is a guide to the eye. The horizontal dashed line is at a flux value that
corresponds to the shift in effective flux bias ®.,; that is induced when the bias current
is ramped through the DC-SQUID. This acts as a flux instability with an amplitude of
~ 20 - 1079 ®(. Resonance lines with a FW HM below this value cannot be observed.
The loss of dip amplitude in Fig. 3.5b when lowering V4o < 2 a. u. sets in where the
FWHM < 20-107%®q. The flux shift from the SQUID is calculated using the Ip;qs
interval (the FWHM of the switching-current histogram is used) where the SQUID
typically switches.

oscillations. The FFW H M of the Lorentzian resonance line is two times the Rabi
frequency and is proportional to the amplitude of the monochromatic pertur-
bation [15]. The linear dependence of the FW HM on microwave amplitude in
Fig. 3.5c suggests that the line width is for V4 > 2a. u. dominated by the fre-
quency of microwave-induced Rabi transitions. Transitions occur then by a few
quantum coherent Rabi cycles. Using the linear relation between AFE and ®.,; for
®_,¢ values away from %‘I)o, the observed FW HM in ®.,; units can be expressed
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in frequency units. This indicates a Rabi frequency of for example 150 MHz at
Vac = 4a. u. However, we do not consider these results as proof for coherent
quantum dynamics as other scenarios with weak decoherence give similar results
(36].

The loss of dip amplitude and the apparent saturation of the FW HM at
low Vy¢ is either caused by variations in the flux bias ®.,; (corresponding to
inhomogeneous broadening for the ensemble average [16]) or by an intrinsic de-
phasing mechanism. The effective dephasing time T3 [16] can be deduced from
the FW HM at low V. The FW HM (expressed in energy units) of a resonance-
line shape that is dominated by a finite dephasing time corresponds to % [16, 15].
Using once more the linear relation between AFE and ®.,; for ®.,; values away
from %@0 to express the FWHM at Vac S2a. u. in energy units, gives Ty &~ 10
ns. As will be discussed later this can be fully explained by variations in the
applied magnetic flux that originate from the measuring DC-SQUID.

The DC-SQUID performs a weak measurement on the loop. It has two macro-
scopic phase degrees of freedom. One is associated with the circulating current in
the SQUID’s loop (internal degree of freedom), the other is associated with the
bias current through the SQUID (external degree of freedom). As the bias cur-
rent is ramped up, the coupling between these two degrees of freedom increases
strongly, due to the non-linearity of the SQUID’s current-phase relations [1]. The
external variable is coupled to a dissipative environment, and the associated ef-
fective mass (i. e. the capacitance across the SQUID) is very large. The internal
degree of freedom has no intrinsic damping and the associated mass (i. e. the
capacitance of the junctions of the SQUID) is very small. As a consequence this
variable exhibits quantum behavior. The classical external degree of freedom of
the SQUID performs a measurement on the SQUID’s inner quantum variable,
which in turn is weakly coupled to our quantum loop. We therefore expect that
the SQUID contributes dominantly to the loop’s dephasing and damping with the
present setup. The choice for an underdamped DC-SQUID resulted in very wide
switching-current histograms. The width of the histogram corresponds to a stan-
dard deviation in the flux read out of 11 - 103 ®,. The uncertainty in flux read
out is much is larger than the flux signal from the inner loop 2M 1, &~ 3- 1073 ®,.
As a consequence, we can only detect the loop’s signal by averaging over many
switching events (Fig. 3.3).

The loss of dip amplitude in Fig. 3.5 is probably due to a small contribution
to the effective ®,; from the circulating current in the DC-SQUID. The SQUID
is operated at 0.76 ®, in its loop, where its circulating current depends on the
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bias current due to its non-linear behavior [1]. This means that data recorded
by switching events on the low Iy, side of the FW HM of the Isy histogram
in Fig. 3.3a differs in flux bias on the inner loop from that of the high side by
20 - 107 ®;. Resonance lines at low Vyo (i. e. with a FWHM < 20 - 106 ®)
cannot be observed as the peaks and dips smear out when averaging over many
switching events. The loss of dip amplitude and the apparent saturation of the
FW HM at low V¢ is probably dominated by this mechanism for inhomogeneous
line broadening.
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Figure 3.6: a) Igw versus @y, measured at different temperatures T (labels on the
right). No microwaves were applied. The step in Isw broadens with temperature. b)
The width of the step as a function of temperature. The half-width-half-step (HWHS)
is defined as the distance in ®.;; from %@0 to the point where the amplitude of the step
is half completed. The solid line is the calculated HWHS for thermally mixed levels,
using (1) and the I, and t-value from the spectroscopy results, with a saturating width

on the scale of t at low temperatures.

The width of the rounded steps in the measured flux in Figs. 3.4a is much
broader than expected from quantum rounding on the scale of the value of ¢
that was found with spectroscopy (see also Fig. 1c). We checked the tempera-
ture dependence of the step width, measured in the absence of microwaves. The
temperature dependence of the step width presented in Fig. 3.6 confirms that
the step width HWHS (defined in the caption of Fig. 3.6b) is too wide at low
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temperatures 7. At temperatures above 100 mK the step width is in agree-
ment with the thermally averaged expectation value for the persistent current
< Iy, >= I, tanh <%> (kp is Boltzmann’s constant), where we use the level
separation AE and I, found with spectroscopy. However, when lowering the tem-
perature the observed step width saturates at an effective temperature of about
100 mK. We checked that the effective temperature for the SQUID’s switching
events did not saturate at the lowest temperatures. The high effective tempera-
ture of the loop is a result of the loop being in a non-equilibrium state. Cooling
the sample longer after the dissipative switching events did not make the step nar-
rower. The step width at T' = 30 mK was measured with 100 us and 50 ms dead
time between switching events, but no significant differences were found. This
indicates that the out-of-equilibrium population of the excited state is caused
by the measurement process with the SQUID or other weakly coupled external
processes, in combination with a long time scale for cooling the system to equi-
librium (as can be expected since it is very well isolated from the environment).
Note that the observed line width and the level separation near %CI)O are small
compared to the effective temperature of 100 mK. Silvestrini et al. [37] showed
that this can be the case in a Josephson junction system when the transitions
between the levels occur much faster than the thermal mixing time, a phenomena

that is also well known from e. g. room-temperature NMR on liquids [16].

3.4 Concluding remarks and future prospects.

The data presented here provides clear evidence that a small Josephson junction
loop can behave as a macroscopic quantum two-level system. The application of
an underdamped DC-SQUID for measuring the loop’s magnetization is a useful
tool for future work on quantum coherent experiments with Josephson junc-
tion loops. The present results also demonstrate the potential of three-junction
persistent-current loops for research on macroscopic quantum coherence and for
use as qubits in a quantum computer. This requires quantum state control with
pulsed microwaves and development of measurement schemes that are less inva-
sive. Circuits that contain multiple qubits with controlled inductive coupling are
within reach using present-day technology.
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Chapter 4

Engineering decoherence in Josephson
persistent-current qubits:
Measurement apparatus and other

electromagnetic environments

Abstract

We discuss the relaxation and dephasing rates that result from the
measurement setup itself in experiments on Josephson persistent-current
qubits. For control and measurement of the qubit state, the qubit is in-
ductively coupled to electromagnetic circuitry. We show how this system
can be mapped on the spin-boson model, and how the spectral density
of the bosonic bath can be derived from the electromagnetic impedance
that is coupled to the qubit. Part of the electromagnetic environment is
a measurement apparatus (DC-SQUID), that is permanently coupled to
the single quantum system that is studied. Since there is an obvious con-
flict between long coherence times and an efficient measurement scheme,
the measurement process is analyzed in detail for different measurement
schemes. Parameters that can be realized in experiments today are used
for a quantitative evaluation, and it is shown that the relaxation and de-
phasing rates that are induced by the measurement setup can be made low
enough for a time-resolved study of the quantum dynamics of Josephson

persistent-current qubits.

This chapter is based on Ref. 10 on p. 111.
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4.1 Introduction

The founders of the quantum mechanical theory already recognized the conflict
between a straight forward extrapolation of quantum mechanics to a macroscopic
scale, and the intuitions we have about the laws that govern the macroscopic
world. In particular, this concerned the possibility of quantum superpositions
of collective coordinates (i. e. center-of-mass-like coordinates) of objects that are
much bigger than the atomic scale. These difficulties were first presented by
Schrodinger [1], and are now known as Schrodinger’s cat paradox. Schrodinger’s
discussion of the cat in the box was clearly meant as a gedanken experiment.
Only several decades later, after the discovery of the Josephson effect, it was
recognized that the validity of quantum mechanics for a macroscopic degree of
freedom could be tested in real experiments [2].

In 1980, Leggett pointed out that cryogenic and microfabrication technolo-
gies had advanced to a level where macroscopic Schrodinger’s cat states could
possibly be realized in small superconducting loops that contain Josephson tun-
nel junctions [3]. In such systems, the Josephson phase (or equivalently, the
persistent supercurrent in the loop) is a collective coordinate for the Cooper-pair
condensate, and it is conjugate to a variable which describes the charge difference
across the Josephson tunnel junction. However, while the analysis of the isolated
quantum system shows that superpositions of the macroscopic coordinates might
very well occur in these loops, it is by no means obvious that such behavior can
also be demonstrated experimentally. Just as for microscopic quantum systems,
such superposition states are extremely fragile. Besides decoherence from a weak
coupling to the degrees of freedom in the system’s solid-state environment, also
the fact that the loop is not isolated but permanently placed in an experimental
setup might hinder attempts to study macroscopic quantum coherence. Nev-
ertheless, interesting results with evidence for macroscopic quantum tunneling
and energy level quantization were obtained with systems where the Josephson
phase coordinate is trapped in a metastable well (for an overview see [4, 5, 6, 7]).
More recently, quantum superposition states of persistent currents in Josephson
junction loops have been demonstrated spectroscopically [8, 9], but time-resolved
experiments that proof quantum-coherent dynamics of the persistent current, and
experiments that could give formal evidence for macroscopic quantum coherence
[10], have not been realized yet.

Whether such experiments can be realized at all has been intensively discussed
in the literature [11], without concencus being reached. However, a detailed
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analysis with estimates based on measurement techniques that can be realized
in experiments today, has been discussed very little. In recent experiments on
Josephson junction systems where charge effects dominate over the Josephson
effect, quantum coherent dynamics has been demonstrated [12], which indicates
that it might be possible to obtain similar experimental results with Josephson
persistent-current loops. Efforts in this direction were stimulated by the prospect
that it should be possible to realize a quantum computer with superconducting
Josephson devices [13, 14, 15, 16]. An important advantage of a Josephson quan-
tum computer would be that, if accurate quantum coherent control of elementary
units would be possible at all, it would be a system that can be extended to one
containing a very large number of quantum bits (qubits). The large size of the
qubits might allow for individual (local) control and readout of the qubits and
qubit-qubit couplings.

In this chapter we analyze the feasibility of demonstrating quantum coher-
ent dynamics with Josephson persistent currents, using experimental techniques
that can be realized in the laboratories today (i. e. assuming the available tech-
niques for device fabrication, cryogenics, microwave applications and electronic
filtering). Neglecting for the moment new measurement techniques that might
become available in the future, such mesoscopic solid-state experiments suffer
from the difficulty that one cannot avoid that an electronic measuring device is
permanently coupled to the single quantum system that is studied [18]. A me-
ter must be present in any useful experiment, and, unlike experiments with for
instance photons, this means that a measuring device must be permanently lo-
cated very close to the solid-state quantum bit (e. g. fabricated on the same chip).
With such a setup, there is obviously a conflict between an efficient measurement
scheme with a strong measurement, and long decoherence times in the quantum
system that is studied. For successful experiments in this direction, a detailed
understanding of the measurement scheme is therefore needed such that the deco-
herence that is induced by the setup itself can be reduced to an acceptable level.
Obviously, there exist many other sources of decoherence for Josephson qubits
that one should worry about as well. For instance, it has been stressed that a
very high number of spin degrees of freedom is usually present in the solid state
environment. Coupling to such a spin-bath might limit the dephasing times of
Josephson qubits (see e. g. the review and recent work by Prokof’ev and Stamp
[21, 22]), and these effects themselves are very interesting for further study. Also
here it is clear that a study of for example the dephasing due to spin impurities
remains impossible as long a reliable measurement scheme for the loop’s quantum
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dynamics is not available. Therefore, we will concentrate here on dephasing and

mixing due to the experimental wiring and the measurement scheme itself.

b)

microwave current
a) c)

bi afi:urrmt control current
@ g:
qubit

Figure 4.1: Experimental setup for measurements on a Josephson persistent-current

qubit. The qubit (center) is a superconducting loop that contains three Josephson
junctions. It is inductively coupled to a DC-SQUID (a), and superconducting control
lines for applying magnetic fields at microwave frequencies (b) and static magnetic
fields (c¢). The DC-SQUID is realized with an on-chip shunt circuit with impedance

Zsp. The circuits a)-c) are connected to filtering and electronics (not drawn).

Our analysis mainly focuses on experiments with the three-junction persistent-
current qubit proposed by Mooij et al., [16, 17, 9], in a setup where they are
measured by underdamped DC-SQUID magnetometers (in this chapter we will
reserve the word SQUID for the measuring DC-SQUID (Fig. 4.1a), and not use
it for the three-junction qubit (Fig. 4.1center)). The decohering influence of the
inductively coupled DC-SQUID is analyzed as well as decoherence that results
from inductive coupling to on-chip control lines for applying microwave signals
and local magnetic fields. Model descriptions of the experimental setup up will
be mapped on the spin-boson model, such that we can use expressions for the
relaxation and dephasing rates from the spin-boson literature. The results will
be worked out quantitatively, and we will evaluate whether we can realize mixing
and dephasing rates that are compatible with measurement schemes based on
DC-SQUIDs. This work should also be of interest for experiments on loops with
a single Josephson junction [8], and for similar experiments on quantum circuits

where the charge degree of freedom is measured, as Josephson charge quantum
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bits [15] and quantum dots [19]. In a more general context the value of this work
is that it presents in detail an interesting example of a measurement process
on a single quantum system in which the decoherence enhances with increasing
measurement strength. The issues discussed here are an example of experimental
difficulties that will unavoidably play a role in many realizations of quantum
computers.

4.1.1 Outline

In section 2 we will summarize a theoretical description of the Josephson persis-
tent current qubit, and the spin-boson theory that will be applied in our analysis.
Section 3 presents a description of the measurement process with the DC-SQUIDs,
and a typical scheme for coupling the qubit to the on-chip control lines. In sec-
tion 4 we work out the qubit’s relaxation and dephasing rate that result from
the coupling to a switching DC-SQUID. This is worked out quite extensively and
the definitions presented in this section are also valid for the consecutive sections.
Two measurement scenarios with different types of electromagnetic shunt circuits
for the DC-SQUID will be compared. A short analysis of the decoherence due to
the coupling to on-chip control lines is presented in section 5.

4.2 Qubit Hamiltonian and theory for relaxation

and dephasing

This work aims at calculating relaxation (mixing) rates and dephasing (decoher-
ence) rates for a Josephson persistent-current qubit which result from its induc-
tive coupling to the measurement setup. The measurement setup is formed by a
DC-SQUID and control lines, which are attached to leads and coupled to filters
and electronics (Fig. 4.1). This setup will be modeled as a macroscopic quantum
two-level system that is coupled to an electromagnetic impedance Z;(w), where
w the angular frequency. The impedance Z;(w) can be described by a set of LC

oscillators. This allows for mapping the problem on the spin-boson model: a
1
2
we will first introduce the qubit Hamiltonian and physical properties of the qubit,

central spin-z system that is coupled to a bosonic bath [20, 41]. In this section

and then summarize the spin-boson expressions for relaxation and dephasing.
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4.2.1 Qubit properties and Hamiltonian

The three-Josephson junction qubit [16, 17, 9] is a low-inductance superconduct-
ing loop which contains three Josephson tunnel junctions (Fig. 4.1). By applying
an external flux ®, a persistent supercurrent can be induced in the loop. For val-
ues where @, is close to a half-integer number of superconducting flux quantums
®, two states with persistent currents of opposite sign are nearly degenerate but
separated by an energy barrier. We will assume here that the system is oper-
ated near &, = %@0. Classically, the persistent currents have here a magnitude
I,,. Tunneling through the barrier causes a weak coupling between the two states,
and the loop can be described by a Hamiltonian in the form of a two-level system,

A
H, = %UZ + 5 Ta; (4.1)

where o, and o, are Pauli spin operators. The two eigen vectors of o, correspond
to states that have a left or a right circulating current and will be denoted as
|L) and |R). The energy bias e = 2I,(®, — @) is controlled by the externally
applied field ®,. We follow [23] and define A as the tunnel splitting at ®, = £,
such that A = 2W with W the tunnel coupling between the persistent-current
states. This system has two energy eigen values i%\/m , such that the level
separation v gives (see also Fig. 3.2).

v=+VA24¢e2 (4.2)

In the experiments ®, can be controlled by applying a magnetic field with a
large superconducting coil at a large distance from the qubit, but for local control
one can apply currents to superconducting control lines, fabricated on-chip in the
direct vicinity of the qubit. The qubit’s quantum dynamics will be controlled with
resonant microwave pulses (i. e. by Rabi oscillations). The proposed operation
point is at € ~ 5A. For optimal microwave control the qubit will be placed
in a small cavity, and the microwave signals will be applied through on-chip
superconducting control lines (i. e. the magnetic component of the fields from
microwave currents will be used). The qubit has a magnetic dipole moment as a
result of the clockwise or counter-clockwise persistent current, which commutes
with o,. In the experiments this signal will be used for measuring the qubit states.
Our system also has electric dipole moments, that commute with o,. However,
the coupling to the DC-SQUID and the control lines is mainly inductive, and we
will therefore neglect couplings between the environment and the electric dipole
moments in the analysis presented here.
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4.2.2 Spin-boson theory for dephasing and relaxation

For defining the relaxation and dephasing rates, the state of the qubit is described
with a reduced density matrix p, in the basis which is spanned by the eigen vectors
of o, in (4.1).

5= < PL.L PRL > ' (4.3)
PL,r PR,R

The relaxation rate I, is the rate at which the populations (diagonal elements)
of p go to their equilibrium values (Boltzmann factors in the eigen state basis).
The dephasing rate I'y is the rate at which the coherences (off-diagonal elements)
of p go to zero. For estimating I', and I'y we will work from an article by
Grifoni et al. [23], which covers recent theoretical progress for the spin-boson
theory. Grifoni et al. calculated expressions for I', and I'y for a spin-boson
system in which the coupling to the environment is dominated by bilinear coupling
terms between o, and the bath coordinates. This is a good approximation for a
quantum two-level system that is only weakly damped by the environment. In
our case the bath is formed by the impedance Z;(w), and can be described by
a set of LC' oscillators with flux coordinates ®;, conjugate charge coordinates
Qi, and Hamiltonian Hye, = Y, (97/2L; + Q?/2C;). The flux produced by the
qubit will shift the flux ®; in each LC' oscillator. The coupling Hamiltonian is
Hy patn = % >, ci®;, where ¢; is the coupling strength to the i-th oscillator. In
this model the influence of the oscillator bath on the qubit can be captured in
the environmental spectral density function

Jw) = 55 3 (/Cw) 8w - wy), (4.4)
where w; the resonance frequency of the i-th oscillator. The high number of
degrees of freedom in the electromagnetic environment allows for treating J(w)
as a continuous function.

The relaxation rate I', (and relaxation time 7,) are determined by environ-

mental spectral density J(w) at the frequency of the level separation v of the
qubit [23]

I, =l = % (%)2 J(v/h) coth ( T T) | (4.5)

where T is the temperature of the bath. The dephasing rate I'y (and dephasing

time 74) is [23]
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The second term only contributes for an Ohmic environment (i. e. for J(w) x w).
Here « is a dimensionless dissipation parameter. It is determined by the slope of
J(w) at low frequencies

. J(w)
= lim —= 4.7
e (47)
which can usually be taken as a = %62—5‘:’) at w ~ 0. These expressions for

relaxation and dephasing have also been found by studying the Hamiltonian of
our qubit coupled to a damped oscillator, using a Markovian master equation
approach by Tian et al. [24] (based on work by Garg et al. [25]).

The expressions (4.5) and (4.6) have prefactors (%)2 and (%)2 that depend on
the tunnel splitting A and the energy bias €. These factors account for the effect
that the qubit’s magnetic dipole radiation is strongest where the flux in the qubit
P, = 10 (i. e. (£) maximal), and that the level separation v is insensitive to
flux noise at this point (i. e. 2 = (£) ~ 0). One should know and control J(w)
at the frequency v/h for controlling the relaxation, and at low frequencies for
controlling the dephasing. In this chapter we will calculate the noise properties
of a few typical experimental environments, and calculate how the noise couples

to the qubit. This can be used to define J(w) for our specific environments.

4.3 Measurement setup

This section describes an experimental setup for measurements on Josephson
persistent-current qubits. Only the parts that are most strongly coupled to the
qubit will be worked out (Fig. 4.1). The first part describes a DC-SQUID magne-
tometer that is used by measuring its switching current, the second part addresses
the use of on-chip superconducting lines for applying magnetic fields to the qubit.

4.3.1 Switching DC-SQUID

SQUIDs are the most sensitive magnetometers, and they can be operated at very
low power consumption [26]. We will consider here the use of a DC-SQUID with
a hysteretic current-voltage characteristic (IV'), and unshunted junctions that are
extremely underdamped. It is used by ramping a current through it and recording
the switching current: the bias current at which it switches from the supercurrent
branch to a nonzero voltage in its IV (Fig. 4.2). The switching current is a mea-
sure for the magnetic flux in the loop of the SQUID. An important advantage of
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this scheme is that the SQUID produces before readout very little noise. As long
as the SQUID is on the supercurrent branch, it does not produce any shot noise
or Josephson oscillations. If the external noise and interference can be suppressed
by filtering, there is only Johnson-Nyquist noise from the low-temperature leads
and filtering that the SQUID is connected to. At low frequencies this residual
noise has little power since the device is superconducting. Moreover, we will show
in section 4 that at low bias currents the effective coupling between this meter
and the quantum system is very weak. In comparison, damped non-hysteretic
SQUIDs have the problem that the shunt resistors at the junctions also provide
a damping mechanism for the qubit. In a hysteretic SQUID there is more free-
dom to engineer the effective impedance seen by the qubit, and it also has the
advantage that the voltage jump at the switching current is much larger [31].
The Saclay group has presented a similar scheme with a superconducting single-
charge device, that can be operated as a switching electrometer [27]. Voltage
biased single-electron transistors for quantum measurements have been analyzed
in Refs. [28, 29].

For qualitative insight in the measurement process we will present here a
simplified description of the SQUIDs noise and dynamics (valid for a DC-SQUID
with symmetric junctions and a loop with negligible self inductance). In section
4 it will be worked out in more detail. The supercurrent through the SQUID
with a flux ® in its loop is

Isg =21, cos f sing,,,, (4.8)

where f = 7®/dy, I, the critical current of the junctions, and ¢,,, a Josephson
phase coordinate (it will be distinguished from the applied bias current Iy;,s, as
part of the bias current may go into circuitry shunting the SQUID). Insight in
the SQUID’s response to a bias current is achieved by recognizing that (4.8) gives
steady state solutions (OU/0¢,,, = 0) for a particle with coordinate ¢,,,, trapped
on a tilted washboard potential (Fig. 4.3)

h
U = =50 (20 €05 | 05001 + L) (19)

In this picture, the average slope of the potential is proportional to the bias
current, and the supercurrent branch of the SQUID’s IV corresponds to the

particle being trapped in a well. The Josephson voltage across the SQUID V' =

i dee.Zt
2e dt

fluctuations, the SQUID will switch to the running mode at the critical current

is nonzero for the particle in a running mode. In absence of noise and



50 Chapter 4. Engineering decoherence ...
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Figure 4.2: Sketch of a typical hysteretic current-voltage characteristic (IV) for a
current-biased Josephson junction or small DC-SQUID. The IV is hysteretic; arrows
indicate which of the two branches is followed at an increase or decrease of the bias
current. When the bias current Ip;,s is ramped up from zero (a), the voltage V first
remains zero. The circuit is here on the supercurrent branch of the IV (b). When Iy,
approaches the critical current I¢, a slow diffusive motion of the phase ¢,,; leads to
a very small voltage across the system (c). At slightly higher current (d), but always
below I (e), the system switches to a running mode for ¢,,;, and the voltage jumps
to a value set by quasiparticle tunneling over the superconducting gap, V' = 2A /e (this
current level (d) is the switching current Igy ). At further increase of the current (f)
the IV approaches an Ohmic branch, where transport is dominated by quasiparticle
tunneling through the normal tunnel resistance of the junctions. When lowering the
bias current the system follows the running mode (g) down to a low bias current where
it retraps on the supercurrent branch (at the level Ietrap, indicated by (h)). See also

the corresponding washboard potential model, in Fig. 4.3.
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Figure 4.3: The dynamics of a current-biased DC-SQUID, modeled as a particle with
coordinate ¢, in a one-dimensional tilted washboard potential U. The labeling a)-f)
corresponds to that of Fig. 4.2. At zero (a) and small bias currents (b), the particle is
trapped in a well of the washboard. Apart from the small plasma oscillations at the
bottom of the well, the particle’s coordinate ¢,,; is fixed. When increasing the slope of
the washboard, the particle will start to have a slow, on average downwards, diffusive
dynamics, with rare excursions to one of the neighboring wells (c). At the switching
current Igy there is a high probability that the trapped particle will escape to a running
mode (d), with effectively zero probability for retrapping. Here the loss of potential
energy exceeds the dissipation when the particle moves one period down the washboard,
and the particle builds up a high kinetic energy. Due to thermal fluctuations, external
noise, and in certain cases quantum fluctuations, this occurs below the critical current
I¢: the slope where all local minimums in the washboard potential disappear (e). At
currents higher than this slope (f), the particle will always be in a running mode. The

retrapping process when lowering the bias current follows similar dynamics.
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Ic =21 |cos f|. (4.10)

A DC-SQUID can thus be regarded as a single Josephson junction with a flux-
tunable critical current. In practice, noise and fluctuations of ¢ ,, will cause the
SQUID to switch before the bias current reaches I. This current level will be
denoted as the switching current Igy to distinguish it from .. It is a stochastic
variable, but averaging over repeated recordings of Isy allows for determining
f with great accuracy. This naive description can be used to illustrate three
important properties of the measurement process with the SQUID.

In the experiment, the electronics for recording the SQUID’s I'V obtains in-
formation about f when the SQUID switches. However, rewriting (4.8) as

I
=sin”! | —21— 4.11
Pewt sin <2]co COSf) ( )

shows that the SQUID’s coordinate ¢,,, is already correlated with the flux f
at current values below Isy,. Small voltage fluctuations that result from small
plasma oscillations and translations of ¢_,, will cause dissipation in the electro-
magnetic environment of the SQUID, which damps the dynamics of ¢,,,. This
means, that in a quantum mechanical sense, the position of ¢,,,, and thereby f,
is measured by the degrees of freedom that form the electromagnetic impedance
that is shunting the SQUID (i. e. the leads and filtering between the SQUID and
the readout electronics), and that the measurement may in fact take place before
it is recorded by a switching event.

Secondly, (4.11) shows that the SQUID’s coordinate ¢,,, is independent of the
flux in the loop (9p,,:/0f = 0) for I, = 0. Therefore, in absence of fluctuations
of .., and current noise, the meter is at zero current effectively off. In practice
this can of course not be realized, but it illustrates that the decoherence from the
SQUID may be strongly reduced at low bias currents.

Thirdly, for bias currents well below I, the coordinate ¢,,, is trapped in a
potential that is for small oscillations close to harmonic. The SQUID can in this
case be regarded as an inductance

I - h 1
I 2_6\/412 cos? f — I?
co sq

(4.12)

(see also (4.24) below). The noise from the SQUID can here be described by
the Johnson-Nyquist noise from the SQUID’s Josephson inductance (4.12) in
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parallel with the SQUID’s environmental impedance (Fig. 4.3a, b). For high bias
currents very close to I, the spectrum will have more power and calculating
the noise properties will be more complicated. Here non-harmonic terms in the
trapping potential become important, and there maybe additional noise from a
diffusive motion of ¢,,, to neighboring wells (Fig. 4.3c). For hysteretic SQUIDs
this regime with diffusive motion of ¢_,, and switching currents very close to I
will only occur in SQUIDs with a very specific electromagnetic shunt [30, 31]. In
many realizations of hysteretic DC-SQUIDs ¢,,, will escape to a running mode
without retrapping in lower wells (Fig. 4.3d), and Isy, can be much lower than
I¢. In this case the approximation using (4.12) should be valid for description of
the noise before a switching event.

The statistics of Igy readouts depend strongly on the damping of the dynam-
ics of ¢,,; by the impedance that is shunting the SQUID. Experimental control
over the damping, requires the fabrication of a shunt circuit in the direct vicinity
of the SQUID, such that its impedance is well defined up to the frequency of
the SQUID’s plasma oscillations (microwave frequencies). The shunt circuit is
therefore preferably realized on-chip (Z, in Fig. 4.1a). The escape from the well
may be thermally activated, but for underdamped systems with low-capacitance
junctions quantum tunneling through the barrier can dominate the escape rate
at low temperatures. The influence of the damping circuitry on the Igy statistics
[5, 30, 31] is now well understood. A SQUID with very underdamped dynamics
usually has Igy values much below I, and histograms of a set of Igy, recordings
will be very wide. This means that one needs to average over many repeated
measurements to achieve the required resolution in readout. Thereby, averaging
also needs to take place over many repeated experiments on the qubit, such that
only a time-ensemble average can be measured. With a shunt that provides high
damping at the plasma frequency very narrow switching currents can be realized
[30, 31], that might allow for single-shot readout in qubit experiments. However,
in such a scheme the SQUID’s noise will also be enhanced.

The main disadvantage of the switching SQUID is that it is not very efficient.
During each cycle through the hysteretic IV it is only measuring for a short time.
Moreover, the IV is very nonlinear, such that the repetition frequency must be
an order lower than the bandwidth of the filters. The filtering that is required for
realizing low effective temperatures and the SQUID’s shunt circuit have typically
a bandwidth well below 1GHz, and the accurate readout electronics set a similar
limit to the bandwidth. In practice this limits the repetition frequency to values
in the range of 10 kHz [9, 42] to 1 MHz [7, 40]. A more efficient readout may
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be realized by placing the SQUID in an inductance bridge, described in the next
section.

The slow operation of the switching DC-SQUID sets requirements for the
mixing rate [, of the qubit. It needs be longer than the time required to perform
a switching current measurement, which requires a time in the range 1 ps to 100
pus. One could go to shorter times by setting the SQUID ready at a high bias
current when an experiments on the qubit is started, but it is also needed to have
the mixing time longer than the time it takes to ramp the bias current through
the range of the switching current histogram. At the same time we should realize
that the quantum system is prepared by waiting for it to relax to the ground state,
so relaxation times very much longer than 100 us will prohibit a high repetition
frequency. A high repetition frequency is needed if the signal can only be build
up by averaging over many switching events.

The experiments aim at working with many coherent Rabi oscillations with
a period of about 10 ns [16], We therefore aim at engineering SQUIDs that
cause a dephasing time that is much longer than 10 ns. The dephasing and
relaxation times turn out to be shortest at high bias currents through the SQUID.
Unless mentioned otherwise, we will make in this chapter worst case estimates for
the dephasing and relaxation times using bias current values near the switching

current.

4.3.2 On-chip control lines

An attractive feature of macroscopic qubits is that one can address individ-
ual qubits with control signals from microfabricated lines (see also Fig. 4.1b,c).
For persistent-current qubits, for example, a supercurrent through a line that is
mainly coupled to one specific qubit can be used for tuning this qubit’s energy
bias . Also, it is convenient to provide the microwave signals for control of the
qubit’s quantum dynamics using local superconducting lines. If this is realized
in a microwave cavity with its first resonance well above the applied microwave
frequency, one can apply microwave bursts with fast switch times without being
hindered by high-@Q electromagnetic modes in the volume that is formed by the
cold metallic shielding that surrounds the sample.

Microwave signals can be applied using external microwave sources at room
temperature. Alternatively, on-chip oscillators for example based on Josephson
junction circuits [32, 33] can be applied. High microwave currents in the control
lines are achieved by shorting the microwave coax or wave guide close to the qubit
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with an inductance that has an impedance much lower than the source’s output
impedance (Fig. 4.1b). For external microwave sources, the typical level for the
output impedance will be that of the available coax technology, typically 50 €.
With on chip Josephson oscillators the typical output impedance is one order
lower. In both cases, it is in practice very tedious to engineer these impedance
levels and our analysis below will show that this forms a severe constraint for
qubit experiments: long decoherence times are in conflict with the wish for local
qubit control and low power levels of the applied microwave signals.

If one uses external microwave sources at room temperature it is harder than
for the quasi DC signals to filter out the high temperature noise. Low effective
temperatures can be achieved by a combination of narrow-band microwave filters

and strong attenuators at low temperatures.

4.4 Relaxation and dephasing from a switching
DC-SQUID

4.4.1 Current-phase relations for the DC-SQUID

The DC-SQUID has two phase degrees of freedom, the gauge-invariant phases 7,
and +, of the junctions. They are related to the supercurrents through the left
and the right junction,

I = (Ieo + BL=) siny,,
I, = (I, — Agw) sin 7,..

(4.13)

Here I, is the average of the critical current of the two junctions. A small
asymmetry in the junctions’ critical currents is accounted for by Al., < I,
(typically a few percent). We will work here with the sum and difference phase
coordinates ¢;,, and ¢,,,, which are related by a linear transformation

— le+’Y'r J—
Pext = Y1 = Peat + Pint
e : (4.14)

Pint = ~ 5 Vr = Peat — Pint

The new phase coordinates are related with the current passing through the
SQUID I, and the circulating current in the SQUID I,

— _ 1
Isq - Il + Ir = Il - Ejsq + IciT

_ L1 _ 1 ’
IciT_ lQT ]r_ §Isq_Ici

(4.15)
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yielding the following current-phase relation for I, and I,
I, = 2I,c08¢;,,sing.;+ Al,sing,,, cos g, (4.16)
Iir = Ising,,, cos@, .. + %AICO COS ;s SIN Py (4.17)
Up to time scales much faster than % the internal phase follows the flux adiabat-

ically , so below we will use

Pimt =T = I (4.18)
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Figure 4.4: Circuit models for the C-shunted DC-SQUID (a) and the RC-shunted
DC-SQUID (b). The SQUID is modeled as an inductance Lj. A shunt circuit, the
superconducting capacitor Cyp or the Rgp-Cyp, series, is fabricated on chip very close to
the SQUID. The noise that couples to the qubit results from Johnson-Nyquist voltage
noise 6V from the circuit’s total impedance Z;. Z; is formed by a parallel combination
of the impedances of the leads Z;, the shunt and the SQUID, such that Z; = (1/2; +
1/(Rsp + 1/iwCip,) + 1/iwL;)~ 1, with Ry, = 0 for (a).

4.4.2 Noise on the qubit from the DC-SQUID resulting
in J(w)

The noise that is induced by the measuring SQUID results from Johnson-Nyquist
noise of the total impedance Z;(w) between the leads that are attached to the
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SQUID. The impedance Z;(w) is formed the SQUID’s impedance in parallel with
the impedance of the wiring and circuitry that the SQUID is connected to (see the
circuit models in Fig. 4.4). At bias currents well below the critical current I the
SQUID can be modeled as an inductor L;. The coupling of ¢,,, to the SQUID’s
inner degree of freedom and thereby to the qubit slightly alter the effective value
for Lj;, but the correction it is so small that it can be neglected. The power
spectrum (8V 6V),, of the Johnson-Nyquist voltage fluctuations 6V across the
SQUID is [41, 34]

(§V 6V, = hwRe{Zy(w)} coth (%) . (4.19)

We will now calculate how this voltage noise leads to fluctuations ¢ of the energy
bias on the qubit. The current-phase relations for I, and I, can be used for
expressing the current fluctuations. The first term of (4.16) gives

dl,,
dt

d 2
= iwlsy = 21, cos f cos @m% = 21, cos f cos @mfv, (4.20)

where we used p,,, for the time average of ¢,,,. With a similar expression for
the second term of (4.16) the current fluctuations in I, are

01sq =~ (21,508 f COS Ppgy — Alosin fsin @py) 0@eqy- (4.21)

The SQUID is usually operated in regions where the average external flux in
its loop is between an integer and half-integer number of ®,. At these points
|cos f| =~ |sin f|. Therefore, the second term in (4.21) can be neglected unless
|10 COS Poge| & |Alosin @, |. That is, it can be neglected unless the bias current
is very high, for which for which sin @_,, approaches 1. For most purposes we can
thus use

01y ~ 21,08 f COS Pyt 0Pugy- (4.22)

This is also used to define L; by expressing

dl
V= [, —% 4.23
such that with (4.20), (4.18) and (4.16) L; should be defined as
1 1
L= n (4.24)

" 2e2l, cos f COS Pyypy - 2_6\/4I§Ocos2f — Ifq'
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For 1. we get a similar expression as (4.21)
1
01 cir = (—Icosin fsin @, + §AICO oS f cOS Poyi) OPeut- (4.25)

Using again that the SQUID is operated where |cos f| ~ [sin f| shows that the
second term in (4.25) can be neglected unless |, Sin @ppy| S [Aleo COS Ppyy|. For
01.;, the second term only plays a role at low bias currents in the SQUID for

which @,,, ~ 0, and for most purposes we can use
0l iy = —Ipsin fsin @, 00 pt- (4.26)

In the above we used @,_,, for the time average of ¢_,,, but at places where it is
not confusing it will be simply denoted as ¢,;.

Both noise in Iy, and I.;, can couple to the qubit, but will assume that the
qubit is mainly sensitive to noise in I (as in the experiments in [9], where
the qubit was placed symmetrically inside the SQUID’s loop) and neglect an
inductive coupling to noise in I,,. For a more general approach, coupling to noise
in I;, can be treated on a similar footing as noise in /., but for all useful sample
geometries it should give a contribution to relaxation and dephasing rates that
is at most on the same order as that of I,,.

With iwél., = —%Iw sin fsin p,,, 6V follows for the fluctuations 67,

2¢\? 1
(6 Lir 8Luir)e = (f) Effo sin? fsin? g, (8V 6V)., . (4.27)

The fluctuations in the imposed qubit flux are 6®, = Mé1.;,, where M the mutual
inductance between the SQUID loop and the qubit loop. This then yields the
fluctuations in the energy bias with de = 21,0®,,

2¢\? 4
(6e be), = (%) EM%[?ICQO sin? fsin? @, (6V 6V).,. (4.28)

Using (4.16) and (4.19) and filling in - = @ this can be written as

B o1 (MLN? .. hw
<68 66>w = h(27T) ; (F()) Isq tan f Re{Zt(w)} coth (m) (429)

The fluctuations (é¢ é¢),, are the result of the coupling to the oscillator bath,
as in (4.4). This can be used to define J(w) for our specific environment,

J(w) =

(2m)* 1 (pr

2
- (Fg) £ Re(io)) (130
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Figure 4.5: A typical Re{Z;(w)} for the C-shunted SQUID (a) and the RC-shunted
SQUID (b), and corresponding J(w) in (c¢) and (d) respectively. For comparison, the
dashed line in (c) shows a simple Ohmic spectrum (4.41) with exponential cut off w./27
= 0.5 GHz and a = 0.00062. The parameters used here are I, = 500 nA and 7' = 30 mK.
The SQUID with 21, = 200 nA is operated at f = 0.75 7 and current biased at 120 nA,
a typical value for switching of the C-shunted circuit (the RC-shunted circuit switches
at higher current values). The mutual inductance M = 8 pH (i. e. %gﬁ = 0.002). The
shunt is Csp = 30 pF and for the RC shunt Rg, = 10 . The leads are modeled by
R; =100 Q.

4.4.3 Relaxation times

With (4.5) and (4.30) follows the SQUID’s contribution to the relaxation rate.
It is here expressed as a function of the resonance frequency wy.; = v/h at which
the qubit is operated,

A/RN? 27) 1 (ML) -
Pr - 1 Iz t 2 7 res th res '
(Wres > 2N Wyres P sq LTl f Re{ t(w )} CO ST

(4.31)

M1\ 2
P

for how strongly the qubit is coupled to the measuring SQUID. A dissipation

In this formula one can recognize a dimensionless factor ( which is a scale
factor in the form I*R can be recognized in I, tan® f Re{Z;(w)}. The dissipation
scales with the absolute value of the current fluctuations, so with I,,, and the
expression is independent of critical current of the SQUID junctions I, (unless
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Re{Z;(w)} depends on I,,). A weak measurement scheme in which the inductive
coupling to a DC-SQUID (M1,/®y)? << 1 can yield relaxation rates that are
very low when compared to a scheme in which leads are directly attached to the
loop [35]. A measurement of such a scheme’s switching current could also be used
for probing the qubit, but the influence of the voltage noise would be dramatically

WwWorse.
6
10 C shunt
4
7
5 1 microwave leads
_ 10°
e ] RC shunt
10° - - -
5 10 15

o /2n (GHz)

Figure 4.6: Typical relaxation times due to the C-shunted SQUID, the RC-shunted
SQUID, and coupling the microwave leads as a function of the resonance frequency at
which the qubit is operated. The example of the microwave leads contribution is for a
mutual inductance M, to the coaxial line of M,,,, = 0.1 pH. Parameters are further

as described in the caption of Fig. 4.5.

With the result (4.31) the relaxation rate for typical sample parameters will
be calculated. Sample parameters similar to our recent experiment [9] are wy..s =
10 GHz, A = 2 GHz, Ag” = 0.002. It is assumed that a SQUID with 2I., =
200 nA is operated at f = 0.75 m and biased near the switching current, at

Iy, = 120 nA. For T' = 30 mK the relaxation rate per Ohm environmental
impedance is then

_ 150 us 2
=1 by — 07 4.32
= R Rz o) (4.32)
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4.4.4 Engineering Re{Z;(w)}

In practice the SQUID’s resolution is improved by building an on-chip electro-
magnetic environment. We will consider here a large superconducting capacitive
shunt (Fig. 4.4a, as in our recent experiment [9]). This scheme will be denoted as
the C-shunted SQUID. As an alternative we will consider a shunt that is a series
combination of a large capacitor and a resistor (Fig. 4.4b). This will be denoted
as the RC-shunted SQUID. The C shunt only makes the effective mass of the
SQUID’s external phase ¢,,, very heavy. The RC' shunt also adds damping at
the plasma frequency of the SQUID, which is needed for realizing a high single-
readout resolution of the SQUID (i. e. for narrow switching-current histograms)
[31]. The total impedance Z;(w) of the two measurement circuits are modeled
as in Fig. 4.4. We assume a perfect current source I;,s that ramps the current
through the SQUID. The fact that the current source is non-ideal, and that the
wiring to the SQUID chip has an impedance is all modeled by the impedance
Z;. We can engineer the wires such that for a very wide frequency range the
impedance Z; is on the order of the vacuum impedance, and can be modeled by
its real part R;. It typically has a value of 100 €2. On chip we have the Josephson
inductance L; in parallel with the shunt circuit (Cyy, or the series combination of
R, and Cgp,). We thus assume that the total impedance Z;(w) can be described
as

-1
1 1 1
7z = — 4.33
t(w) (iwLJ + 1 + Rsh + Rl) ’ ( )

z'wCSh

where R, should be taken zero for the C' shunt scenario.

The circuits in Fig. 4.4 are damped LC resonators. It is clear from (4.5)
and (4.30) that one should keep the LC-resonance frequency wyc = 1/v/L;Cyp,
where Re{Z;(w)} has a maximum, away from the qubit’s resonance w,.s = v/h.
For practical values this requires wic < wyes [For Aluminum technology, with a
Niobium based chip as at MIT can be realized with wjc >> wyes]. This then gives
the circuits a Re{Z;(w)} and J(w) as plotted in Fig. 4.5. For the circuit with the
C' shunt

WL for w K wre
T

Re{Zi(w)} ~ Ry, forw =wre (4.34)
1
w2C% Ry’

for w > wre
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For the circuit with the RC shunt

w2L2
R,J’ for w € wre

Re{Z(w)} ~ SR, forw=w<K Rshlcsh (4.35)
Rl//RSh7 for w = wLec > Rshlcsh

R//Rsn, forw > wic

The difference mainly concerns frequencies w > wyc, where the C-shunted circuit
has a Re{Z;(w)}, and thereby a relaxation rate, that is several orders lower than
for the RC-shunted circuit.

For a C-shunted circuit with wpo < wyes the Re{ Zy(wyes)} ~ m. This

res ' sh

yields for J(w) at w > wi¢

1

J(w) ~
( ) Cgth

(27)° 1 (M Ly (4.36)

2
h w3 ‘130) Ly tan” f

The factor 1/w? provides a natural cut off for J(w) (much of the literature [20, 23]
introduces an artificial cut off to prevent an ultraviolet divergence with an Ohmic

bath). The RC-shunted circuit has softer cut off 1/w. The mixing rate for the
C-shunted circuit is then

(A/h)2 (27T>2 ‘“4 Ip ? 2 2 1 m"-/res
I, ~ I h ) 4.
. — o7 o, s tan® f R, cot (4.37)

res

Fig. 4.6 presents mixing times 7, VS wys for typical sample parameters (here cal-
culated with the non-approximated version of Re{Z;(w)}). With the C-shunted
circuit it seems possible to get 7, values that are very long. They are compatible
with the ramp times of the SQUID, but too slow for fast repetition rates. In
Fig. 4.5 one can directly see from the values of J(w) that an RC-shunted circuit
with otherwise similar parameters yields at w,.s/2m = 10 GHz relaxation times
that are about four orders shorter. For the parameters used here they are in the
range of 15 us. When considering that this does not yet account for the fact that
the switching currents will be higher, and that the corresponding noise properties
will be worse, this seems on the low side.

4.4.5 Comparing the C shunt and the RC shunt scenario

The estimate (4.32) shows that to be on the safe side for reasonable relaxation
rates in a typical measurement scheme, one should have at w,.; an impedance
with Re{Z;(wres)} < 1 Q. It also shows that one could allow for a higher

~Y

Re{Zi(wres)} (and thereby possibly narrower switching current histograms) by
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making M smaller. Taking half the value of M allows for a four times higher
Re{Zi(wres)} (resulting in the same mixing time), but also requires (at fixed his-
togram width) four times more samples (the SQUID resolution is proportional to
the square root of the number of switching events). So, if a higher Re{Z;(wy.s)}
goes along with substantial narrowing of the histograms one can improve the
measurement efficiency. However, the SQUID will then also switch at higher I,
(say at 0.95 instead of 0.7 of the critical current, such that it reduces 7, again,
but only by a factor (%)2 ~ 0.54). Moreover, our description here assumes
noise from a linearized Josephson inductance. This may not be valid for bias cur-
rents close to the critical current, and it seems that the real noise would lead to
stronger dephasing and mixing than estimated here [44, 36] due to noise from the
dynamics of cos ¢ instead of ¢ for the diffusive washboard motion near switch-
ing. An advantage of the RC shunt would be that it will give a better defined
environment experimentally. It is possible to reliably control the values of Cj,
and R, such that one has in a wide frequency range a very well defined and

" zero-fit parameter” environment.

4.4.6 Dephasing times

At low frequencies w < wy,¢ the C-shunted and RC-shunted scheme have Re{Z;(w)} ~

u}2 2 .
=2 such that with (4.30) and (4.7)
Jw) (2m)* [ MI, 2121; QfL3 (438)
~ n -_— .
IR ey ) e Ry
o (MIN\* , ,, L%
~ (=) T iy 4,
ar— ((I)o) sq tan” f z, (4.39)

The environment at low frequencies Ohmic since we have J(w) o w. For our
sample parameters the second term in (4.6) dominates, such that with (4.39) and
for the qubit operated where € ~ v

(27T)2 MI, ’ 2 2, L
My~-—— | —2) It — kgT. 4.40

¢ 72 d sq van f R, B ( )
Note in (4.24) that L; o« 1/I., such that the dephasing rate (4.40) does not
depend on the absolute value of the current, but on the ratio I,,/Ic. For the
typical sample parameters as used in Fig. 4.5 the dephasing time is about 10 ns,
which is too short. However, we can gain a few orders (if I, is low enough) by
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Figure 4.7: The dephasing time (4.40) as a function of the bias current I, through
the SQUID, calculated for a relevant environmental frequency scale wq /27 < 107 Hz
(solid line). The dashed line shows 74 for Iy, = 5 nA, a typical minimum value for the
effective bias current for a SQUID with a few percent asymmetry between its junctions.
At this point 74 = 131 s, and a = 1- 10~7. Parameters are further as described in
the caption of Fig. 4.5.

the fact that we can do the quantum coherent control at low I,, (the previous
estimate was calculated for ,, = 120 nA, in the switching region). At I, = 0 we
find I'y = 0 in this linear approximation for the SQUID inductance. At I, =0
we should therefore estimate the dephasing due to second order terms. However,
in practice the dephasing is probably dominated by the second term in (4.25),
which is due to a small asymmetry in the fabricated SQUID junctions of a few
percent. This influence can be mapped on a small bias current (a few percent
of the critical current, say 5 nA) through the SQUID. Therefore, at I, ~ 0
the dephasing times can be (%)2 times longer. Furthermore, the factor L%, as
defined in (4.24), is at 5 nA about a factor 2 lower than at 120 nA. For our
parameters this allows for 74 ~ 20 us, see also Fig. 4.7. We can also realize R; =
1 k2, work with a somewhat lower M or tune the qubit to = < 1 to get longer

dephasing times.
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4.4.7 Comparison to Ohmic noise spectrum and the in-
fluence of resonance peaks

In the literature on dissipative two-level systems one often assumes Ohmic dissi-
pation, corresponding to a purely resistive shunt across the junctions of the qubit.
For a description of such a system one usually introduces an artificial exponential
cut off at frequency w,, yielding J(w) of the form

J(w) = %wexp(—wic). (4.41)

To be able to relate our results to this literature we plot in Fig. 4.5 such a J(w)
which resembles the J(w) due to the DC-SQUID. For the parameters as in Fig. 4.5
the resemblance is reasonable for a resistive shunt corresponding to a = 0.00062,
and a cut off w. = 0.5 GHz. For low currents, as for the dashed line in Fig. 4.7
a = 1-10"7. This corresponds to an extremely underdamped system, with a
long dephasing time. However, very recent work by Wilhelm et al. [43] studied
dephasing and relaxation rates for a structured environment, and found that the
rates can deviate up to a factor of 50 for typical sample parameters. A detailed
evaluation based on this theory is in progress.

4.4.8 Conclusions for DC-SQUID analysis

Both measurements schemes, with the C-shunted SQUID and the RC-shunted

SQUID, can be engineered to cause relaxation and dephasing rates that are low

enough for experiments on the coherent quantum dynamics of the qubits. The

dependence of the relaxation rates on the factors —— tan? f (for the C' shunt) or

——tan® f (for the C shunt) allow for in situ CheCkiIle of theory for I',., unless it is

dominated by other contributions (e. g. the on-chip control lines) The dependence
£

on the factor (;)2 I fq tan? f T gives several knobs for in situ checking of theory
for I'y, in a situation where this rate dominates the dephasing.
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Figure 4.8: Circuit model for coaxial line that is inductively coupled to the qubit.
The coaxial line is modeled as a 50 €2 impedance that is shorted near the qubit with an
inductance L,,,. The qubit is coupled to this short with a mutual inductance My,,.
The noise that couples to the qubit results from Johnson-Nyquist voltage noise 6V
from the circuit’s total impedance Z;, formed by a parallel combination of the 50 €2

impedance and L,,.

4.5 Relaxation and dephasing from on-chip con-

trol circuits

4.5.1 Dephasing and relaxation times due to the microwave

leads

We will treat here the influence of noise from the microwave leads in a similar
way as worked out for the SQUID. Here the total environmental impedance Z;(w)
is formed by a 50 €2 coax, that is shorted at the end by a small inductance L,,,,
see the circuit model in Fig. 4.8. This inductance L,,, has a mutual inductance
My to the qubit. The voltage noise is given by (4.19). The noise leads to
fluctuations ¢ of the energy bias separation ¢ as follows. The current noise in Ly,
is 61, = —~—6V. The qubit fluctuations in the flux ®, are then 6@, = M,,,,011,

1w Lmaw

and the fluctuations in the energy bias are é¢ = 21,6®,. This gives for the

fluctuations (e d¢).,

A [ My, \ hw
and for the environmental spectral density (4.4) is now
4 ( Myl
J(w) = " ( T ) Re{Z;(w)}. (4.43)

The Re{Z;(w)} is that of a first order low-pass LR filter with a -3 dB frequency
wrr = R/L. For the L,,, to be effectively a short its impedance wL,,, should
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be small compared to 50 €2 at the frequency of the applied microwave radiation
(typically 10 GHz), giving L,,, < 1nH. This can be realized by making the
length of the short line less than about 100 pum. This means that all relevant
frequencies are below the -3 dB frequency w; g, and that for both relaxation and
dephasing we can approximate

w?L?
with R, = 50, For w < wpg, J(w) is again Ohmic,
4w (M 1,)?
J(w) = ——2=F 4.45
() = el (4.85
and with (4.7) we find for «
4 (M)
N — 4.4
o R (4.46)

Note that these results are independent of L,,,. A larger L,,, leads to enhanced
voltage noise, but the resulting current noise is reduced by the same factor. For
frequencies below wyr the current noise is just that of a shorted 50 €2 resistor.
For frequencies higher than w;z, Re{Z;(w)} = Ry, such that J(w) has a very
soft intrinsic 1/w cut off.

For the relaxation rate (4.5) as a function of the qubit’s resonance frequency

Wres W NOW have

A2 (Myp1,)? Rwres
~ h . 4.4
P B R cot ( ST T> (4.47)

This has a much weaker dependence on w,., than for the SQUID, results are
plotted in Fig. 4.6. The results are plotted for M,,, = 0.1 pH (further parameters
as used for the SQUID calculations) and for this M,,, value the relaxation times
are in the required range of about 100 us. The value M,,,, ~ 0.1 pH corresponds to
a b pum loop at about 25 pum distance from the microwave line, and is compatible
with the fabrication possibilities and the microwave requirements. With this
geometry it is still possible to apply enough microwave power for pumping the

qubit’s Rabi dynamics at 100 MHz (i. e. pumping with an oscillating ®, of about

0.001 P9 ~_
Mmw

20nW, i. e. —47dBm microwave power), while the dissipated microwave power

0.001 @y, so with an oscillating current of 20 nA, corresponding to

in the attenuators at the mixing chamber remains well below 1 yW.
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For the second term of the dephasing rate (4.6) we thus find for the qubit
operated where ¢ ~ v

4 (Mo,
Iy~ ——2 P [T 4.48
TR Rpw ¢ (4.48)
This is for all frequencies w < wrr independent of some relevant frequency scale
wq. Using the same parameters as in the above calculation of the relaxation time

we find @ ~ 1-1077 and with 7 = 30 mK
Iy~ 126 ps. (4.49)

This is a very reasonable dephasing time for the first experiments. For the long
term quantum computation goals this seems on the short side, and we have
little parameters to play with! It in practice quite tedious to apply microwave
technology with impedance levels much higher than 50 €2, both for externally
generated microwaves and on chip generators (it could for instance be increased
using a planar transformer [37]). For our initial experiments, simplest option then
seems to make M,,,, very small. This, however, also requires higher microwave
currents, and thereby more microwave dissipation on the mixing chamber. The
cooling power per qubit will quite likely remain below 1 W, so much stronger
microwave signals from a larger distance is not an option. Moreover, making
M,y very small means that the control line is 100pum or further away from the
qubit. It is then much harder to apply microwaves very locally to one specific
qubit on a chip with several coupled qubits.

4.5.2 Conclusions for microwave dephasing and relaxation

Local control, an important advantage for the microfabricated qubit, is very hard
to realize when low-impedance control lines are used. However, for layouts that
can be used in the first experiments, I', and I'; have very promising values. The
estimate for I',. is more robust than the estimate from the DC-SQUID analysis.
This can be for engineering a reliable I',., when the I',. from a C-shunted SQUID,

for example, is very low.

4.6 Suppressing rates by freezing states and idle

states

Bringing the qubit in an idle state (¢ = 0) [15] can reduce dephasing, but not
beyond I',.. Also, at ¢ = 0, I, can be enhanced.
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Figure 4.9: Numerically simulated suppression of A in qubits where one (solid) or
three (dashed) of the junctions are realized as small DC-SQUIDs. The horizontal axis

is the factor by which the Josephson energy of the relevant junctions is increased.

Freezing the qubit before measurement with a fast but adiabatic control cur-
rent allows for much slower measurements, thus for weaker coupling to a damped
SQUID with very high resolution. Moreover, it has the advantage that the tun-
nel coupling becomes so week that the Hamiltonian almost commutes with o,.
This can improve the correlation between the outcome of o, measurements, and
energy states in the case that the calculation states are energy eigen states. How-
ever, freezing requires that the qubit junctions are realized as small DC-SQUID’s.
This means that o, noise will be strongly enhanced. The Grifoni paper assumes
dominant o, noise, so this may then no longer be valid. See also Fig. 4.9 for
numerical estimates on the possible adiabatic suppression of A.

4.7 Discussion

We observed in our last experiment (Chapter 3)that 7, < 10 us for w,es/2m ~ 6
GHz. This was checked by giving microwaves pulses of a few microseconds before
the bias current reached the histogram. This barely agrees with an estimate
using the theory presented here (only when one assumes that Cyj, was a bit lower
than estimated, say 1 pF instead of the estimates 2 pF, and that the resistors
in the leads were not very effective at 6 GHz, such that R, was 100 €2 instead
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of 2 kQ, the theory gives 7, in the range of 10 us). New experiments that
are running at the moment of this writing, have pulsed microwave control with
nanosecond resolution. Preliminary results indicate that the relaxation time is
a few microseconds. With the theory in this chapter, we estimated a relaxation
time longer than 100 microseconds for the current sample parameters. However,
in this new experiment we also found that uncontrolled oscillations were present
in the signal wires connected to the input of the amplifying electronics. After
reducing these effects, the relaxation time increased by a factor of six. Further
studies need to be made before conclusions can be reached.

The theory itself is also still in development. We already mentioned the efforts
of Wilhelm et al. [43], aimed at analyzing rates for a structured environment
(i. e. a sharply peaked J(w)). Furthermore, it is not clear whether the impedance
can be described by a single temperature. At low frequencies, noise from parts
in the system with a higher temperature can reach the sample.

Taken this all together, suggests that it is wise to design for 7, which is on the
high side of the required 100 ps. This is very well possible with the C' shunt (but
then one needs a second mechanism to avoid too slow relaxation, for example
from coupling to the microwave lines). With the RC' shunt it is only possible in
combination with for example a reduction of M.
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Chapter 5

Controlled single-Cooper-pair
charging effects in a small
Josephson junction array

Abstract

We report on measurements of single-Cooper-pair charging effects in
small Josephson junction arrays, and the experimental techniques that
were used. We succeeded in having complete control over the array’s elec-
trostatic parameters; offset charges were accurately compensated, and the
poisoning of 2e-periodic effects by quasiparticles was circumvented. This
allowed for a controlled study of the array’s coherent ground state. A few
measurements gave results which were not fully 2e-periodic due to inter-
esting parity effects. The arrays are in the regime where the energy scales
for the Josephson effect and single-charge effects are comparable.

5.1 Introduction

Josephson junction arrays consist of small superconducting islands that are con-
nected by tunnel junctions. In arrays of junctions with a very small capacitance
C, single-charge effects play an important role [1]; fluctuations in the number of
excess Cooper pairs on the islands are suppressed by the Coulomb charging energy
of the islands. In the regime where the energy scale for the single-charge effects
Ec=e?/2C is comparable to the Josephson energy E; of the junctions, several
macroscopic quantum phenomena have been observed [2, 3, 4, 5, 6]. These are a

This chapter is based on Ref. 1 on p. 111.
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consequence of the conjugation relations between the array’s macroscopic charge
and phase variables.

In the regime with E;~F., a quantum mechanical description of the array
is needed. The macroscopic ground state can be described as a coherent super-
position of charge configurations with a well-defined number of excess Cooper
pairs on each island [3, 7]. In systems with only a few islands, the electrostatic
energy of each of the charge configurations can be controlled by means of gate
electrodes that are capacitively connected to the islands. It is then possible to
control the form of the ground state. In superconducting double-junction circuits,
a 2e-periodic modulation of the maximum supercurrent that can flow through the
circuit has been observed [3, 4]. Van Oudenaarden has observed a 2e-periodic
superconductor to Mott-insulator transition in a linear array with six islands [6].

In practice, two phenomena hamper a controlled study of the coherent su-
perposition of charge configurations. One is the presence of background charges;
each island is polarized by a random offset charge, caused by, e. g., impurities in
the underlying substrate. Also, parity effects can be a problem; the presence of
quasiparticles in the circuit suppresses the formation of a coherent ground state
[3, 8]. The offset charges must be compensated by gate-induced charges, and the
presence of quasiparticles needs to be circumvented.

In this chapter we present experimental results from measuring single-charge
effects in small Josephson junction arrays, with complete control over the electro-
static parameters. Results were 2e-periodic in the induced gate charges (Fig. 5.1a).
Along with results we report on the experimental techniques that were used. The
array was designed for studying charge-fluxoid duality [7]. Experimental results
in light of these phenomena will be presented in the next chapter, see also [9]. The
arrays consist of two small superconducting islands connected to each other and
to macroscopic leads by small Josephson junctions with E; < E¢ (Figs. 5.3 and
5.4). The voltage V, on capacitively connected gates controls the gate-induced
charge n,=C,V,/2e (this definition assumes that offset charges have been com-
pensated already). Another control parameter for the array is the magnetic flux
® threading the loops, but in this chapter we will focus on charging effects and
limit ourselves to the case with ®=0. We performed measurements on five dif-
ferent arrays (Table 5.1). The arrays were studied by measuring the maximum
supercurrent that can flow through the array, called the switching current.
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5.2 Fabrication and experimental setup

The arrays with Al-Al,O3-Al junctions of about (100 nm)? were fabricated with
standard e-beam lithography in a double-layer resist and shadow evaporation
techniques [10, 11]. Two successive aluminum layers were deposited (35 and 55
nm) on thermally oxidized Si substrates by e-beam evaporation. We used alu-
minum of 0.9999 purity or higher, and evaporated in a vacuum below 107 mbar

(nA)

Figure 5.1: The switching current Igy as a function of charge frustration. a) Results
of 2000 individual switch events measured while slowly sweeping the induced charge
ng=CyVy/2e on both gates simultaneously (array 3, =0, T=70 mK). b) Results of
20000 individual switch events. Three levels appear due to parity effects, i. e., quasi-
particles in the array (array 1, ®=0, T=10 mK). c¢) Numerical simulations of the
array’s critical current I versus ng (I¢ in units of Iog=(2¢/h)Ej ), based on [7], with
E;/Ec=0.5. Trace I is for the (even—even) parity configuration, II is for (odd-odd),
III is for (odd—even) and (even—odd).
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(nA)
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Figure 5.2: Current-voltage characteristic (IV') measured on array 1. The bias current
Tyigs where the array switches from the zero-voltage branch to a finite voltage is the

switching current Igy . Arrows indicate the direction of the hysteretic cycle in the I'V.
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Figure 5.3: Schematic of the Josephson junction array. Two small superconducting
electrodes are coupled to each other and to leads by small tunnel junctions. The
junctions have equal Josephson coupling E; and capacitance C. The voltage V, on
capacitively connected gates controls the gate-induced charge. The bias current Ipqs

is injected via macroscopic leads. A magnetic flux ® can be applied to the loops.

(below 107% mbar during evaporation). The tunnel barriers were formed by ex-
posing the first aluminum layer at room temperature to ~0.1 mbar of pure O for
5 min. The on-chip leads and pads for bonding were also made of aluminum and
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deposited in this evaporation step. On arrays 2 and 3 we successively fabricated
with a second lithography and evaporation step (60 nm SiO, 5 nm Ti, 25 nm
Au) an on-chip C RC-network that was shunting the array. The layout was such
that there was in the direct vicinity of the array an overlap of (140 pm)? with
the array’s bias leads on both sides. These two gold pads were connected by a
200-pm-long, 0.3-pm-wide gold line, which had a resistance of 3 k(2 at milliKelvin
temperatures. The parallel plate capacitors had each a capacitance of about 10
pF [11]. This shunt network dissipates voltage oscillations created by the array
at frequencies above ~0.1 GHz, and is crucial for a clear observation of the zero-
voltage supercurrent branch at low effective Josephson coupling [3]. With arrays
4 and 5, which did not have an on-chip C'RC-environment, premature switching
from the zero-voltage state occurred below 10 pA. These results were too noisy
for observing charging effects.

The gates were surrounded by a grounded guard structure (Fig. 5.4a) to reduce
the cross-capacitance between a gate electrode and the island on the other side
of the array. With grounded guards the cross-capacitance was about 0.1 Cj. In
a measurement where the guard was not grounded, but at the same potential as
the gate electrode, the cross-capacitance was higher by a factor of 3.

Measurements on the arrays were performed in a dilution refrigerator with a
base temperature below 10 mK. The samples were mounted on the cold finger
in a microwave-tight copper box, surrounded by a sequence of low-temperature
shields. All wires to the samples were filtered by copper powder filters at base
temperature, and rfi-feedthrough filters at room temperature. The switching
current was measured in a four-point setup. It was probed by dedicated low-noise
electronics which ramps a bias current through the array, and records the value
of the current at which the system switches from the zero-voltage supercurrent
branch to a finite voltage. After switching the current is reduced to zero. A
typical value for the ramp rate of the current was 10 nA/ms, at a repetition
rate of 20 Hz. The voltage probes for the four-point wiring were connected on
chip in the direct vicinity of the array (Fig. 5.4a). Voltages were amplified 20000
times by a battery-powered pre-amplifier in series with the dedicated electronics.
With a noise floor of 0.4 4V RMS, the reference voltage for switching was set
to 2 uV. The gates were connected via 1:100 voltage dividers at the mixing
chamber (total resistance 1 MQ), with a 150-Hz low-pass RC-filter). Additional
optically decoupled 1:1 isolation amplifiers and 1 Hz low-pass RC-filters at room
temperature improved the results of switching current measurements significantly
(higher level, less scatter, and less parity effects).
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5.3 Superconducting single-charge effects

Figure 5.1a shows a single period of the 2e-periodic modulation of the switching
current that we observed in arrays 2 and 3. The observed modulation is in very
close agreement with results of numerical simulations (as level I in Fig. 5.1c,
but with E;/Es as estimated for array 3), based on a quantum description of
the array in the charge basis [7]. The presence of quasiparticles was successfully
circumvented and, as will be discussed below, offset charges were compensated
to within 0.01 of a 2e gate charge. Offset charges remained stable on a time
scale of hours. This allowed for a study of the switching current while sweeping
through the entire V-V, o-plane, and peak positions measured on arrays 2 and
3 demonstrated a clear honeycomb structure with a fundamental period of 2e.

Figure 5.4: SEM-graphs of the array. In a) the two islands are in the center. From
the top-left and bottom-right, leads are connected in a four-point setup. Two gate elec-
trodes approach the array from the top-right and bottom-left, surrounded by grounded
guard electrodes. The graphs below illustrate the difference in island shape between
arrays 2 and 3 (graph b)), and arrays 1, 4 and 5 (graph c)).
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Results from array 1, however (Fig. 5.1b), suffer from parity effects. We observed
three distinct levels in the switching current as a function of gate charge, which
we can relate to the presence of quasiparticles in the array. The array has two
islands that can each have an even or odd charge state, giving four different
parity configurations for the entire array. As illustrated in Fig. 5.1c, the presence
of a quasiparticle on one of the islands is effectively the same as applying a gate
charge of e. Level I (even—even) in Fig. 5.1b and 1c is equal to level II (odd—odd)
shifted over a distance e. Level III is for the parity configurations (even—odd)
and (odd—even). This interpretation was confirmed by measurements where both
gates were swept simultaneously, but with a constant offset between ny; and ng.
Level I1I then split up into two different levels, again in very close agreement with
simulations. The Saclay group observed very similar quasiparticle phenomena in
an array with the same layout [12]. For each individual measurement of the
switching current, the probability of finding the array in one of the four parity
configurations was approximately equal. This indicates an interesting interplay
between the measurement time scales and the time scales at which the parity
of the array changes. It was indeed observed that the probability for measuring
high levels of the switching current decreased with decreasing ramp rate of the
bias current [12, 13].

Figure 5.5 illustrates how some parity effects remained present in arrays 2
and 3. Mostly around gate charges corresponding to ng:%, the switching cur-
rent was sometimes jumping between two distinct levels. The jumps were often
to a value that corresponds to the level of the switching current at exactly e
shifted in gate charge (Fig. 5.5c¢). Moreover, measurements in the normal state
(superconductivity suppressed with a 1-T magnetic field) showed that the back-
ground charges were very quiet on the time scale of these jumps. This proves
that jumps are due to parity effects, and not to random changes of offset charges
in the background. An important difference with the parity effects of Fig. 5.1b
is that the parity of the islands remains unchanged over many sequential switch
events (Figs. 5.5b and 5.5¢). Note that for each individual point in the traces of
Figs. 5.1 and 5.5, the voltage over the array switched to the superconducting gap
2A/e. After each switch event, many quasiparticles are thus created in the array
for a short time, but the parity configuration is usually not affected. This indi-
cates that the parity effects involve tunneling of conduction electrons to localized
states on the islands. This mechanism for parity effects was proposed by Eiles et
al. after observing infrequent jumps of exactly e in the gate-charge dependence
of a normal-superconductor-normal double junction circuit [14].
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Figure 5.5: The switching current Igy, versus Vg1, with gate 2 at nge~0. The Vj;
voltage window corresponds to a gate charge of 2e. In a), 2e-periodicity is not disturbed
by quasiparticles (array 3, =0, T=70 mK). In b) and c) 2e-periodicity is disturbed
by a quasiparticle jumping onto island 1, which results in two distinct levels in Igy
(array 2, ®=0 ®¢, T=30 mK). Graph c) illustrates that the additional level in Igy is
equal to the undisturbed level shifted over a distance e (4 mV).

The parity effects presented in Figs. 5.1b and 5.5 had a very weak temperature
dependence up to T'~150mK. In array 3, e. g., the presence of quasiparticles in
the array decreased when raising the temperature from 10 to 70 mK. Raising
the temperature further, the parity effects changed drastically at T*~150 mK, in
agreement with the odd—even free-energy model of Tuominen et al. [15, 16]. Here
poisoning by thermally excited quasiparticles becomes dominant. The switching
current turned e-periodic, and had much lower values. Also, the switching results
had large scatter, instead of one or more distinct levels. To avoid quasiparticles in
the system it is crucial to have the charging energy of the islands (~ F¢/3) lower
than the odd—even free energy difference D [15, 16]. At milliKelvin temperatures
and for aluminum islands with dimensions as in Fig. 5.4, D~A. Even though this
requirement was satisfied in all the arrays (Table 5.1), the results of array 1 were
strongly influenced by the parity effects, and also in arrays 2 and 3 some of the
parity effects were observed. The argument that the occupation of odd charge
states is very unlikely for F¢/3 < A assumes that the small superconducting
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islands have a perfect BCS-gap. For small islands, however, it is hard to predict
what the influence is of boundaries and impurities on the formation of the BCS-
gap [17]. The islands in Fig. 5.4c have a thickness and width not much larger than
the grain size of the evaporated aluminum. Also, due to the shadow evaporation
technique, the island consists in fact of two islands on top of each other, connected
by a very large tunnel junction [18]. In practice this may lead to quasiparticle
states within the gap. For this reason, we changed the design of the islands for
arrays 2 and 3 after the measurements on array 1.

The design of the island was changed from the branched structure of Fig. 5.4c
(also the island shape of the device in Ref. [12], with parity effects) to the lumped
shaped of Fig. 5.4b (also the island shape of the six-island arrays of Ref. [6], with
little parity effects). This was done at the cost of a lower odd—even free-energy
difference D due to the larger island volume. We found that in arrays 2 and 3 the
quasiparticle presence was almost fully suppressed. This is an indication that the
shape of mesoscopic islands plays a role in avoiding poisoning by quasiparticles.
However, we cannot rule out that the on-chip C' RC-environment in arrays 2 and
3 has influenced the relaxation rates for quasiparticles. We also cannot rule out
that uncontrolled microscopic differences in the materials, e. g., impurities, have
played a crucial role (array 1 was evaporated in a different setup than the other
arrays).

The unexpected temperature dependence of quasiparticle poisoining was ob-
served much more pronounced in later experiments in our group. In a linear
Josephson junction array with six islands [5] and in superconducting double-
junction circuits with a single island [19], 2e periodic behavior of the switching
current was observed at temperatures around 100 mK. However, below 70 mK
the switching current turned to e periodic behavior. This phenomena is not yet
understood.

We developed a computer-controlled method which accurately compensates
the offset charges, usually in a few minutes. We calibrated our gate charges by
searching for gate values that give a minimum switching current for both gates
simultaneously. This corresponds to finding the minimum in the honeycomb peak
structure in a Vj;—Vjo-plane of 2e by 2e. This was done in an iterative manner
since the islands are capacitively coupled, and because of the presence of the
small cross-capacitance. The gate capacitance of each island was determined
accurately, such that we could sequentially sweep the voltage on one of the gates
over a window corresponding to exactly 2e. After the sweep the gate was left at
the value for which the minimum in the switching current was found. When one
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Array | Ejy Ec E;/Ec A C, | CRC- | Filters and | e/2e
(ueV) | (ueV) (ueV) | (aF) | shunt | shielding
1 71 1.5-10? 0.5 198 33 no ILand IT | e/2e
2 31 1.4-10? 0.2 208 40 yes II 2e
3 30 1.5-10? 0.2 209 40 yes II 2e
4 16 1.8 1072 0.1 223 80 no II -
) 15 1.9-10? 0.1 220 80 no II -

Table 5.1: Properties of arrays 1-5. E; was estimated from experimentally determined
values of the tunnel resistance R and the gap A, using E;=hA/8¢*R. R and E¢ were
estimated from the differential resistance and the voltage offset in the high-bias IV
[20]. A was directly measured in the low-bias IV. C; was estimated from Coulomb
oscillations in the normal state (applying a 1-T magnetic field) to avoid ambiguity
about e or 2e-periodicity. The last columns indicate the presence of an on-chip CRC
shunt-network, what copper powder filter and shielding set was used, and whether
results were e or 2e-periodic. Filter set II proved effective for obtaining 2e-periodicity

from these measurements. Set I proved effective in the measurements of [4].

gate was at n,~0, the modulation of the switching current by the other gate was
as in Fig. 5.5a. We determined the minimum by searching for the maximum in
the cross-correlation o[j| between the data and a phenomenological peak shape
exp(—3.5]i — N/2|/N), where

aljl= Zfsw(‘/g{i] = Vorsld]) - exp(=3.5]i = N/2|/N).

Here N is the number of measured switch events while sweeping over the 2e-
period, and 7 is an index for the sequence of measured Igy at gate voltage V,[i].
The index j is the running shift variable for the cross-correlation. The data
set Igy is shifted modulo the 2e gate-voltage window. We used N=1000. The
advantage of this method is that it makes optimal use of all N measurements of a
stochastic variable. Also, the method is very robust against a moderate presence
of parity effects, as in Fig. 5.5b. We considered the offset charges successfully
tuned away when the same offset voltages were found in five successive iteration
steps. The criterion here was that the standard deviation of the five results
was less then 0.01 of a 2e-period. This accuracy was confirmed by independent
observations from sweeping the gates over very long intervals.

In summary, we succeeded in measuring 2e-periodic single-charge effects in
a small Josephson junction array. The presence of quasiparticles in the array
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was successfully suppressed in a few of the arrays. Our results indicate that
processes on a long time scale, in which conduction electrons can be trapped in
localized states in the islands, play an important role in the origin of parity effects
in small superconducting islands. We developed a computer-controlled method
which accurately compensates offset charges in the array.

We thank M. H. Devoret, P. Hadley, P. Lafarge and A. van Oudenaarden
for stimulating discussions. This work was supported financially by the Dutch
Foundation for Fundamental Research on Matter (FOM).
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Chapter 6

Dual Charge and Vortex Superpositions
in a Small Josephson Junction Array

Abstract

We studied the ground state of a small two-dimensional array of Joseph-
son junctions, in which the charging energy is comparable to the Josephson
coupling energy. Measurements of the array’s critical supercurrent demon-
strate that dual charge and vortex superpositions coexist in the array.

6.1 Introduction

Josephson junction arrays with underdamped low-capacitance junctions are model
systems with non-commuting phase and number variables. The Josephson effect
and single-charge effects have a competing influence on the array’s ground state.
We present an experiment on a small two-dimensional array that has a self-dual
geometry: It can be described as two coupled islands with a high charging energy,
but also as two coupled loops that can each contain a vortex (Fig. 6.1a). We suc-
ceeded in having experimental control over all magnetic and charge frustrations
(Fig. 6.2). This allowed for a study of the array’s quantum mechanical ground
state, and our results demonstrate that charge and vortex superpositions occur
in the array in a dual fashion.

We measured the array’s critical supercurrent as a function of charge and
magnetic frustration, symmetrically applied to both islands or loops. The charge
frustration n, of the two islands was controlled with capacitively coupled gate

This chapter is based on Ref. 9 on p. 111.
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Figure 6.1: a) Schematic of the array. The Josephson junctions are modelled by
the parallel combinations of the Josephson tunnel element (cross) and the junction
capacitance. A bias current Ip,s can be injected from macroscopic leads. b) The
array’s electrostatic energy vs. ng (solid). The dashed lines are examples of eigen
energies calculated for Ej/Ec = 0.05, f = 0 and [pes = 0. c¢) The array’s total
Josephson energy vs. f (solid). The dashed lines are eigen energies calculated for
Ej/Ec =2,ny =0 and Ijes = 0. The arrows show that the distance between the level
crossings is larger for the quantum levels. In d) and e) the total Josephson energy U
vs. ¢ and s, on the same gray scale (black is low Uj;). The plots are for f = 0.364,
Ihias =0, and 6 =0 (d), and 6 = 7 (e).

electrodes. The array’s magnetic frustration f = ®/®, was set by applying a
magnetic flux ® to the loops (®g is the flux quantum). The critical current as
a function of n, showed a periodic modulation with two maximums per period
(Fig. 6.3a). The period corresponds to inducing a charge 2e on the islands.
As a function of f we observed a periodic modulation with two minimums per
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period (Fig. 6.3b), and the period corresponds to applying a flux quantum to each
loop. In the n, window between the maximums in Fig. 6.3a, the array has two
different but degenerate charge configurations that are stable (one excess Cooper
pair on the top island, or one on the bottom island in Fig. 6.1a). Similarly, in
the f window between the minimums in Fig. 6.3b the array has two different
stable phase configurations (a vortex in the left or the right loop), that are also
degenerate. We will show that a study of the positions of the maximums and
minimums in the critical current (Fig. 6.4) yields information about the array’s
ground state, and that this can be used to demonstrate superpositions of the
degenerate charge and vortex states.

Until now superposition states have only been demonstrated in the most rudi-
mental Josephson junction systems. Superpositions of single-charge states have
been observed in systems with a single island [1, 2, 3], but such systems do
not have multiple stable vortex configurations. In single loops with Josephson
junctions, superpositions of persistent-current states have been demonstrated [4],
but these systems are insensitive to the background charges and the two current
states do not correspond to vortices at different geometric positions in an array.
Our array has both charge and vortex characteristics, and our experiment links
superconducting single-charge effects with vortex physics in larger arrays. In
these larger systems, a small magnetic field induces vortices that behave as par-
ticles. The array’s total Josephson energy is minimized for a certain distribution
of vortices, where each vortex has a well-defined position. The charging energy,
on the other hand, favors a state with a well-defined number of Cooper pairs
on each island, in which the charges are localized and the junction phases have
large quantum fluctuations. Background charges polarize each island, and this
determines which Cooper-pair distribution has the lowest energy. The duality be-
tween these two pictures has drawn much attention (for a recent review see [5]). It
has been supported by the observation of superconductor-to-insulator transitions,
and several localization and quantum-interference effects in two-dimensional and
quasi-one-dimensional arrays [5]. However, these studies have been limited by
the fact that the charging effects could not be fully controlled: The background
charges are in practice strongly disordered, and charge configurations with un-
paired quasiparticles usually play a role.
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6.2 Description of the array

We present results from three arrays, denoted by 1-3 (the same arrays and num-
bering as in Ref. [6], where experimental details have been reported). The islands
are coupled to each other and to macroscopic leads by identical junctions that
have Josephson coupling F; = %Iw and charging energy E¢c = €2/2C (where I,
the critical current and C' the capacitance of the junctions). We estimated E;
and F¢ from the current-voltage characteristic and electron-microscope inspec-
tion [6]. Microwave spectroscopy yielded a better estimate for C' for arrays 2 and
3 [7]. Array 1 had E; = 71 eV and E;/Ec = 0.48 £ 0.1. Array 2 and array
3 (fabricated on the same chip and nominally identical) had E; = 31 ueV and
E;/Ec =0.27+0.03. Measurements on array 3 were most accurate, and we will
emphasize these results.

The arrays had Al-Al,O3-Al tunnel junctions and were fabricated with e-beam
lithography and shadow-evaporation techniques. The junctions had an area of
about 0.015 um? and C ~ 0.7fF. The loops had an area of 1 um?. Measurements
were carried out in a dilution refrigerator with rfi-feedthrough filters at room
temperature and copper-powder filters at the temperature of the sample (10—
70 mK). The arrays were current-biased (Ipies) in a low-impedance environment
with a small but non-vanishing damping. The current-voltage characteristic had a
clear supercurrent branch (Fig. 6.2a) , and the bias current Iy where it switches
from the supercurrent branch was used as a measure for the theoretical value of
the array’s critical supercurrent I [1].

Measurements of Isy, as a function of the voltages on the two gate electrodes
showed a modulation that was 2e periodic in the induced charges (Fig. 6.2b).
This shows that unwanted parity effects from unpaired quasiparticles were almost
completely suppressed [6]. Previous studies of small two-dimensional arrays were
hindered by these parity effects [8]. The observed honeycomb pattern in Fig. 6.2b
was used to tune the gates to values where they compensate the influence of
background charges in the tunnel barriers or the substrate with an accuracy of
about 1% [6]. The charge frustration n, is thus defined as n, = Cy(V, =V, sf)/2e,
where C; < C the gate capacitance, V; the voltage on the gate electrode, and
Vors the gate voltage that compensates the influence of background charges. We
will concentrate here on symmetrically polarized islands, ng; = n42, denoted by
ng. The critical current is periodic with period 1 in f and ny, and we will therefore

restrict ourselves to frustration values between 0 and 1.

The array’s Hamiltonian is the sum of the Josephson and electrostatic energies
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Figure 6.2: a) Current-voltage characteristic measured on array 3. Arrows indicate
the direction of the hysteretic cycle. b) Gray scale plot of switching currents Iy
vs. gate voltages V;; and Vo, measured with f = 0 and 7' = 70mK on array 3 (black
is 0 nA, white is 6 nA, 250,000 switching events). The Igy modulation is 2e periodic
in the induced gate charges.

and has been worked out by Lafarge et al. [9]. The two loops have a very small
self inductance, such that the fluxoid-quantization conditions for each loop act as
constraints on the junctions’ gauge-invariant phase coordinates ;. The system
has three degrees of freedom and we use generalized coordinates that are sum and
difference coordinates of the junction phases: ¢, = £(v; — 7), @2 = 3(¥3 — V4)
and 6 = £(7; 4+ 7, + 73 +74), with the junctions numbered as in Fig. 6.1a (the
direction of positive current is in each branch from left to right or from top to
bottom). These variables have conjugate charge coordinates with commutation
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relations [pq,n1] = 1, [p,,no] = ¢ and [0, k] = i. Here n; and ny are the number
of excess Cooper pairs on the top and bottom island respectively, and k is the
number of Cooper pairs that has been transferred through the array. The phase
6 can thus be considered as the phase difference across the array, and ¢, and
5 can be considered the phases of the two islands. The array’s low-impedance
environment with small damping causes ¢ to behave like a classical phase coor-
dinate. The island coordinates have underdamped dynamics, and due to the low

island capacitance both the charges (n;, ny) and the phases (¢, ) are quan-
2¢ OF

o
array’s ground-state energy. Io is the maximum of [;,; with respect to §, and a

tum variables. The bias current is related to 6 by Iy, = where E is the

measurement, of I thus provides information about the ground state.

6.3 Results

Measurements of Igy as a function of n, (Fig. 6.3a) show a minimum at n, = 0.
At this point the array’s electrostatic free energy E,; is lowest for the charge state
|ni,ng) = 10,0) (if the array is in the zero-voltage state it is independent of k).
This state is coupled to consecutive charge states, which allows for a supercurrent
to flow. However, other charge states have a higher F,; (Fig. 6.1b), and charge
fluctuations are suppressed. Here the Coulomb blockade of the supercurrent
[10, 1, 2] is most effective and causes the minimum in Igy,. When increasing n,
from 0 to 1, the charge state with lowest E; is first |0,0), then |0,1) and |1,0)

(degenerate), and near n, = 1 it is |1, 1) (solid lines in Fig. 6.1b). For C; <« C the
3
8
effects are minimal and there are maximums in Igy. More interestingly, near

transitions are at n, = £ and n, = %. Near these points the Coulomb blockade
the maximums the array switches from having a single state |n;,ny) with the
lowest E,;, to a situation where two degenerate charge states have the lowest
E.;. The ground state should be very sensitive to such a transition since it is a
superposition of states |ni, ng) with the highest amplitudes for the |n;, ny) with
lowest E,; [10, 1, 2].

We observed that the positions of the maximums in Igy versus n, depend
on f. The positions of the maximums are the result of a competition between
two effects. For n, values around n, = %, the ground state is close to the form
(10,1) +[1,0))/v/2, and has an eigen energy that is about E;/2 lower than F,
due to the coupling of the central junction. Increasing E; of the central junction
results therefore in a larger n, window where the ground state is of this form,
and the distance between the maximums becomes larger as well. On the other



6.3 Results 91

Figure 6.3: a) Isw vs. ng, for (top to bottom) f =0 to f = 0.5 in steps of 0.1 (data
7nA, 5.5 nA, 5 nA, 5 nA, 3 nA and no offset). b) Isy vs. f, for ng = 0.36 (top, 0.25

nA offset) and ny = 0 (bottom, no offset). Data from array 3. The data points with

low Isyw where ng ~ % and f ~ % are due to residual parity effects [6]. Data points for

very low Igy are absent since they could not be recorded, T' = 70mK. In c¢) and d)
simulated I in units of I, for E;/Ex = 0.27. Solid lines in c) are for (top to bottom)
f=0,0.1, 0.2, 0.3, and dashed (bottom to top, -0.05 offset) for f = 0.4, 0.5. In d)
curves for ny = 0 (bottom) and 0.36 (top, 0.05 offset).

hand, these two charge state are also coupled to the |0,0) and |1,1) states by

the junctions 1-4. This results in the level repulsion at n, = % and n, = g,

in Fig. 6.1b. Increasing E; of the junctions 1-4 enhances the level repulsion,

which causes the maximums in E, to approach n, = % or to merge into one

maximum. The maximums in I follow this pattern. For our array, the two

as

effects are in balance for f = 0 (Fig. 6.3a). Increasing f from zero induces a
persistent current in the array that flows through the outer branches of the array,
i. e. through junctions 1-4, but not through the central junction. The switching
current measures the array’s ground state at finite bias current. The combination
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Figure 6.4: Measured and simulated positions of maximums in Isw vs. ng, and
minimums in Igy vs. f. Data from array 1 (squares), 2 (open circles) and 3 (solid
circles). Errors bars indicate the uncertainty in absolute positions of maximums and
minimums, uncertainty in the shifts of positions in one measured trace with respect
another is about one order smaller. In a) positions of maximums 74mqs from data as in
Fig. 6.3a, for different f. In b) positions of minimums fy,:, from data as in Fig. 6.3b,
for different ny. Solid black lines show simulated values for E;/Ec = 0.27, the black
dashed parts in a) represent the fact that I develops for f Z 0.37 an additional peak
structure. Gray areas indicate where ng pqaz and fy,i, are expected for classical charging
and Josephson effects.

of Iy;.s and the persistent current breaks the symmetry in the effective Josephson
coupling for the top and the bottom island. For the bottom island, the bias
current is compensated by the persistent current, while for the top island the
bias current and the persistent current add up and reduce the effective Josephson
coupling — E; cos y; of junction 1 and 2. The overall effect is that the array has a
lower Igy due to the weak effective F; in the upper branch, but that the strong
coupling in the lower branch causes the two maximums to merge into a single
maximum with increasing f. Around f = 0.3 a vortex enters the array (see also
below), and at f = 0.5 the symmetry is restored since the flux-induced currents
now lead to an equal reduction of the effective E; for the two islands. Numerical
calculations (as described in [9, 11]) of I (Fig. 6.3c) and the positions ngmqs Of
the maximums (Fig. 6.4a) agree very well with the measurements for f < 0.35.
For f 2 0.35, the Igy data is less reliable due to residual parity effects [6] that
suppress Igy at places where the maximums are expected (lower two traces in
Fig. 6.3a).

Similarly, the critical current as a function of f was studied. We will first
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analyze the case with Ij;,,s = 0. For f = 0, the array’s total Josephson energy
Uy is lowest for |0, ¢y, ,) = 10,0,0) (Fig. 6.1c,d). This corresponds to a phase
configuration without vortices in the array, and it will be denoted as |0,0),. When
increasing f from 0 to 1, the phase configuration with lowest U is for 0.364 < f <
0.636 one of the two degenerate states |0, ¢, @) = ‘71',71’ +(f— %)71’, F(f — %)7>,
as indicated by the solid lines in Fiig. 6.1c and the double-well potential in Fig. 6.1e
(equivalent solutions exist for § = —, the classical behavior of § enforces one of
the two cases). These states with 6 = 7 correspond to phase configurations with
a single vortex in the array [9], i. e. with a vortex in the right or the left loop.
In Fig. 6.1c these two states are denoted as |0,1), and |1,0),. For f > 0.636,
the array returns to a vortex-free phase configuration with 6 = 0, but now with
about one flux quantum induced in each loop, and this state can thus be denoted
as |1,1),. At points close to f = 0.364 and f = 0.636, the band E, versus ¢ has
minimum amplitude, and ¢ can easily make multiple transitions of 7. This leads
to minimums in Igy (Fig. 6.3b).

In the f window around f = %, the underdamped quantum behavior of ¢,
and ¢, allows for tunnelling between the two classical solutions at the minimums
in U; in Fig. 6.1e. Moreover, comparison with U, in Fig. 6.1d shows that ¢, and
4 are here less confined. The f window in which the array’s ground-state energy
with 6 = 7 is lower than that for 6 = 0 is therefore expected to be wider than
the classical boundaries f = 0.364 and f = 0.636, see also Fig. 6.1c (for finite
bias currents the classical boundaries move towards f = %, up to f =0.393 and
f =0.607 for Ij,s = I). The minimums in Fig. 6.3b are clearly further apart
than expected classically. Moreover, the positions of the minimums f,,;, depend
on ng. Due to the classical behavior of ¢ (i. e. no coherent coupling to a vortex
reservoir outside the array) we can interpret the positions of the minimums here
directly as the point where the array makes the transition between a ground state
without a vortex in the array and a ground state that is a superposition of the
|0,1), and |1,0), state. A shift of the f,,;, corresponds to a shift of the position
of this transition.

The shift of f,.;, is analyzed in a picture where the state of the array is
analogous to a particle in a two-dimensional periodic potential [10]. The U; in
Fig. 6.1d is a unit cell for 6 = 0 and Fig. 6.1e for 6 = w. The influence of
ng becomes evident in a tight-binding description. This has been worked out
in Ref. [11] for a system with a similar Hamiltonian. For 6 = 7 the terms
that couple one of the classical solutions with neighboring states is of the form
—t — i e where ¢; the coupling from intra-unit cell coupling, and the
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sum over terms ¢, for inter-unit cell coupling. The length of the k vector is equal
to ng, and a; is the position vector to the nearest-neighbor site. For 6 = 0, as in
Fig. 6.1d, there is only inter-unit cell coupling. The coupling terms to the nearest-
neighbor states are — ) i tse’®2 The § = m ground state will have a minimum
energy for n, = 0. Non-integer values of n, cause a phase difference between ¢;
and inter-unit cell coupling, and lead to a higher eigen energy. As a result the

f window where 6 = m becomes smaller. This effect dominates the shift in f,.;,
2,
are minimal, the minimums have moved in the direction where f,,;, is expected

since the array has ¢; > t, > t3. For n, =~ g, where Coulomb blockade effects
for classical behavior. An analysis with finite bias current is more tedious, but
the overall picture remains valid. Numerical calculations of I~ (Fig. 6.3d) and
the positions of the minimums f,,;, (Fig. 6.4b) agree again very well with the
observations. From the observed positions and shifts of f,,;, we conclude that
the array has around f = % a ground state that is a superposition of two vortex
states.

In conclusion, the experimental results in this chapter illustrate the duality
between the charge and vortex description of two-dimensional quantum arrays
of Josephson junctions. Superpositions of single-charge states and vortex states
occur in the array in a dual fashion. When the coulomb blockade effects are partly
lifted, the vortex behavior approaches the result for the classical Josephson effect.
Tuning of the effective Josephson energy with a small magnetic field modulates
the single-charge effects in a similar way. The results are in very good agreement
with numerical simulations. The environmental impedance of the array has a
significant influence on the level of the switching currents, and it can slightly
renormalize the ratio of E;/FEqx [12]. However, our results are not based on a
study if the amplitude of the switching current, but on the positions of maximums
and minimums in the switching current. The observed phenomena are therefore

very robust against the influence of environmental effects.

We thank P. Lafarge, M. H. Devoret, K. K. Likharev, T. P. Orlando, Y. Naka-
mura, P. Hadley, R. N. Schouten and C. J. P. M. Harmans for fruitful discussions,
and the Dutch FOM for financial support.



References 95

References

1
2
3

[
[
[
[4

]
]
]
]

[5]

= =

[10]

[11]
[12]

P. Joyez et al., Phys. Rev. Lett. 72, 2458 (1994).
M. Matters, W. J. Elion, and J. E. Mooij, Phys. Rev. Lett. 75, 721 (1995).
Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Nature 398, 786 (1999).

J. R. Friedman et al., Nature 406, 43 (2000); C. H. van der Wal et al.,
Science 290, 773 (2000).

R. Fazio and H. S. J. van der Zant, to be published in Phys. Rep. (2001);
cond-mat,/0011152.

C. H. van der Wal and J. E. Mooij, J. Supercond. 12, 807 (1999).

C. H. van der Wal, P. Kuiper, and J. E. Mooij, Physica B 280, 243 (2000).
These results were measured on array 2 at a later stage. During sample
storage the junction resistance had increased from 21 kf) to 28 kf).

W. J. Elion, J. J. Wachters, L. L. Sohn, and J. E. Mooij, Phys. Rev. Lett. 71,
2311 (1993); V. Bouchiat, Ph. D. thesis, Université Paris 6, 1997.

P. Lafarge, M. Matters, and J. E. Mooij, Phys. Rev. B 54, 7380 (1996).
We found a missing factor 2 in the numerical code used for this article, the
figures are for F;/Ec = 0.4 instead of E;/FEc = 0.2.

D. V. Averin and K. K. Likharev, in Mesoscopic Phenomena in Solids, edited
by B. L. Al'tshuler, P. A. Lee, and R. A. Webb (Elsevier, Amsterdam, 1991),
Chap. 6.

T. P. Orlando et al., Phys. Rev. B 60, 15398 (1999).
P. Joyez, Ph. D. thesis, Université Paris 6, 1995.



96

Chapter 6. Dual Charge and Vortex Superpositions ...




Chapter 7

Quantum transitions of a small
Josephson junction array

Abstract

We have experimentally studied a small Josephson junction array in the
presence of microwave irradiation. The array has comparable energy scales
for single-charge effects and the Josephson effect, resulting in a discrete set
of macroscopic eigen-energy levels. Excitation of the array by low-power
microwaves is possible at frequencies where the photon energy matches the
level spacing. The microwave frequency and amplitude dependence show
that the excitation mechanism involves resonant quantum dynamics of the

array.

7.1 Introduction

In circuits of extremely underdamped Josephson junctions, discrete energy levels
(DEL) are the result of the quantum mechanical interplay of the Josephson ef-
fect and the single-Cooper pair charging effect. The two effects are orthogonal.
We study here such a system with comparable Josephson energy and charging
energy. In this regime, the system can then be looked at as the equivalent of a
particle, with a mass proportional to the junction capacitance C, whose phase
coordinate v (the phase degree of freedom of the Josephson junction) is confined
by the Josephson potential —FE; cos~y. Alternatively, the systems can be looked
at as a network of islands with a high charging energy, with eigen states that

This chapter is based on Ref. 4 on p. 111.
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are close to single-charge states of the islands. Due to the Josephson effect, the
islands can exchange Cooper pairs. The systems has a discrete set of eigen states
in both of these pictures. Recently the DEL of a device with a single supercon-
ducting grain coupled to leads via tunnel junctions have been demonstrated in
experiments using microwave spectroscopy [1, 2, 3]. With such a circuit excited
to a superposition of two energy states coherent charge oscillations have been
observed [4].

7.2 Results

Here we study the quantum transitions between DEL of the array depicted in
Fig. 7.1 [5, 6]. This experiment was performed on array 2 from Chapter 5.
However, the experiment was performed at a later stage, and the junction quality
had degraded. During sample storage the junction resistance had increased from
21 k2 to 28 k(2. We believe that this mostly affected the Josephson energy of the
junction, and that the capacitance values that are derived from spectroscopy data
in this chapter can be used for the accurate analysis of Chapter 6. Also, much
more parity effects, of the type discussed in Chapter 5, were present in the data.
Due to these parity effects the accurate tuning of the influence of offset charges,
as in Chapter 5, was no longer possible. In this experiment, the influence of offset
charges could be compensated with about 5% accuracy.

For the junctions the ratio of the Josephson coupling F; to the energy scale
for single-charge effects Ec = ¢2/2C was now estimated to be E;/Eqc = 0.2, with
Ec/h = 28 GHz. The level spacing between the DEL can be tuned continuously
by inducing a gate charge n, = C,;V,/2e on the islands. The array was studied
by measuring the switching current /gy, from the supercurrent branch in the I'V
(effectively the escape of a particle in the tilted washboard potential in Fig. 7.1).
This method can be used for spectroscopy since Igy is strongly reduced when the
array is in an excited state [1, 2]. Note however that the analysis is complicated.
For the ground band the relation Iy;,s = (2¢/h)0FE /06 between the bias current
and the phase difference across the array ¢ is close to the form Iy, o sind, as
shown in Fig. 7.1. From this picture it is clear that the level spacing AE changes,
and the resonance condition AE = hf can be met, while adiabatically ramping
the current for a switching current measurement.

Fig. 7.2 presents Igy as a function n,, measured in the presence of CW-
microwaves. Additional low levels in Igy around half integer values of n, are due
to the presence of an unpaired quasiparticle on one or both islands, effectively
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Figure 7.1: Top: Schematic of the array. Here we only consider the case of sym-
metrically induced gate charges for the top and bottom island n, = C,V,/2e, and a
magnetic flux & = 0 applied to the loops. Bottom: The lowest three bands of the array
as a function of the phase § across the array, here calculated for Ej/Ec = 0.3 and
ng = 0.37 using [5]. At finite bias current the bands are tilted (Ico = (2¢/h)E}).

changing n, with 3 for that island [6]. Arrows indicate n,-values where Igy is
strongly reduced, which is clearly frequency dependent. The dips move closer to
ngy = 0 with increasing frequency f, in agreement with a larger level spacing AE
between the ground state and the first excited state at n, = 0 where Coulomb
blockade effects are maximal. For the reasons mentioned above the width of the
dips cannot be interpreted as the lifetime of the exed states. When n, is applied
with an asymmetry of An, = 0.15 the level spacing between the first and second
excited state is larger, and transitions to both the first and second excited state
could be distinguished.

Measurements of the Bessel function behavior of the Shapiro step heights in
the voltage biased IV were used to calibrate the microwave amplitude V. This
was possible without any change to the array’s electromagnetic environment.
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This showed that the data of Fig. 7.2 is typically recorded for Vyo < hf/2e, cor-
responding to an oscillating matrix element for transitions between the levels that
is much smaller than the level spacing. This, together with the clear frequency
dependence of the dips, indicates that the excitation mechanism involves resonant
quantum dynamics, similar to AC-pulse induced Rabi dynamics in NMR.

We thank Kees Harmans and Terry Orlando for discussions, and the Dutch
FOM for support.

lgy (2nA per division)

o

Figure 7.2: Measurements of the 2e-periodic modulation of the switching current gy
by the dimensionless gate charge ng, measured with different microwave frequencies,

at a temperature of 10 mK. Data sets are 2 nA offset for clarity.
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Summary

Quantum Superpositions of Persistent Josephson Currents

This thesis presents experimental research on Josephson junction devices that
behave quantum mechanically. The devices are formed by micrometer-sized su-
perconducting islands, that are interconnected by a Josephson tunnel junction:
a thin insulating layer between two superconductors. With current microfabri-
cation technology, it is possible to make very clean and well-defined junctions.
The behavior of such high-quality junctions is defined by two parameters. One
is the junction capacitance, which results from the parallel-plate geometry of the
tunnel junctions. The second is the junction’s Josephson coupling energy, which
is a measure for the tunnel coupling between the two superconducting electrodes,
and it determines the supercurrent that can flow through the junctions. The
supercurrent through the junction is directly related to a phase coordinate of the
junction. Circuits with Josephson junctions have charge and current coordinates
that are conjugate variables. This leads to quantum mechanical behavior of these
devices if the energy scale for the Josephson effect and charging effects are com-
parable. Due to the superconductivity in these devices, the dynamics is much
better decoupled from a dissipative environment than that of other solid-states
devices.

The research that is presented in this thesis aimed at investigating whether
Josephson junction circuits can have quantum coherent dynamics with a long
decoherence time. This question was inspired by three, partly overlapping re-
search themes that are currently of interest in the scientific community. Firstly,
if quantum coherent dynamics of Josephson junction circuits could be accurately
controlled, these systems would be a promising candidate for realizing a quan-
tum computer. An advantage of a quantum computer based on small Josephson
junction circuits is that the technology for expanding such a system to a large-
scale integrated computer is already available. Secondly, the current degrees of
freedom of these circuits are macroscopic, in the sense that they correspond to

the center-of-mass motion of a very large number of microscopic charge carriers.
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Josephson junction circuits are therefore unique systems for testing the validity
of quantum mechanics at a macroscopic scale. Thirdly, it is very interesting that
these devices are artificially fabricated quantum systems. With the technology
that is applied, it is possible to engineer and control them in a wide parameter
range, and to couple the systems in a controlled manner to environmental degrees
of freedom. This allows for detailed research on the boundary between classical
and quantum physics, and decoherence.

We report research on two different devices. The first part of this thesis
concentrates on a small loop with three Josephson junctions. The second part
reports work on a small two-dimensional Josephson junction array with two cou-
pled loops. The two systems have in common, that the loops carry persistent
Josephson currents when a small magnetic field is applied to the loops.

The Josephson energy of the three-junction loop forms a double-well potential
when the magnetic flux in the loop is close to half a superconducting flux quan-
tum. The states at the bottoms of the two wells correspond to persistent-current
states of opposite polarity. This system was realized in the regime where the
junctions’ Josephson energy was about a factor fifty larger than the energy scale
for single-charge effects. For this ratio a subtle balance is struck in this device.
The system’s charging effects are still significant, and allow for quantum tunnel-
ing through the barrier between the two stable persistent-current states. At the
same time, this large ratio allows for engineering the system such that it is very
insensitive to the influence of background charges in the solid-state environment
of the loop. We performed microwave-spectroscopy experiments which demon-
strated that this system is an artificially fabricated quantum two-level system; we
observed narrow resonance lines that resulted from microwave-induced quantum
transitions between the quantum levels. An anti-crossing of the quantum levels
proved that quantum superposition states of the two macroscopic persistent-
current states occur in this system. The system was measured by placing it in a
DC-SQUID magnetometer. The measurement process and the resulting noise is
analyzed in detail.

The small two-dimensional arrays were studied in the regime where the en-
ergy scales for Josephson effect and single-charge effects were comparable. The
arrays had a self-dual geometry: They can be described as two coupled islands
with a high charging energy, but also as two coupled loops that can each carry
a persistent current. The latter description corresponds to that of an array in
which the meshes can contain a vortex. The arrays had a ground state with
comparable quantum fluctuations in the charge and Josephson phase due to the
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Heisenberg uncertainty relation between these coordinates. In this regime, the
devices are very sensitive to the influence of background charges in the envi-
ronment. However, with capacitively coupled gate electrodes we succeeded in
obtaining accurate control over the single-Cooper-pair effects in this system. The
Josephson effect could be controlled by applying a small magnetic field to the
loops. This allowed for a controlled study of the trade-off between quantum fluc-
tuations in the Josephson phase coordinates and charge coordinates of the array,
and our results show that superpositions of charge and vortex states occur in
the array in a dual fashion. Microwave spectroscopy experiments were used to
demonstrate a discrete set of excited quantum levels in these devices.

From the research that is presented here one can conclude that it is pos-
sible to realize well-defined quantum systems with Josephson junction circuits.
Quantum superpositions of charge and persistent-current states have been demon-
strated, and transitions between quantum levels can be controlled with resonant
microwave radiation. These results form a good basis for future experiments that
investigate whether quantum coherent dynamics with a long decoherence time can
be realized with these devices. This requires quantum-state control with pulsed
microwaves. De technology for such experiments, as well as for experiments on

circuits that contain multiple coupled quantum systems, is available.

Caspar van der Wal, Delft, June 2001
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Samenvatting

Quantum Superposities van Persisterende Josephson-stromen

Dit proefschrift beschrijft experimenteel onderzoek aan schakelingen met Jo-
sephson-juncties die zich quantummechanisch gedragen. De schakelingen bestaan
uit supergeleidende eilanden ter grootte van enkele micrometers, die onderling
verbonden zijn met een Josephson-tunneljunctie: een dunne isolerende laag tussen
twee supergeleiders. Met de huidige microfabricagetechnieken is het mogelijk zeer
schone juncties te maken, met goed gedefinieerde eigenschappen. Het gedrag
van zulke juncties wordt bepaald door twee parameters. Eén is de capaciteit
van de junctie, die ontstaat door de parallelle-plaatgeometrie van de junctie.
De tweede is de Josephson-koppelingsenergie; een maat voor de tunnelkoppeling
tussen de twee supergeleiders. Deze bepaalt hoeveel superstroom door de junctie
kan stromen. Deze superstroom is direct gerelateerd aan een fasecoordinaat van
de junctie. Schakelingen met Josephson-juncties hebben fase- en ladingscoordi-
naten die geconjugeerde variabelen zijn. Dit leidt tot quantummechanisch gedrag
van deze schakelingen als de energieschalen voor het Josephson-effect en ladingsef-
fecten van dezelfde orde zijn. Door de supergeleiding in deze schakelingen, is de
dynamica veel beter ontkoppeld van een dissipatieve omgeving dan voor de meeste
vaste-stofschakelingen het geval is.

Het in dit proefschrift beschreven onderzoek was gericht op de vraag of Joseph-
son-junctieschakelingen quantumcoherente dynamica kunnen hebben, met een
lange decoherentietijd. Het beantwoorden van deze vraag draagt bij aan drie,
elkaar gedeeltelijk overlappende onderzoeksthema’s die nu in de belangstelling
staan in de wetenschappelijke gemeenschap. Ten eerste zouden deze systemen een
veelbelovende kandidaat zijn voor het realiseren van een quantumcomputer als
quantumcoherente dynamica van Josephson-junctieschakelingen met grote pre-
cisie gecontroleerd zou kunnen worden. Een voordeel van een quantumcomputer
op basis van deze schakelingen is, dat de technologie voor het uitbreiden van
een dergelijk systeem tot een grote geintegreerde quantumcomputer al beschik-
baar is. Ten tweede zijn de stroomvrijheidsgraden van deze schakelingen macro-
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scopisch; de stroom is het resultaat van de massa-middelpuntsbeweging van een
zeer groot aantal microscopische ladingsdragers. Josephson-junctieschakelingen
zijn daarom unieke modelsystemen om de geldigheid van quantummechanica voor
macroscopische objecten te testen. Ten derde is het feit dat het kunstmatig
gefabriceerde quantumsystemen zijn erg interessant. De gebruikte technologie
staat toe de eigenschappen van de schakelingen in een groot parameterbereik te
construeren, te controleren en te koppelen aan omgevingsinvloeden. Dit maakt
deze systemen zeer geschikt voor onderzoek naar de grens tussen de klassieke- en
quantumfysica en decoherentie.

We beschrijven onderzoek aan twee verschillende schakelingen. Het eerste
deel van dit proefschrift richt zich op een kleine supergeleidende ring met daarin
drie Josephson-juncties. Het tweede deel behandelt werk aan een klein twee-
dimensionaal Josephson-junctienetwerk, dat bestaat uit twee gekoppelde ringen
met juncties. In de ringen van beide systemen treden persisterende Josephson-
stromen op als een klein magneetveld wordt aangelegd in de ringen.

De Josephson-energie van de ring met drie juncties vormt een dubbele-putpo-
tentiaal als de magnetische flux in de ring in de buurt van een half supergelei-
dend fluxquantum is. De toestanden op de bodems van de twee putten cor-
responderen met persisterende-stroomtoestanden van tegenovergestelde polari-
teit. Dit systeem was gerealiseerd met junctieparameters waarbij de Josephson-
energie ongeveer een factor vijftig groter was dan de energieschaal voor enkele-
ladingseffecten. Voor deze verhouding is een subtiele balans gerealiseerd in deze
schakeling. De ladingseffecten in het systeem zijn nog steeds significant, en quan-
tumtunnelen door de barriére tussen de twee stabiele persisterende-stroomtoe-
standen is mogelijk. Tegelijkertijd kan bij deze grote verhouding van de en-
ergieschalen het systeem zo worden geconstrueerd dat het zeer ongevoelig is
voor de invloed van achtergrondladingen in de vaste-stofomgeving van de ring.
Met microgolf-spectroscopie-experimenten is aangetoond dat dit systeem een
kunstmatig gefabriceerd quantum-twee-niveausysteem is; we hebben zeer nauwe
resonantie lijnen waargenomen die het gevolg zijn van microgolf-geinduceerde
quantumovergangen tussen de quantumniveaus. Een afstoting van de quantum-
niveaus toonde aan dat quantum superpositietoestanden van de macroscopische
persisterende-stroomtoestanden in dit systeem voorkomen. Metingen aan het
systeem werden verricht door het in een DC-SQUID-magnetometer te plaatsen.
Het meetproces en de resulterende ruis zijn geanalyseerd.

De kleine tweedimensionale netwerken zijn bestudeerd in het regime waar
de energieschalen voor het Josephson-effect en enkele-ladingseffecten van gelijke
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grootte waren. De netwerken hadden een zelfduale geometrie: Ze kunnen wor-
den beschreven als twee gekoppelde eilanden met een hoge ladingsenergie, maar
ook als twee gekoppelde ringen die ieder een persisterende stroom kunnen dra-
gen. De tweede beschrijving correspondeert met die van een netwerk waarvan
de mazen een vortex (wervelstroom) kunnen bevatten. Deze netwerken hadden
een grondtoestand met quantumfluctuaties van vergelijkbare grootte in de ladin-
gen en fasen van de juncties, door de Heisenberg-onzekerheidsrelatie tussen deze
coordinaten. In dit regime zijn de schakelingen erg gevoelig voor de invloed van
achtergrondladingen in de omgeving. Met capacitief gekoppelde gate-elektrodes
is echter nauwkeurige controle over de enkele-Cooper-paareffecten in dit systeem
gerealiseerd. Het Josephson-effect kon worden gecontroleerd door een klein mag-
neetveld in de ringen aan te brengen. Hierdoor kon de balans tussen quantumfluc-
tuaties in de Josephson-fasecosrdinaten en de ladingscosrdinaten van het netwerk
nauwkeurig worden gecontroleerd en bestudeerd. De resultaten tonen aan dat su-
perposities van ladings- en vortextoestanden op duale wijze voorkomen in deze
netwerken. Microgolf-spectroscopiemetingen zijn gebruikt om aan te tonen dat
deze netwerken overgangen kunnen maken naar geéxciteerde quantumniveaus.
Op basis van het hier beschreven onderzoek kan worden geconcludeerd dat
met Josephson-junctieschakelingen goed gedefinieerde quantum systemen kun-
nen worden geconstrueerd. Quantum-superpositietoestanden van ladings- en
persisterende-stroomtoestanden zijn aangetoond, en overgangen tussen quantum-
niveaus kunnen worden gecontroleerd met resonante microgolfstraling. Deze re-
sultaten vormen een goede basis voor vervolgexperimenten die uitsluitsel moeten
geven over de vraag of langdurige quantumcoherente dynamica kan worden ge-
realiseerd met deze systemen. Hiervoor moeten de quantumtoestanden worden
gecontroleerd met gepulste microgolven. De technologie voor dergelijke exper-
imenten, en voor het realiseren van experimenten aan een aantal gekoppelde

quantumsystemen, is beschikbaar.

Caspar van der Wal, Delft, juni 2001
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