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Problem set for the 7
th

 week of the course Quantum Physics 1 
(version 2015-2016, still valid in later years if handed out as a print or provided on the course website) 

 

Homework, to be made before the tutorial session: 

From the book (Griffiths 2
nd

 Ed.) Appendix chapter  -    A.25. 

From the book (Griffiths 2
nd

 Ed.) Chapter 5  -    5.4, 5.8, 5.9, 5.10. 

 

Problems to work on during tutorial session: 

Problem W7.1, W7.2   (this hand out), 

and from the book Chapter 5   -   5.2 (just use the results of 5.1 as listed in the problem, 

making 5.1 is optional), 5.5, 5.12  (W7.1 replaces 5.6). This is the minimal set you need to do. 

Other good problems that we selected (we advise you to make these for the topics where you 

need or like to do extra training): from the book Chapter 5   -   5.1. 

 

Problem W7.1 

Consider two (identical) electrons confined in a single 1D infinite potential well, with walls at  

x = 0 and x = L. There is no Coulomb repulsion between the two electrons, so the Hamiltonian 

H of the system can be written as H = H1 + H2, where ‘1’ and ‘2’ are used to label the 

electrons. 

Each part of the Hamiltonian acts only on the electron 1 or 2 separately. Since the electrons 

are identical, and since they are confined in the same potential well, H1 and H2 have the same 

eigenvalues and eigenfunctions. For this problem consider two eigenfunctions (labeled with 

‘a’ and ‘b’) that are eigenfunctions of both H1 and H2:  

Hi φa(xi) = Ea φa(xi)    and    Hi φb(xi) = Eb φb(xi)  (with i = 1,2). 

As a starting point for describing the eigenfunctions of H, first assume that they can simply be 

written as a product of the two one-electron functions. For example, (x1, x2) = φa(x1)φb(x2) 

appears to be an eigenfunction of H (it is mathematically consistent with the eigenvalue 

problem for H, but we will later see that for identical particles we must apply an additional 

symmetrizing step). In this description φa(x1) and φb(x2) are eigenfunctions of H1 and H2, 

respectively. Note the label ‘1’ in the part φa(x1), which indicates that this part is for 

electron 1, while the label ‘a’ indicates here that it is for electron 1 in eigenfunction a. Also 

note that x1 and x2 describe positions that are in fact the same space (same x-axis). 

a) Show that the wave function (x1, x2) = φa(x1)φb(x2) is an eigenfunction of the 

Hamiltonian H = H1 + H2, in the sense of fulfilling the eigenvalue equation. Also find 

the expectation value for energy (in the sense of H) for this state. Note, however 

(again), that later on in this problem it will appear that this state is not a valid 

description of a state with this energy if the two particles are identical. If the two 

particles are identical, a valid description of this state is one that is (anti-)symmetric 

(see below).  

b) Since both electrons are identical, the labeling ‘x1’ and ‘x2’ has some arbitrary 

character. You could also use the label 2 for the electron in state a, and label 1 for the 

electron in state b. Namely, if you will measure the presence of an electron at position 

x1 you will not (cannot!) know whether it was electron ‘1’ or ‘2’. In terms of quantum 

mechanics this means that the observable properties of a system with two identical 

particles in the same volume cannot depend on the labeling of the particles.  

Here you should demonstrate that you violate this idea (that things go wrong) if you 

use the state (x1, x2) = φa(x1)φb(x2) for describing the case with two identical particle. 

For doing this, calculate the probability density *(x1, x2) (x1, x2) (note that this 

should predict something that you can check by measurement in an experiment). 

Show that this probability density depends on the way (order) in which you have 

labeled your particles. Hint: use that the single particle wave functions φa(x1) and 

φb(x2) in general can be, and usually are different. 
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c) If for (b) you have found, that the density *(x1, x2) (x1, x2) is invariant with respect 

to the labeling do it again. Otherwise proceed with constructing the following wave 

functions: 

 

  S(x1, x2)  =  
2

1  [φa(x1)φb(x2) + φa(x2)φb(x1)]  

  A(x1, x2)  = 
2

1   [φa(x1)φb(x2) - φa(x2)φb(x1)]  

1. Are these states normalized? 

2. Find the expectation value for energy H for these states S and A. Is it the same as in 

question (a)? 

3. Interchange the particle’s labeling for both the ‘A’ and ‘S’ state. What happens with the 

wave functions. Does the labeling ‘A’ (anti-symmetric) and ‘S’ (symmetric) make sense?  

4. Show that the probability densities *A(x1, x2) A(x1, x2) and *S(x1, x2) S(x1, x2) are 

invariant with respect to the labeling of the particles. 

 

d) Suppose that one electron is in the ground state (let’s call it φa) and that the other in the 

first excited state (let’s call it φb). We want to get an expression for the expectation value  

of  d 
2
  in the corresponding states A and S, where d is the operator for inter-particle 

separation, d = x2 – x1.  

[ Note: You may now wonder why the symmetric state S plays a role for electrons, since 

electrons are fermions for which you should always only consider anti-symmetric states. This 

is because we neglect the spin of the electrons in this problem. We only consider the orbital 

part of the quantum state of the electrons in this problem, while the full quantum state of an 

electron should also describe the spin. In real atoms and molecules, two electrons can be in 

an orbital state that is symmetric when the spins of the two electrons are in a state that is 

anti-symmetric. The full quantum state is then anti-symmetric, as it should be. ] 

 

Show that 

 

     <S| d 
2
 |S> = < φa| x

2
 |φa> + < φb| x

2
 |φb> – 2 < φa| x |φa> < φb| x |φb>  – 2 |< φa| x |φb>|

2
, 

 

where x is the one-particle position operator. Hint: derive these results formally. Switch to 

x-representation when useful, but do not evaluate any integral with sine functions etc. Only 

assume that you can use that φa and φb are real.  

Also show that in the antisymmetric state A it is 

 

     <A| d
2
 |A> = <S| d

2
 |S>  +  4 |< φa| x |φb>|

2
 . 

 

This result implies that the probability density associated with the antisymmetric state is 

different from that of the symmetric state. In particular, in the antisymmetric state the two 

electrons are (on average, in the sense of expectation value) a bit further apart. This has 

nothing to do with Coulomb repulsion or any other real force: it purely results from the fact 

that the actual quantum states in nature for 2 or more identical particles must be anti-

symmetric for fermions and symmetric for bosons. Still, it seems to act as an additional 

“exchange interaction”: if two electrons (fermions) are in the same spin state the orbital state 

must be anti-symmetric, while if two bosons are in the same spin state the orbital state must 

be symmetric. So, in this case the symmetry requirements act as if they are pushing the 

fermions a bit away from each other, while for bosons they act as if the bosons are attracting 

each other a bit. This occurs even when there are no real forces between the particles. This 

effect has no classical analogue! 
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Problem W7.2 

Consider again the type of system that you considered in Problem W4.1 of week 4 (a particle 

in a double-well potential, with a tunnel barrier between the two wells). As a reminder, we list 

here that the Hamiltonian Ĥ and operator for position Â and did not commute, but that their 

eigenstates were related as follows (with labels L(eft), R(ight), g(round) and e(excited), for 

position and energy respectively)  

 

 

 

 

 
.

2

1
2

1

2

1
2

1





























egR

egL

RLe

RLg









 

 

Now, however, consider that you have two identical versions of it at two different locations 

(two double-well potentials, each with one particle in it). One of the systems is at place P1, 

and the other at place P2, and the distance between these two places is much larger than the 

size of the double-well potential. 

 

 

a) At both places, you will do a measurement with observable Â (observable for position in 

the double-well system). What is the probability that you will get the outcome -a (particle is 

in the left well) for both systems, if the states of the systems at the moment just before the 

measurement are as follows? 

a-i)  the system at P1 is in the state |g and the system at P2 is in the state |e. 

a-ii) the system at P1 is in the state |e and the system at P2 is in the state |g. 

 

b) Now consider that you have again only a single double-well potential (exactly the same as 

before), but that this double-well potential contains two identical particles (the same type of 

particle as before). To describe this system, we need to label the particles from now on. We 

will use the indices 1 and 2 to label the particles, and the index T refers to the total system 

(see also this week’s handout Extra note on two-level systems, and exchange degeneracy for 

identical particles). 

These two particles do not interact. This means that the Hamiltonian of the total system is 

now 

21
ˆˆˆ HHHT   , 

where Ĥ1 and Ĥ2 are the operators Ĥ for each particle (now in the Hilbert space with states of 

the two-particle system). 

Assume that this total system (combined system with two particles) is prepared in a state with 

total energy ET = Eg + Ee. Show that the following three states are all an eigenstate of ĤT with 

energy ET = Eg + Ee. 

 

b-i) 21 egCT 

  

b-ii) 21 geCT 

  

b-iii) 



CTCTT          (see definitions in b-i) and b-ii)  ) 

 

c) It can be shown that in the case of identical particles, the only states
T (see definition 

in b) ) that occur in nature are for 
2

1  and 
2
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Show that 
ST  is symmetric and that 

AST is anti-symmetric with respect to exchanging 

the two particles in the system. 

 

d) We do a measurement to determine for both particles whether they are in the right well or 

in the left well (measurement in the sense of observable Â). Calculate for the following two 

states the probability that you will get the outcome -a for both particles. 

d-i) 
ST         (see definition in c) ). 

 d-ii) 
AST        (see definition in c) ). 


