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Problem set for the 6
th

 week of the course Quantum Physics 1 
(version 2015-2016, still valid in later years if handed out as a print or provided on the course website) 

 

Homework, to be made before the werkcollege: 

From the book (Griffiths 2
nd

 Ed.) Chapter 4  -    4.19, 4.27, 4.29, 4.31, 4.35. 

 

Problems to work on during werkcollege: 

Problem W6.1 – W6.5   (this hand out), and from the book Chapter 4   -   4.25, 4.32, 4.34. 

This is the minimal set you need to do. 

Other good problems that we selected (we advise you to make these for the topics where you need or 

like to do extra training): from the book Chapter 4   -   4.18. 

 

 

 

Problem W6.1 

If an electron is in a circular orbit around a nucleus, this state has an angular momentum L and the 

circular motion of the electron also causes a magnetic moment μ (at least when considering it semi-

classically, quantum mechanically these quantities can be zero for certain states). These two quantities 

are proportional to each other, according to μ = γ L, where γ is the so-called gyromagnetic ratio. The 

purpose of this exercise is to obtain the value of γ = -|e/2me| from a semi-classical calculation, where -e 

is the electron charge and me the electron mass (but see the footnote in the book by Griffiths below 

Eq. [4.156] for the result of a full quantum relativistic calculation). 

 

It turns out, that you do not need to know details of the electron orbit. For simplicity, you can therefore 

assume here that the electron is on a circular orbit of radius r with velocity v. Further use that the 

magnetic moment of a circulation current I in a loop of area A is μ = I A. Use this to calculate γ. 

 

 

 

 

Problem W6.2 

Most large hospitals now have a system for Magnetic Resonance Imaging (MRI, Nobel prize 2003). 

This is an apparatus that can make images of soft tissues inside the human body in a very noninvasive 

manner. The imaging technique is based on resonantly driving and detecting the signals of the quantum 

dynamics of nuclear spins. It mainly uses the nuclear spins of hydrogen atoms. Contrast in the images 

appears because the spin dynamics of the hydrogen nucleus depends on the chemical environment of 

the hydrogen atom (very small but detectable deviations). One can in this way basically see which 

organic molecules (that contain hydrogen) are present at a certain place in the body, and also how much 

water molecules are present at a certain place. The same technique in a physics lab is not called MRI, 

but Nuclear Magnetic Resonance (NMR). The technique is based on the dynamics of spins in a 

magnetic field, called Larmor precession (see the book by Griffiths, Eqs. [4.164 – 4.167]). For electron 

spins, the technique is called ESR (Electron Spin Resonance) or EPR (Electron Paramagnetic 

Resonance). 

A person in an MRI machine is brought to a place with a strong magnetic field. Assume for 

this problem that this is a field of strength Bz = 2 Tesla (typical value in practice, this is 40,000 times 

stronger than the Earth magnetic field). The field is applied in the z-direction. The spin of the hydrogen 

nucleus has s = ½. The Hamiltonian for this spin is now 

zz SBH ˆˆ  , 

where γ = +267.5·10
6
 rad s

-1
 T

-1
, and zŜ  is the operator for the z-component of the spin. The operators 

for the x- and y-component of the spin are xŜ  and yŜ , respectively. For notation, use that the states 

 and   represent spin-up and spin-down along the z-axis. 

a) 

Which of the operators zŜ , xŜ  and yŜ  commute with the Hamiltonian, and which ones do not? 

Explain your answer. 
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b) 

What are the energy eigenstates and energy eigenvalues of this Hamiltonian? In your answer, also 

specify which state is the ground state and which state or states is/are excited state(s). 

 

c) 

The MRI technique relies on applying an oscillating magnetic field that is resonant with the dynamics 

of the spin. At what oscillation frequency should one apply such an oscillating magnetic field in the 

MRI setup that we consider here? Calculate an actual number. 

 

d) 

Calculate (or simply list the answer if you know it) all matrix elements  jŜ ,  jŜ , 

 jŜ  and  jŜ , for the three cases j = x,y,z . 

 

e) 

The spins of the hydrogen nuclei are at time t = 0 prepared in the state  3
1

3
2

0 i . 

Calculate how the expectation values 
xŜ , 

yŜ and 
zŜ depend on time for t > 0. 

Hint: for short notation you could use the results  jŜ etc. of question d). 

 

f) 

As follow up on question e), make graphs for 
xŜ , 

yŜ and 
zŜ  as a function of time for t  0 (so, 

you must draw 3 graphs). Describe in words what the dynamics is of the spins in question e). If you 

like you can make a drawing with your explanation. 

 

g) 

If you want to measure the time-dependent spin dynamics of such spins (for example the dynamics of 

question e) and f) ), how could you measure that? Explain in some detail (10 lines of text) what the 

physical signal is that you would try to detect, and what apparatus you could build for that.  

 

 

 

Problem W6.3 

A certain atom is in a state with its total orbital angular momentum vector L (described by the operators 

xL̂ ,
yL̂ ,

zL̂ , and 
2L̂ ) defined by orbital quantum number l = 1. 

 

a) What is in this case the length of this vector for total angular momentum L ? 

For the system in this state, the operator for the z-component of angular momentum is zL̂ . It has three 

eigenvalues, +ħ (with corresponding eigenstate z ), 0ħ (with eigenstate z0 ), and -ħ (with 

eigenstate z ). This operator can be represented as a matrix, and the ket-states as column vectors, 

using the basis spanned by z , z0  and z , according to 
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Using this same basis for the representation, the operator and eigenstates for the system’s x-component 

of angular momentum are given by 
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b) Calculate with this information what the eigenvalues are that belong to x , x0  and x . 

c) At some point the system is in the normalized state zzz 
8
4

8
3

8
1

1 0 . 

Calculate for this state the expectation value for angular momentum in z-direction and the expectation 

value for angular momentum in x-direction. 

d) At some point the system is in the normalized state zzz 
3
1

3
1

3
1

2 0 , and 

you are going to measure the x-component of the system’s angular momentum. What are the possible 

measurement results? Calculate for each possible measurement result the probability, for the case that 

the system is in state 2 . 

e) At some point the system is in the state zzz ii  0233 . Note that this state is 

not normalized. Calculate for this state zL̂ . 

f) At some point the system is in the normalized state zz 
2
1

2
1

4 . Calculate for this 

state the quantum uncertainty zL  in the z-component of the system’s angular momentum. 

 

g) In this problem we study again how spins precess in a magnetic field. In problem W6.2 we studied 

this for spin ½ system. You will calculate it here for our spin 1 system. 

Assume now the system is prepared in a different state (now again a superposition of eigenstates of 

zL̂ ),    zz 0
2
1

2
1

5  , at time t = 0. Another change to the system is that one now 

applies an external magnetic field with magnitude B along the z-axis. The Hamiltonian of the system is 

now, zLBH ˆˆ  , where γ is a constant that reflects how much the energy of angular momentum states 

shifts when applying the field. Calculate how the expectation value for angular momentum in 

x-direction depends on time.  

Use Dirac notation and the time-evolution operator 

tHi

eU

ˆ

ˆ


 to get started and first describing the 

time dependence, but then switch to the matrix notation of this problem to work it out in detail.  
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Problem W6.4 

This problem aims to help you learn how addition of angular momentum works out in quantum 

physics. This is very important for later on in your study. The rules are in fact quite simple. But 

remember that it is one step more complicated than only adding two integer numbers (a common 

mistake on the exam). The problem starts with some simple questions about individual angular 

momentums (electron spin and orbital angular momentum). Part b) is then about addition of angular 

momentum. 

Consider a hydrogen atom. Assume that the electron is in a state for which the orbital wavefunction has 

the quantum numbers n = 4 and  l = 2 (using the usual notation). In this problem you need to consider 

the electron as a particle that has spin. 

a) We have an instrument that can be used to measure the z-component of angular momentum or to 

measure the length of an angular momentum vector. Before each measurement the electron is first 

prepared in the state with n = 4 and  l = 2. 

a1) The instrument is tuned to measure the z-component of the spin of the electron. What are the 

possible measurement outcomes? 

a2) The instrument is tuned to measure the length of the angular momentum vector while only 

measuring on the spin of the electron. What are the possible measurement outcomes? 

a3) The instrument is tuned to measure the z-component of the orbital angular momentum of the 

electron. What are the possible measurement outcomes? 

a4) The instrument is tuned to measure the length of the angular momentum vector while only 

measuring on the orbital angular momentum of the electron. What are the possible measurement 

outcomes? 

a5) A similar instrument can be used to measure the z-component of the magnetic dipole 

moment of the electron (from the electron on itself, it is not measuring a magnetic dipole 

moment from the orbital state). What are the possible measurement outcomes if this instrument 

is used? 

 

b) Now, the same instrument as in questions a1)-a4) is tuned to measure the total amount of angular 

momentum in the atom (the addition of orbital and spin contributions). In this problem you are 

supposed to ignore the angular momentum of the nucleus. Assume again that before each measurement 

the electron is first prepared in the state with n = 4 and  l = 2. What are now the possible measurement 

outcomes when: 

b1) we measure the length of the angular momentum vector of the atom’s total amount of 

angular momentum. 

b2) we measure the z-component of the total amount of angular momentum. 
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Problem W6.5 

This problem aims to help you learn the concept of Clebsch-Gordan coefficients in quantum physics. 

The hydrogen atom is a good system for getting insight in the role it plays in quantum physics, and for 

learning how the Clebsch-Gordan coefficients are used. 

So, consider a hydrogen atom. To keep it somewhat simple, we only consider the spin S


 of the 

electron and the orbital angular momentum L


 of the electron (we neglect the spin of the nucleus). In a 

real hydrogen atom, the spin of the electron and the orbital angular momentum of the electron interact 

with each other since they act as two magnetic dipoles that apply a force on each other. This gives 

small shifts to the energy levels of the hydrogen atom (not discussed in Chapter 4 of the book). Also, it 

gives that some levels that are degenerate according to the model of Chapter 4, split into a few levels 

with slightly different energies. 

You can see this as follows. The spin of the electron corresponds to a rotating charge, and therefore the 

electron has a magnetic dipole moment that is proportional to its spin (see problem W6.4a5). The same 

is true for the orbital angular momentum of the electron. In that case there is an orbiting charge that 

gives a magnetic dipole moment that is proportional to the orbital angular momentum (see problem 

W6.1). The interaction between them is therefore called spin-orbit interaction. You may think of this as 

the effect of the charge current in a loop (causing a magnetic field) that the electron feels because the 

positively charged nucleus flies around the electron (that’s how it is from the electron’s point of view). 

It turns out that due to the spin-orbit interaction, the energy levels (energy eigenstates) of the atom 

correspond to states that are also eigenstates for the total amount of angular momentum in the atom 

SLJ


  (specifically, the complete Hamiltonian commutes with the operator 
2Ĵ , and therefore also 

with the operator 
zĴ ). So, when the atom is in an energy eigenstate and also in an eigenstate of 

zĴ , the 

state of the spin and the orbital angular momentum are then not in eigenstates of 
zŜ  and 

zL̂ . Instead, 

the spin is then in a superposition of different spin eigenstates, and the same holds for the orbital 

angular momentum. 

The question is now: how is this superposition exactly? It is important to know this, for example when 

you want to understand whether a laser can induce transitions between certain energy levels of the 

atom. 

Let’s introduce the notation for the quantum numbers as follows: 

The operators for L


 have quantum numbers l for its length and ml for its z-component. 

The operators for S


 have quantum numbers s for its length, and ms for its z-component. 

The operators for J


 have quantum numbers j for its length and mj for its z-component. 

a) Consider a state for which it is known that l = 2 and s = ½. The atom is in an energy eigenstate for 

which the total angular momentum is in the eigenstate 

.,0,2,1,2,
2
1

2
1

2
1

2
1

2
1

2

3  slslj msmlmsmlmj 

Use the table in the book on p. 188 to determine the values of   and . 

b) With the atom in this state, we bring the atom into an apparatus that will measure the z-component 

of the electron spin. What is the probability that the measurement result is spin-up? 


