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Problem set for 3
rd

 week of the course Quantum Physics 1 
(version 2015-2016, still valid in later years if handed out as a print or provided on the course website) 

 

Homework, to be made before the werkcollege: 

From the book (Griffiths 2
nd

 Ed.) Chapter 2  -   2.18, 2.19 (just use the result stated in problem 1.14. if 

you did not yet make that problem), 2.21 and from Chapter 3  -   3.1, 3.3, 3.22. 

 

Problems to work on during werkcollege: 

Problems W3.1 – W3.5 (this hand out) and from the book Chapter 3  -  3.5, this is the minimal set you 

need to do. Other good problems that we selected (we advise you to make these for the topics where 

you need or like to do extra training): 

from the book Chapter 2  -  2.20, and from Chapter 3  -  3.2, 3.4, 3.21, 3.23 (work this problem also out 

by using a matrix representation that uses the vectors |1 and |2 as basis vectors), 3.24. 

 

 

NOTE: Fourier transform relations between x- and k-representation of a state: 
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Problem W3.1 

This problem (about a particle in a box) is meant to clarify how the same state of quantum system can 

be represented in many different ways. The representations and notations that will be used here are:  

- describing a state using Dirac notation. 

- a wavefunction that is a function of position x. 

- a wavefunction that is a function of wave number k (or, equivalently, momentum px=ħk). 

- a superposition of energy eigenstates. 

On the way, you will practice with Fourier transforms and decomposition of a state into eigenvectors. 

 

a) The particle in the box is modeled as a particle in an infinitely deep potential well with V=0 for 

|x|<a/2, and V= elsewhere. The particle is brought into the box with a mechanism that results in a 

wavefunction for the particle that is evenly distributed in the well,   ax /1  for |x|<a/2 and zero 

elsewhere. Represent this state in the k-representation (hint: you need to Fourier transform the state).  

 

b) Alternatively, this state can for example be represented as a superposition of energy eigenstates of 

the system in Dirac notation, 
n nnc  . We will use this later in this problem. In this question 

we first pay attention to the relation between the x-representation and the representation with Dirac 

notation. Prove the relation    xx  (here x  is the eigenvector with eigenvalue x for the 

position operator x̂ , which means that the state x  in Dirac notation corresponds to δ(x’- x) in 

x-representation, see also Griffiths Eqs. [2.111]-[2.113] and [3.34]-[3.42]). 

 

c) Eq. [2.28] of the Griffiths book (ψn(x) in Sec. 2.2) gives the energy eigenstates for a particle in this 

system, but for a box (or quantum well) that runs from x=0 to x=a. Here we use a description where the 

box runs from x=-a/2 to x=a/2 (and slightly different notation with  n(x) for the energy eigenstates, 

instead of ψn(x) as in the book). The energy eigenvalues En are of course the same, but the eigenstates 

are now 
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Write down the eigenfunctions for odd n in the k-representation (you need to use the Fourier transform, 

see also Griffiths Eqs. [2.101]-[2.103] and [3.54]-[3.55]).  
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d) Sketch the wavefunction of the particle (for the state as in question a) ), as well as the energy 

eigenstates | 1 and | 9 in the k-representation. Explain the differences between the graphs.   

Hint 1: you need to sketch here a sinc function or the sum of two shifted sinc functions. In its most 

basic form the sinc function is sinc(x)=sin(x)/x. It is easy to construct as follows: Sketch sin(x), sketch 

1/x, and multiply the two graphs. Also look up the value of the limit of sin(x)/x for x0 (see for 

example Griffiths Eqs. [2.103]-[2.105]). 

Hint 2: for (x) in k-representation write it in the form of a sinc function. For | 1 and | 9 in 

k-representation, try to write this as the sum of two shifted sinc functions. That is, for n = 1 and n = 9 

your answer should have a term that contains the factor ))((sinc
2
a

a
nk   and a term that contains the 

factor ))((sinc
2
a

a
nk  . 

 

e) For continuing on b), you need to determine the coefficients cn for odd n. Prove the relation 

cn= n| in Dirac notation (this quantity cn is often called the projection of | onto | n). 

 

f) Evaluate the inner product cn= n| for odd n in the x-representation. 

 

g) Write down the inner product cn= n| for odd n in the k-representation, but only solve the integral 

if you feel like doing so.  

 

h) Without doing the calculation, can you say what the value is of cn= n| for even n. 

 

 

 

Problem W3.2 

In this problem use the definitions that for an even function f(x)=f(-x) and that for an odd function 

f(x)=-f(-x). Say (x) is an arbitrary function, and we introduce  
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Prove that e(x) is an even function, that o(x) is an odd function, and express (x) in terms of e(x) 

and o(x). Remember these properties for the rest of your life. 

 

 

 

 

Problem W3.3 

Consider an electron, that behaves as a one-dimensional quantum particle.  

a) At some time t0 the electron is in the state   a

x

Aex



 , where a and A real and positive. For 

which value of A is this state normalized? 

 

b) Derive an expression that describes this state as a superposition of plane waves with wavenumber k. 

 

c) Roughly estimate x and px for the state of question a), and check whether it violates the 

Heisenberg uncertainty relation. 

 

d) One wants to measure the velocity of this particle at time t0. Calculate the probability for getting a 

result between 40 km/s and 50 km/s (calculate it here for the case of phase velocity rather than group 

velocity). Calculate a numerical result, use a = 1 nm. You may need to use this solution to the 

following integral. 
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Problem W3.4 

A single electron is in a large empty space, where no fields or external forces act on this "free particle". 

We will only look at its behavior along the x-direction. At some time t = to, the wavefunction that 

describes the linear momentum px of the electron is (here a is real and positive) 
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a) If we would now measure the electron's velocity, what value are we most likely going to find? 

 

b) We decided not to measure the velocity, because we did not know well enough yet where the 

electron was. What was at to approximately the lower limit in the fundamental uncertainty in the 

x-position of the electron, expressed in meters? Use a = 9.109·10
-31

 kg m s
-1

.  

 

c) We are happy with the answer on b), the electron is well enough localized in the volume where we 

can do the experiments. However, our thinking about it took 100 seconds. Estimate how much the 

lower limit in the uncertainty in the x-position of the electron increased during this time. 

 

d) We decide to measure now as soon as possible. What is now the value for the electron's velocity that 

we are most likely going to find? 

 

 

Problem W3.5 

When working with states and operators in formulas and equations it is important to write them down 

in the proper order, and to take the complex conjugates and hermitian adjoints of operators (sometimes 

called hermitian conjugate) in the proper way when needed. To practice with this, we ask you in this 

problem to write what is presented in words as a formula. Where possible you must use Dirac notation. 

In your final answer, the operators must be outside the brackets |  and  | of the bra and ket notation. 

Note: if your answer differs from the answer sheets on any detail, you possibly have it really wrong. 

 

a) Operator Â  works on the ket-vector representing the state . 

 

b) Operator Â  works on the bra-vector representing the state . 

 

c) Operator Â  works on the ket-vector representing the state , and then operator Â  works on the 

result of this one more time. 

 

d) Operator Â  works on the ket-vector representing the state , and then operator B̂  works on the 

result of this. 

 

e) Operator Â  works on the bra-vector representing the state , and then operator B̂  works on the 

result of this. 

 

f) Operator Ai ˆe   (with phase factor) works on the ket-vector representing the state . 

 

g) Operator Ai ˆe   (with phase factor) works on the bra-vector representing the state . 

 

h) Operator Â  works on the ket-vector representing the state that is a superposition of the states  1 and 

 2 with the complex probabilities amplitudes  and , respectively. 

 

i) Operator Â  works on the bra-vector representing the state that is a superposition of the states  1 and 

 2 with the complex probabilities amplitudes  and , respectively. 

j) A point that may need clarification is how operators like the time evolution operator 
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have an operator in the exponent work on a state. Write out a Taylor expansion around t = 0 for this 

operator to show that the way that it works on the ket-vector representing the state  gives terms of the 

form that already appeared for the answer on a) and c). 


