Final exam for Kwantumfysica 1 - 2009-2010 Thursday 21 January 2010, 8:30 - 11:30

READ THIS FIRST:

- Note that the lower half of this page lists some useful formulas and constants.
- Clearly write your name and study number on each answer sheet that you use.
- On the first answer sheet, write clearly the total number of answer sheets that you turn in.
- Note that this exam has 3 questions, it continues on the backside of the papers!
- Start each question (number 1, 2, 3) on a new answer sheet.
- The exam is open book within limits. You are allowed to use the book by Liboff, the handout *Extra note on two-level systems and exchange degeneracy for identical particles*, and one A4 sheet with notes, but nothing more than this.
- If it says "make a rough estimate", there is no need to make a detailed calculation, and making a simple estimate is good enough. If it says "calculate" or "derive", you are supposed to present a full analytical calculation.
- If you get stuck on some part of a problem for a long time, it may be wise to skip it and try the next part of a problem first.
- If you are ready with the exam, please fill in the **course-evaluation question sheet**. You can keep working on the exam until 11:30, and fill it in shortly after 11:30 if you like.

Useful formulas and constants:

Electron mass	me	$= 9.1 \cdot 10^{-31} \text{ kg}$
Electron charge	- <i>e</i>	$= -1.6 \cdot 10^{-19} \text{ C}$
Planck's constant	h	$= 6.626 \cdot 10^{-34} \text{ Js} = 4.136 \cdot 10^{-15} \text{ eVs}$
Planck's reduced constant	ħ	$= 1.055 \cdot 10^{-34} \mathrm{Js} = 6.582 \cdot 10^{-16} \mathrm{eVs}$

Fourier relation between *x*-representation and *k*-representation of a state

$$\Psi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \overline{\Psi}(k) e^{ikx} dk$$
$$\overline{\Psi}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \Psi(x) e^{-ikx} dx$$

Problem 1

Consider a one-dimensional (with position *x*) particle-in-the-box system, where a quantum particle is in an infinitely deep potential well with V = 0 for |x| < a/2, and $V = \infty$ elsewhere (a = 1 nm is the width of the well). The particle has a mass $m = 2 \cdot 10^{-30}$ kg. The particle is brought into the box with a mechanism that results in a wavefunction for the particle that is evenly distributed in the well, $\Psi(x) = e^{i\varphi} / \sqrt{a}$ for |x| < a/2 (where *i* the imaginary number, and $\varphi = \frac{1}{5}\pi$ the phase of the state) and zero elsewhere.

a) Represent this state in the *k*-representation (a wavefunction that is a function of wave number k).

b) What is the expectation value $\langle v \rangle$ for the velocity *v* of the particle?

c) In an experiment, the velocity of the particle is measured many times. Before each measurement the state of the particle is first again prepared in the state $\Psi(x) = e^{i\varphi} / \sqrt{a}$. The results show that 90% of the measured values v_m are in the interval $\langle v \rangle - \Delta v_{90\%} < v_m < \langle v \rangle + \Delta v_{90\%}$. Make a rough estimate for the value of $\Delta v_{90\%}$ (give a real number in units of m/s).

d) Show that the state $\Psi(x) = e^{i\varphi} / \sqrt{a}$ is not an energy eigenstate of the system.

e) In Dirac notation, the state $\Psi(x) = e^{i\varphi} / \sqrt{a}$ is represented as $|\Psi\rangle$. Prove the relation $\Psi(x) = \langle x | \Psi \rangle$ ($|x\rangle$ is the eigenvector with eigenvalue *x* for the position operator \hat{x}).

f) $\Psi(x) = e^{i\varphi} / \sqrt{a}$ and $|\Psi\rangle$ as mentioned in **e**) do represented the same physical state. Explain why it is incorrect to write down $\Psi(x) = |\Psi\rangle$ when one aims to express that it concerns the same state in different representations.

g) Since the state $|\Psi\rangle$ is not an energy eigenstate of the system, it must be a superposition of energy eigenstates, which can be represented as $|\Psi\rangle = \sum_{n} c_{n} |\varphi_{n}\rangle$, (where $|\varphi_{n}\rangle$ the energy eigenstate that is associated with energy eigenvalue E_{n}). Proof the relation $c_{n} = \langle \varphi_{n} | \Psi \rangle$. Use Dirac notation.

h) What is the value of c_n for the case $|\varphi_n\rangle = |\varphi_1\rangle$ (which is $\varphi_1(x) = \sqrt{\frac{2}{a}} \cos(\frac{\pi x}{a})$ for |x| < a/2 and zero elsewhere)? And what is c_n for the case $|\varphi_n\rangle = |\varphi_2\rangle$ (which is $\varphi_2(x) = \sqrt{\frac{2}{a}} \sin(\frac{2\pi x}{a})$ for |x| < a/2 and zero elsewhere)?

i) One measures, with the system prepared in the state $\Psi(x) = e^{i\varphi} / \sqrt{a}$, in which energy eigenstate the system is. What is the probability for the measurement outcome that the system is in the ground state?

Problem 2

A certain atom is in a state with its total orbital angular momentum vector L (described by the operator \hat{L}) defined by orbital quantum number l = 1. For the system in this state, the operator for the z-component of angular momentum is \hat{L}_z . It has three eigenvalues, $+\hbar$ (with corresponding eigenstate $|+_z\rangle$), $0\hbar$ (with eigenstate $|0_z\rangle$), and $-\hbar$ (with eigenstate $|-_z\rangle$). This operator can be represented as a matrix, and the ket-states as column vectors, using the basis spanned by $|+_z\rangle$, $|0_z\rangle$ and $|-_z\rangle$, according to

$$\hat{L}_{z} \leftrightarrow \hbar \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad |+_{z}\rangle \leftrightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad |0_{z}\rangle \leftrightarrow \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \text{ and } |-_{z}\rangle \leftrightarrow \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Using this same basis for the representation, the operator and eigenstates for the system's *x*-component of angular momentum are given by

$$\hat{L}_{x} \leftrightarrow \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}, \quad \left| +_{x} \right\rangle \leftrightarrow \begin{pmatrix} \frac{1}{2}\\ \frac{1}{\sqrt{2}}\\ \frac{1}{2} \end{pmatrix}, \quad \left| 0_{x} \right\rangle \leftrightarrow \begin{pmatrix} \frac{1}{\sqrt{2}}\\ 0\\ -\frac{1}{\sqrt{2}} \end{pmatrix}, \text{ and } \left| -_{x} \right\rangle \leftrightarrow \begin{pmatrix} \frac{1}{2}\\ -\frac{1}{\sqrt{2}}\\ \frac{1}{2} \end{pmatrix}.$$

a) Use this information to *calculate* what the eigenvalues are that belong to $|+_x\rangle$,

 $|0_x\rangle$ and $|-_x\rangle$.

b) At some point the system is in the normalized state

 $|\Psi_1\rangle = \sqrt{\frac{1}{3}} |+_z\rangle + \sqrt{\frac{1}{3}} |0_z\rangle + i \sqrt{\frac{1}{3}} |-_z\rangle$. Calculate for this state the expectation value for angular momentum in *z*-direction and the expectation value for angular momentum in *x*-direction.

c) Calculate for this state $|\Psi_1\rangle$ the quantum uncertainty ΔL_z in the z-component of the system's angular momentum.

d) With the system still in this same state $|\Psi_1\rangle$, you are going to measure the *x*-component of the system's angular momentum. What are the possible measurement results? Calculate the probability for getting the measurement result with the highest value for angular momentum in *x*-direction.

e) Now the system is prepared in a different state (now superposition of eigenstates of \hat{L}_x), $|\Psi_2\rangle = \sqrt{\frac{1}{2}} |+_x\rangle - \sqrt{\frac{1}{2}} |-_x\rangle$. You are going to measure the *z*-component of the system's angular momentum. What is the probability to find the answer $+\hbar$?

f) Now the system is prepared in a different state (now again a superposition of eigenstates of \hat{L}_z), $|\Psi_3\rangle = \sqrt{\frac{1}{2}} |+_z\rangle + \sqrt{\frac{1}{2}} |0_z\rangle$, at time t = 0. Another change to the system is that one now applied an external magnetic field with magnitude *B* along the *z*-axis. The Hamiltonian of the system is now, $\hat{H} = \gamma B \hat{L}_z$, where γ is a constant that reflects how much the energy of angular momentum states shifts when applying the field. Calculate how the expectation value for angular momentum in *x*-direction depends on time.

Use Dirac notation and the operator $\hat{U} = e^{\frac{-i\hat{H}t}{\hbar}}$.

Problem 3

a) Consider a quantum harmonic oscillator system that consists of a particle with mass m and charge q, that can move along x-direction in a potential $V_1(x) = m\omega^2 x^2/2$. This entire system is placed in an instrument where an electrical field E along the x-direction (with magnitude E) can be switched on. With the field on, the particle feels the potential $V_2(x)$,

 $V_2(x) = m\omega^2 x^2 / 2 - qE x .$

Discuss how the following properties change when the field is switched on: **a1**) How do the energy eigenfunctions change? **a2**) How do the energy eigenvalues change? **a3**) For the system in the ground state, how does the expectation value $\langle x \rangle$ change?

Check the next page for a few hints!

Hint 1: The potential $V_2(x)$ can be transformed into a harmonic oscillator potential of the form $V_2(x) = V_0 + C(x - x_0)^2$. First calculate V_0 , C and x_0 . Then answer the questions.

Hint 2: For **a3**) you don't need to give a full calculation of $\langle x \rangle$ to answer the question.

b) Consider again the system as in **a**), with $V_I(x) = m\omega^2 x^2/2$. Now the system is placed in a different instrument, that changes the potential into $V_3(x)$,

$$V_3(x) = \begin{cases} m\omega^2 x^2 / 2 & (x \ge 0) \\ \infty & (x < 0) \end{cases}$$

Note that for $V_1(x)$ the system has the energy eigenfunctions $\varphi_n = A_n H_n(\xi) e^{-\xi^2/2}$ and the energy eigenvalues $E_n = \hbar \omega_0 (n + 1/2)$, where $\xi = \sqrt{\frac{m \omega_0}{\hbar}} x$, A_n are constants to normalize φ_n , $H_n(\xi)$ are *Hermite polynomials* (*n*th-order polynomials) and n = 1, 2, 3,

b1) Sketch $V_3(x)$ and explain for the energy eigenstates for the system with $V_3(x)$ what the conditions are for x < 0 and what the boundary conditions are at x = 0.

b2) The mentioned energy eigenvalues E_n (above question b1) are solutions of the time-independent Schrödinger equation for the system with $V_1(x)$. Write down the time-independent Schrödinger equation for this system in as much detail as you can (all as a function of x). Explain qualitatively why the set of solutions of this problem with eigenvalues E_n is discrete (instead of a continuum of E_n values that are a solution to the problem).

b3) Now consider all solutions for the time-independent Schrödinger equation for the system with $V_3(x)$. Can you figure out, by reasoning, what the energy eigenstates and energy eigenvalues are for the system with $V_3(x)$? If yes, give a summary of these in terms of (or in comparison with) the energy eigenstates and energy eigenvalues for the system with $V_1(x)$. *Hint:* consider which discrete set of solutions (as also considered in question **b1**) and **b2**)) can exist for this system.

Uitwerking Final Exam Kwantum fysica 1, 21 JAN 2010 $\frac{\text{Problem 1}}{a} = \frac{1}{\sqrt{2\pi}} \int \Psi(x) e^{-ikx} dx = \int \frac{e^{i\varphi}}{\sqrt{2\pi}} e^{i\varphi} dx = \int \frac{1}{\sqrt{2\pi}} e^{i\varphi} dx$ $=\frac{1}{-ik}\frac{e^{i\varphi}}{\sqrt{2\pi a}}\left[e^{-ikx}\right]_{-\frac{\alpha}{2}}^{\frac{\alpha}{2}}=e^{i\varphi}\sqrt{\frac{\alpha}{2\pi}}\frac{\sin\left(\frac{k\alpha}{2}\right)}{\left(\frac{k\alpha}{2}\right)}$ sinc function b) v is proportional to k, since mv = p= th k (F(k) of a) is a symmetric wavefunction around k=0, so $ck > = \int \overline{\Psi}(k)^* k \overline{\Psi}(k) dk = 0$. So, also (2) must be zero \Rightarrow (2) =0. This must be the case since the particle is trapped in the box, on average it is at a fixed location. c) [] Simple very rough estimate For a state confined in a box, one should expect ∆X ∠Px ≈ ½ ⇒

So DX mary 2 => Drin 2max $m = 2 \cdot 10^{-30} \text{ kg} \implies 3 \text{ U} \approx 5.2 \cdot 10^{4} \text{ m/s}$ $t_{1} = 1.055 \cdot 10^{-34} \implies 3 \text{ U} \approx 5.2 \cdot 10^{4} \text{ m/s}$ This is the Heisenberg uncertainty in the velocity, and about 50% (or 68%) of measurement vesults will fall in the interval So, ga a more-on-less Gaussian shape von $|\Psi(k)|^2$, one should use AUgo of ~ 2. AU Heis > 2290% ≈ 1.105 m/s I Little bit move quantitave vough estimate As used for b), use that v is proportional to k, so the quantum properties of v can be analyzed using $\overline{\Psi}(k)$. $\Lambda \Psi^{*}(k) \overline{\Psi}(k)$ sinc function squared

As shetched, $W(k) = |\overline{\Psi}(k)|^2 = \overline{\Psi}(k)^* \overline{\Psi}(k)$ is a sinc function squared, and this probability density W(k) determines measurement out comes related to k. For a vough estimate, use that $\lim_{k \to 0} W(k) = \frac{a}{2\pi} \lim_{k \to 0} \left(\frac{\sin(\frac{ka}{2})}{\frac{ka}{2}} \right)^2 = \frac{a}{2\pi}$ while for $\frac{1}{2}$ TT the function W(k) behaves on average as $W(k) \approx \frac{a}{2\pi} \left(\frac{1}{2} \frac{1}{(\frac{ka}{2})^2}\right)$ Then, using that <k>=0, it must be that + $\Delta k_{go} 2_{o}$ $\int W(k) dk = 2 \int W(k) dk = 0.9 \Rightarrow$ $-\Delta k_{go} 2_{o}$ Since (F/k) is normalized, it must be that 2 (W (k) dk=1 => $2\int W(k) dk = 0.1 \Rightarrow 2\int \frac{a}{2\pi} \frac{1}{2} \frac{1}{(k_a)^2} dk \approx 0.1$ Skyoz Δk_{102} $\Rightarrow 2\left[-\frac{1}{\pi ak}\right] \xrightarrow{\sim} 0.1 \Rightarrow 2\left[os + \frac{1}{\pi ak}\right] = 0.1$ $\Rightarrow \Delta k_{90\%} = \frac{2}{0.1 \cdot \pi \cdot \alpha}$ ΔUgo2 = th Δ kgo2 = th · 2 m = 0.1 · Tr. a = 3.105 m/s

(4/1) d) Use the time-independent Schrödingen equation in x-representation: $\frac{-\frac{t^2}{2m}\frac{\partial^2\varphi}{\partial\chi^2}}{\frac{\partial\chi^2}{\partial\chi^2}} = \Xi\varphi$ Filling in $\Psi(x)$ for φ with $\Psi(x) = \frac{e^{i\varphi}}{\sqrt{a}}$ for $|x| < \frac{2}{2}$ and $\frac{\partial^2 \psi(x)}{\partial x^2} = 0$ gives $-\frac{h^2}{zm} \cdot 0 = E \cdot \frac{e^{i\varphi}}{\sqrt{a}} \quad for \quad |X| < \frac{2}{2}$ This would hold if E=0 would be an energy eigenvalue. However, the Hamiltonian $H = \frac{p^2}{2m} + V(x)$ only has terms >0, and the Heisenberg uncertainty relation forbids the state with both $\langle V(x) \rangle =0$ and $\langle P \rangle =0$. So $\Psi(x)$ does not form a solution of the Schrödinger Eq. so it is not an energy eigen state of the system. e) < x | 4 > equals the inner product (S(x-x') 4(x') dx'= 400 by definition of the Divac-detta function. f) The system is in some quantum state, the physical state, which can be represented in many different ways. ((x) vepresents this as a complex function (amplitude) as a function of x. 147 represents this as a state vector, which is an element of Hilbert space. So, in a mathematical sense (1x) and 14> cannot be equal.

9)
$$\langle q_{n} | \Psi \rangle = \langle q_{n} | \left(\sum_{N'} c_{n'} | q_{n'} \rangle \right)$$

$$= \sum_{h'} c_{n'} \langle q_{n} | q_{n'} \rangle$$
For this system $\langle q_{n} | q_{n'} \rangle = \begin{cases} 0 \quad fn \quad n \neq n' \\ 1 \quad fn \quad n = n' \end{cases}$
So, $\langle q_{n} | \Psi \rangle = c_{n} \langle q_{n} | q_{n} \rangle = c_{n}$
h) $c_{1} = \langle q_{1} | \Psi \rangle = \int_{-\infty}^{\infty} q_{1}(x) \Psi(x) dx$

$$= \int_{\sqrt{2}} \sqrt{\frac{2}{\alpha}} co(\frac{\pi x}{\alpha}) e^{iq} \frac{1}{\sqrt{\alpha}} dx = e^{iq} \frac{\sqrt{2}}{\alpha} \cdot \frac{a}{\pi} \left[sin(\frac{\pi x}{\alpha}) \right]_{\gamma_{L}}^{q_{L}}$$

$$= e^{iq} \frac{\sqrt{2}}{\pi} \left(1 - -1 \right) = e^{iq} \frac{2\sqrt{2}}{\pi}$$
 $c_{2} = \langle q_{2}(\Psi \rangle = \int_{-\infty}^{\infty} q_{2}(x) \Psi(x) dx$

$$= \int_{-\sqrt{2}}^{\sqrt{2}} sin(\frac{2\pi x}{\alpha}) e^{iq} \frac{1}{\sqrt{\alpha}} dx = e^{iq} \frac{\sqrt{2}}{2\pi} \left[-cos(\frac{2\pi x}{\alpha}) \right]_{-\frac{q'_{L}}{2}}^{q'_{L}} = 0$$
(it must be zero since $q_{2}(x) \cdot \Psi(x)$ is the product of an even and an odd function).
i) The graund state is $/q_{1} \rangle$, so the probability is $/c_{1}/^{2} = C_{1}^{*}C_{1} = \frac{e^{iq}}{\pi^{2}} \approx 0.81$

 $\left(\frac{6}{11} \right)$ Problem 2 a) The eigenvalues can be calculated, with the eigenvalue equations for Lx Fox $|+_{x}\rangle$, $\frac{1}{2}\begin{pmatrix}0&1&0\\1&0&1\\0&1&0\end{pmatrix}\begin{pmatrix}\frac{1}{2}\\\frac{1}{2}\end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix}\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\end{pmatrix}=+\frac{1}{\sqrt{2}}\begin{pmatrix}\frac{1}{2}\\\frac{1}{\sqrt{2}}\end{pmatrix}$ is $+\frac{1}{\sqrt{2}}$ For $\left|-x\right\rangle$, $\frac{t_{1}\left(0\,10\right)\left(\frac{z}{1}\right)}{\sqrt{z}\left(0\,10\right)\left(\frac{z}{1}\right)} = \frac{t_{1}\left(-\frac{z}{\sqrt{z}}\right)}{\sqrt{z}\left(1\right)} = -\frac{t_{1}\left(-\frac{z}{\sqrt{z}}\right)}{\frac{1}{\sqrt{z}}\right)} \left\{\frac{i45}{i5} = \frac{i_{1}}{\sqrt{z}}\right\}$ b) $\langle \hat{L}_{z} \rangle = \langle \Psi_{1} | \hat{L}_{z} | \Psi_{1} \rangle$ = $(\sqrt{\frac{1}{3}} \sqrt{\frac{1}{3}} - i\sqrt{\frac{1}{3}}) + (\sqrt{\frac{1}{3}} \sqrt{\frac{1}{3}}) + (\sqrt{\frac{1}{3}} \sqrt{\frac{1}{3}}) + i\sqrt{\frac{1}{3}} \sqrt{\frac{1}{3}} + i\sqrt{\frac{1}{3}})$ $= \left(\frac{\sqrt{3}}{\sqrt{3}} + \frac{\sqrt{3}}$ $\langle \hat{L}_{x} \rangle = \langle \Psi_{i} | \hat{L}_{x} | \Psi_{i} \rangle$ $= (V_{3} V_{3} - i V_{3}) \frac{1}{52} \begin{pmatrix} 0 & i & 0 \\ -i & 0 & 1 \\ 0 & i & 0 \end{pmatrix} \begin{pmatrix} V_{3} \\ V_{3} \\ +i & V_{3} \end{pmatrix} = \frac{1}{52} \begin{pmatrix} V_{3} & V_{3} - i & V_{3} \\ V_{3} & -i & V_{3} \end{pmatrix} \begin{pmatrix} V_{3} & +i & V_{3} \\ V_{3} & +i & V_{3} \end{pmatrix}$ $=\frac{t}{12}\left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} - \frac{1}{3}\right) = \frac{t}{12}\left(\frac{2}{3}\right) = \frac{2t}{3\sqrt{2}} = \frac{2t}{3\sqrt{2}} = \frac{1}{3\sqrt{2}}$

C) $\Delta L_2 = \sqrt{(L_2^2)^2 - (L_2^2)^2}$ So, we must first calculate the matrix representation of L2 Then, $\langle L_2^2 \rangle = \langle \Psi_1 | L_2^2 | \Psi_1 \rangle =$ $(\overline{U_3} \ \overline{U_3} \ -\overline{U_3} \ i) \left(\begin{array}{c} 1000\\ 000 \ i \end{array} \right) \left(\begin{array}{c} \sqrt{V_3}\\ \sqrt{V_3}\\ +i \sqrt{V_3} \end{array} \right) = \left(\begin{array}{c} \sqrt{V_3}\\ \sqrt{V_3}\\ +i \sqrt{V_3} \end{array} \right) = \left(\begin{array}{c} \sqrt{V_3}\\ \sqrt{V_3}\\ \sqrt{V_3}\end{array} \right) = \left(\begin{array}{c} \sqrt{V_3}\\ \sqrt{V_3}\\ \sqrt{V_3}\end{array} \right) = \left(\begin{array}{c} \sqrt{V_3}\end{array} \right) = \left(\begin{array}{c} \sqrt{V_3}\\ \sqrt{V_3}\end{array} \right) = \left(\begin{array}{c} \sqrt{V_3}\\ \sqrt{V_3}\end{array} \right) = \left(\begin{array}{c} \sqrt{V_3}$ $= \frac{1}{3}h^{2} + \frac{1}{3}h^{2} = \frac{2}{5}h^{2}$ Use from 6) <2=0 $\Delta L_{7} = \sqrt{\frac{2}{3}} t^{2} - (6t)^{2} = \sqrt{\frac{2}{3}} t^{2}$ d) You measure Lx for l=1. From problem a) or general theory for Lx for l=1 the possible remits are the eigen values of Lx, which are the oth and -tr. $= \left(\frac{1}{2}I_{5}^{2} + \frac{1}{16} + \frac{1}{12}I_{5}^{2}\right)^{2} = \left(\frac{1}{6}I_{3}^{2} + \frac{1}{6}I_{6}^{2}\right)^{2} + \frac{1}{12} \approx 0.57$

e) $P_{\pm h,2} = |\langle \pm_2 | \psi_2 \rangle|^2$ $= \left(\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \right) \left(\frac{1}{12} \left(\frac{1}{52} \right) - \frac{1}{12} \left(\frac{1}{52} \right) \right) \left(\frac{1}{52} \left(\frac{1}{52} \right) - \frac{1}{52} \left(\frac{1}{52} \right) \right) \left(\frac{1}{52} \left(\frac{1}{52} \right) - \frac{1}{52} \left(\frac{1}{52} \right) \right) \left(\frac{1}{52} \left(\frac{1}{52} \right) - \frac{1}{52} \left(\frac{1}{52} \right) \right) \left(\frac{1}{52} \left(\frac{1}{52} \right) - \frac{1}{52} \left(\frac{1}{52} \right) \right) \left(\frac{1}{52} \left(\frac{1}{52} \right) - \frac{1}{52} \left(\frac{1}{52} \right) \right) \right)$ $= \left(100 \right) \cdot \frac{1}{V_2} \left(\frac{0}{2V_2} \right) = 0$ $f) < \hat{L}_{x}(H) = < \Psi(H) | \hat{L}_{x} / \Psi(H)$ with $| \Psi(H) = \hat{U} | \Psi(0) = \hat{U} | \Psi_{3} >$ E+=+YBh $E_0 = 0$ $\begin{array}{c} 1 \\ H \\ \Theta \\ 0 \\ 0 \\ 0 \\ \Theta \\ E_{-} \end{array} \end{array} = \begin{array}{c} 1 \\ W_{+} \\ 0 \\ W_{+} \\ W_{+} \\ 0 \\ W_{+} \\ W_{+}$ $\omega_{+} = + \gamma B$ $= \frac{-i\omega_{+}t}{|+_{2}\rangle + \frac{e^{-i\omega_{0}t}}{|+_{2}\rangle + \frac{e^{-i\omega_{0}t}}{|+$ $W_0 = 0$ $W_{-} = -\gamma B$ $\Rightarrow \langle L_{x}(t) \rangle = \left(\underbrace{e^{+i\omega_{+}t}}_{\nabla 2}, \underbrace{e^{+i\omega_{*}t}}_{\nabla 2}, \circ \right) \begin{pmatrix} \circ I \circ \\ I \circ I \\ \circ I \circ \end{pmatrix} \begin{pmatrix} \underbrace{e^{-i\omega_{+}c}}_{\nabla 2} \\ \underbrace{e^{-i\omega_{*}c}}_{\nabla 2} \end{pmatrix} \underbrace{t}_{\nabla 2} \\ = \frac{t}{\nabla 2} \left(\underbrace{1}_{2} \left(e^{+i(\omega_{+}-\omega_{0})t} \\ + e^{-i(\omega_{0}-\omega_{+})t} \right) \right) \\ = \frac{t}{\nabla 2} \left(\underbrace{1}_{2} \left(e^{-i(\omega_{+}-\omega_{0})t} \\ + e^{-i(\omega_{0}-\omega_{+})t} \right) \right) \\ = \frac{t}{\nabla 2} \left(\underbrace{1}_{2} \left(e^{-i\omega_{+}t} \\ + e^{-i\omega_{0}t} \\ + e^{-i\omega_{0}t} \right) \right) \\ = \frac{t}{\nabla 2} \left(\underbrace{1}_{2} \left(e^{-i\omega_{+}t} \\ + e^{-i\omega_{0}t} \\$ $=\frac{\pi}{\sqrt{2}}\left(os\left((\omega_{+}-\omega_{0})t\right)=\frac{\pi}{\sqrt{2}}\cos\left(\gamma Bt\right)$

Problem 3 (1/1)a) V2(x) can be written as $V_2(x) = V_0 + C(x - x_0)^2 \quad \text{with}$ $V_0 = -\frac{q^2 E^2}{2m\omega^2}, \quad C = \frac{m\omega^2}{2}, \quad X_0 = \frac{qE}{m\omega}$ => V2(x) is the same harmonic potential as VI(x), but shifted in Energy by b and in position by + xo a) So, the eigen functions are $\varphi_n = \varphi_n (X - X_0)$ a2) The eigen values are $\tilde{F}_n = V_0 + (n + \frac{1}{2}) \frac{1}{h} w$ a3) As the eigen functions are shifted by + Xo and <x)=0 for the system with V, (x), < x> for the system with V2(x) must be $\langle X \rangle = X_{0}$.

61) Condition for xeo: $q_h(x) = 0$ for xeo Boundary condition at x=0; $p_h(0)=0$. b2) Time indep. Schrödeg. H(x) Qu(x) = En Qu(x) = $\frac{h^2}{2m} \frac{\partial^2 q_n(x)}{\partial x^2} + V_1(x) q_n(x) = E_n q_n(x) = j$ $-\frac{\pi^2}{2m}\frac{\partial^2 q_n(x)}{\partial x^2} + \frac{m w^2 x^2}{2} q_n(x) = E_n q_n(x).$ There is only a discrete set of values En for which this problem has a solution, because the character of the solutions is that it are standing waves inside a potential that has bound solutions. Only states that constructively interface with itself can exist, so each next Solution requires a discrete step up for the number of 2-wavelength that are present in the solution.

b3) The time independent (1/1) Schvödinger equation for x>0 is exactly the same for V. (x) and V3(x). Therefore, the sequence with discrete solutions must also be similar. However, for V3(x) there is also the requirement that $Q_n(0) = O(at x=0)$. There fore, the system with V3(K) has these (and only these) energy eigenstates $f_n(x) = \begin{cases} 0 & j_n = 0 \\ A_n H_n(g) e^{-g/2}, f_n = x_2 \\ A_n H_n(g) e^{-g/2}, f_n = x_2 \end{cases}$ and n = 1, 3, 5, 7, 9,... with $E_n = (n+\frac{1}{2}) t_1 w$, with n = 1, 3, 5, 7, 9, ...Note, (n(x) for n= 2, 4, 6, 0, has $\mathcal{Q}_{n}(0) \neq 0$ at x=0.