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Problem set for 4
th

 week of the course Quantum Physics 1 
(version 2015-2016, still valid in later years if handed out as a print or provided on the course website) 

 

Homework, to be made before the werkcollege: 

From the book (Griffiths 2
nd

 Ed.) Chapter 3  -  3.7, 3.13, 3.17, 3.31. 

 

Problems to work on during werkcollege: 

Problems W4.1 – W4.4 (this hand out), and from the book Chapter 3  -  3.14, 3.15, 3.38, this is the 

minimal set you need to do. 

Other good problems that we selected (we advise you to make these for the topics where you need or 

like to do extra training): 

from the book Chapter 3   -   3.8, 3.10, 3.12, 3.27. 

 

Problem W4.1 

In this problem you practice with quantum mechanical calculation on systems that can 

be represented by 2 x 2 matrix representations. 

In a molecule, an electron is tightly bound to the other particles in the system. In one 

direction, it can be in either one of two positions, because the electron experiences in 

this direction a one-dimensional potential as in the following sketch. 
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The barrier between the two wells is so high, that the tunneling (introduced in this 

week’s lecture, also see the Griffiths book, Sec. 2.5, before Eq. [2.109] and after 

Eq. [2.141]) between the left and right well is negligible. In this situation, the system 

has two energy eigenstates with the same energy E0. One of these states, denoted as 

|L, corresponds to the particle being localized around –a in the left well. The other 

energy eigenstate, denoted as |R, corresponds to the particle being localized around 

+a in the right well. All other energy eigenstates are so high in energy that they do not 

need to be considered. The system can therefore be described as a two-state system. It 

is then convenient to use a matrix and vector representation that uses |L and |R as 

basis vectors, which gives the following relations (Ĥ0 is the Hamiltonian) 
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When the molecule is placed in a static electric field of 1 V/mm, the only effect on the 

potential for the electron is that barrier between the two wells becomes lower. In that 

case tunneling between the two wells can no longer be neglected when describing the 

dynamics of the electron. Using the same matrix notation as before (also in the same 

basis), the Hamiltonian of the system is now (here T is a real and negative number) 
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For the rest of the problem, assume that the static electric field is on! 

 

a) From symmetry arguments it is known that the energy eigenstates of the 

Hamiltonian Ĥ are symmetric and anti-symmetric superpositions of |L and |R, 

which are (using the same basis and vector notation as in the above expression) 
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Here one of these vectors is the ground state |g and the other the excited state |e 

Calculate the energy eigenvalues Eg and Ee that belong to these energy eigenvectors, 

and show which eigenvector is the ground state and which one is the excited state. 

 

b) Prove that these energy eigenstates of Ĥ are normalized and orthogonal. 

 

c) There is an operator (observable) Â for the position of the electron in this double 

well system,  
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Calculate whether Â commutes with Ĥ0, and whether Â commutes with Ĥ. 

 

d) What are the eigenvectors and eigenvalues of Â? 

 

e) There is an experimental apparatus that can measure the physical property 

described by Â (determine whether the electron is in the left or the right well by 

performing a measurement of a short time). For the case that the system is in the 

ground state of Ĥ, discuss what the possible measurements outcomes are, derive the 

probability for each of the measurement outcomes, and what the state is immediately 

after the measurement for each of the measurement outcomes. 

 

f) Repeat question e), but now for the case that the system is at the moment of 

measurement in the state 
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g) The outcome of a measurement of Â (which ended at time t = 0) is that the particle 

is in the left well. Express the state at t = 0 in terms of state |g and |e. 

 

h) Calculate the value of the four quantities  

geegeegg AAAA  ˆandˆ,ˆ,ˆ . 

Describe in words what these quantities represent. 

 

i) Following up on question g) and h), calculate how Â  depends on time for t > 0. 

Describe in words what the calculation represents. 
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Problem W4.2  

This problem is meant to clarify the importance of symmetry in quantum mechanics. 

You will learn about an operator that can be used to characterize symmetry (parity 

operator), and why certain atomic transitions do not emit radiation at all because of 

symmetry while they are energetically allowed (so-called forbidden transitions, as 

opposed to allowed transitions , behavior that is summarized in selection rules). 

     Consider the following model system for an atom with one electron: a one-

dimensional particle-in-a-box system, where the potential for the electron outside the 

box is infinite, and inside the box the potential V = 0. The position of the electron is 

described by a coordinate x. The width of the box is a, with the walls at x = -a/2 and 

x = +a/2. Eq. [2.28] of the Griffiths book gives the energy eigenstates for a particle 

this system, but for a box (or quantum well) that runs from x=0 to x=a. Here we use a 

description where the box runs from x=-a/2 to x=a/2 (and slightly different notation 

with n(x) for the energy eigen states, instead of n(x) as in the book). The eigen 

energies En are of course the same, but the eigenstates are now 
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Assume that this system has an electrical dipole moment that oscillates when the 

system is emitting a photon. This can occur when the system is in a superposition of 

two different energy eigenstates 
m  and 

n . The operator for this dipole moment is 

XeD ˆˆ  , where X̂ the position operator and e the electron charge.  

 

We introduce here the parity operator P̂ , which is defined by how it works on a 

function f(x):  
 

).()(ˆ xfxfP   

 

It can be shown that P̂  has two eigenvalues +1 (even parity) and -1 (odd parity). Any 

even function is an eigenfunction for the eigenvalue +1, while any odd function is an 

eigenfunction for the eigenvalue -1. P̂ can also be used to characterize the symmetry 

(parity) of operators. 

 

a) Evaluate P̂ n(x) and derive for which n the state n(x) has even or odd parity. 

 

b) What is the parity of D̂ ? 

 

c) Use symmetry and parity arguments to show that this particle-in-a-box system 

cannot emit a photon when it is in a state that is a superposition of two energy 

eigenstates with the same parity. Hint: use the x-representation to evaluate all the 

elements like 
mn D ˆ  in an expression for how the dipole moment oscillates as a 

function of time during the emission of a photon. Note that in the expressions in 

x-representation you can use xx ˆ . 

 

d) An electron is in the third excited state of this system (from the four lowest energy 

eigenstates, the one with the highest energy). It can (and will) relax to lower energy 

eigenstates by spontaneous emission of a photon during the transition to this lower 

state. Discuss which relaxation processes are possible, and for each which photon is 
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(or photons are) emitted, and what the final state is. Use only symbols when 

answering this question. 

 

More in general one can derive the following rules (so-called selection rules, for 

example for optical transitions): 

 

Matrix elements (expressions like 
mn A ˆ ) of an even operator are zero between 

states of opposite parity. 

 

Matrix elements (expressions like 
mn A ˆ ) of an odd operator are zero between 

states of the same parity. 

 

 

 

 

Problem W4.3 

a) Consider a free particle with mass m, with kinetic energy E = p
2
/2m, moving in 1 

dimension. The uncertainty in its location is Δx. Show that if ΔxΔp > ħ/2, its energy-

time uncertainty then obeys ΔEΔt > ħ/2. Show first that (p/m)Δt = Δx. 

 

One technique to study physical processes in solid state systems as a function of time, 

is making use of ultrafast pulsed lasers. Such lasers produce Heisenberg limited 

optical pulses with an energy spread ΔE and have a duration Δt. The duration Δt limits 

the resolution at which we can study processes in solid state systems. A typical 

spectrum of the laser pulses ranges from 780 nm to 820 nm. 

 

b) Calculate the temporal resolution of such a laser. 

 

For some systems, we do not only want to study certain properties in time, but we also 

like to know how they depend on the spectrum with which we excite the system. 

 

c) Say we have an experiment in which we need to excite our system with 10 ps time 

resolution or better. To what spectral resolution are we limited in this case, if we need 

to study the system with pulses that have an average wavelength of 800 nm? Give the 

answer both in units nm and eV. 
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Problem W4.4 

Suppose an operator Â  has an eigenfunction φ1 with eigenvalue a1. It is 

non-degenerate: there are no other (linearly independent) eigenfunctions having 

eigenvalue a1. An operator B̂  commutes with Â , which is usually written as 0]ˆ,ˆ[ BA . 

 

a)  Show that φ1 is also an eigenfunction of B̂ .  

Hint: Show that 
1

ˆB  is an eigenfunction of Â , and use the fact that φ1 is 

non-degenerate. 

 

Now suppose there are two linearly independent eigenfunctions of Â : φ1 and φ2, each 

having eigenvalue a. Any linear combination c1 φ1 + c2 φ2 is an eigenfunction of Â  

corresponding to eigenvalue a, so now all we can say is that 
1

ˆB  and 
2

ˆB  are linear 

combinations of φ1 and φ2. Note that φ1 and φ2 are not necessarily also eigenfunctions 

of B̂ . 

 

However, it can be shown that when an operator Â  has n linearly independent 

degenerate eigenfunctions, one can form n linear combinations that are also 

eigenfunctions of B̂  (if Â  and B̂  commute). 

 

Let’s apply this to a free particle in one dimension. 

b) Show that the Hamiltonian of a free particle commutes with the momentum 

operator. 

 

The functions cos(kx) and sin(kx) are eigenfunctions of the Hamiltionian (with energy 

m

k

2

22
), but not of momentum. 

 

c) Show that you can indeed create 2 different linear combinations of cos(kx) and 

sin(kx) that are eigenfunctions of 
xp̂ . 

 

 


