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These slides: Wave Mechanics and Solid State 

 
 

 

Lectures for the 8th week of the course 

 

This week mainly re-visit Chapter 2 and solid-state physics topics 

of Chapter 5 

 

Any questions on the material till now? 
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This week   (many parts done on the board) 

 

1. Wave mechanics 

 

2. Tunneling 

 

3. Weakly coupling 2, 3, many quantum systems 

 

4. From particle-in-a-well to solid state physics 
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Until now:                            More realistic: 

V=0 

V= V= 

V=0 

V=V0 
V=V0 

What are now the energy eigenfunctions and eigenvalues? 
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V=0 

V = V0 > E 

Tunnel effect 
What is the behavior of a matter wave coming in form the left? 

Griffiths book problem 2.33 
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V=0 

V=V0 
V=V0 

V=0 

V0>E and V0<E both relevant 

 

V=0 
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Two cases 

 

Confined systems                   Scattering 

V=V0 

V=V0 
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V=0 

V=V0 

What is the wavefunction for the ground state? 

(………this is beginning of SOLID STATE PHYSICS ) 

V= V= 
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Griffiths book Fig. 2.7 7 

 



Peer instruction question 

 

How many graphs do you see at the same time here? 

 

A 1 

B 2 

C 3 

D 4 

0 

x 

 
V(x) 

0                        a 
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Time-independent Schrodinger equation: 
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Solving eigenfunctions: 

General case for time-independent Hamiltonian 
Philisophy for various sections with different constant V(x) 

Harmonic Oscilator => similar for non-constant V(x) 

 
To find  for realistic physical situation, use these 

boundary conditions 

   (here 1D case): 

 

 

 

 

 

1.  continuous 

2. d/dx continuous 

3.  normalized  * dx =1 

4.  limited, no unphysical extremes 

5.  is single-valued 

Question 1, why these items 1 & 2? 

Otherwise….. 

 

A   state cannot be normalized. 

B   Schrödinger eq. cannot be solved. 

C   too much kinetic energy needed. 

D   it would require V(x) to be infinitely steep 
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Solving eigenfunctions: 

General case for time-independent Hamiltonian 
Philisophy for various sections with different constant V(x) 

Harmonic Oscilator => similar for non-constant V(x) 

 

To find  for realistic physical situation, use 

these boundary conditions 

   (here 1D case): 

 

1.  continuous 

2. d/dx continuous 

3.  normalized  * dx =1 

4.  limited, no unphysical extremes 

5.  is single-valued 

Otherwise Fourier components 

with extremely high kinetic energy 

(high k-values) needed to form   
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Until now:                            More realistic: 

V=0 

V= V= 

V=0 

V=V0 
V=V0 

What are now the energy eigenfunctions and eigenvalues? 
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V=0 

V= V= 

V=0 

V=V0 
V=V0 

En = n2 E1 

E1 = ħ2π2/2ma2 

Question 2: 

Can you say which of these two systems has the lowest 

ground state energy? 

 

A Infinite well 

B Finite well 

C The same 

D No, in the finite well a particle cannot be trapped for ever 

Infinite                                               Finite 
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V=0 

V=V0 
V=V0 

Question 3: 

For the finite well, which state has the highest probability for being in 

a position with V = V0? 

 

A Eigenstate for E1 

B Eigenstate for E2 

C The same, and probability is non-zero 

D Probability is zero (and hence also the same) 

                                                         Finite 
14 

 



Solving eigenfunctions: 

General case for time-independent Hamiltonian 
Philisophy for various sections with different constant V(x) 

Next lecture Harmonic Oscilator => similar for non-constant V(x) 

 

To find  for realistic physical situation, use 

these boundary conditions 

   (here 1D case): 

 

1.  continuous 

2. d/dx continuous 

3.  normalized  * dx =1 

4.  limited, no unphysical extremes 

5.  is single-valued 

Otherwise Fourier components 

with extreme high kinetic energy 

(high k-values) needed to form   
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V=0 

V=V0>E 

First the case E < V0          (details of solution done on blackboard, see also the book) 

 

What is the behavior of a matter wave coming in form the left? 
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V=0 

V=V0>E 

What is the behavior of a matter wave coming in form the left? 

Question 4: 

The approach did use states eikx and not ei(kx-ωt) and the Time-Ind.Sch.Eq. 

How come this can be treated without time dependence? 

How come solutions do not show time dependence? 

 

A  The analysis is in fact wrong, but a good approximation for during 

    the collision. 

B  The analysis is right, since the Time-Ind.Sch.Eq. is always valid. 

C  The analysis is only valid here, since V(x) causes a full reflection. 

D  The analysis is right, since you can simply add the factor for 

    time dependence e-iωt later. 
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V=0 

V=V0>E 

What is the behavior of a matter wave coming in form the left? 

Remarks  (NOT IN BOOK!):  

1) The analysis and language used in describing 

this type of problem is a somewhat loosely defined mixture of a static and a dynamic picture! 

This can indeed be confusing, but still a widely used model. 

Think of a snapshot taken, while a very long wave packet is busy with scattering. 

 

2) It is valid for situations where the incoming wave is close to a plane wave. So, it is valid for wave 

packets that are spread out along x over a long range (x large). Such wave packets have small p in 

comparison with <p> (that is, also small quantum uncertainty in the kinetic energy of the particle). 

The approach is less valid for short wave packets with a large p and large quantum uncertainty in kinetic 

energy. 

 

3) Often they plot Re{eikx}, etc. 
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V=0 

V=V0<E 

Now the case E > V0 

 

What is the behavior of a matter wave coming in form the left? 
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Peer instruction question on: 

1

2
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R

k

k

A

C
T

Why the factor k2/k1 ? 

 

A   To account for the influence of the wavelength 

      on the transmission and reflection process. 

 

B   The probability amplitude C/A has the 

      wrong value, the actual transmitted wave 

      has a higher value because quantum 

      mechanics gives more probability for 

      transmission as compared to classical physics. 

 

C   This is in fact wrong, a better calculation 

      will give an answer without the factor k2/k1 . 

 

D   It accounts for the difference in velocity 

      between the reflected and transmitted 

      particle. 

 

The part of the wave that gets reflected 

moves faster than the part that gets 

transmitted. But keep in mind that the 

scattering happens in fact with a wave 

packet. The wave packet that contains the 

probability spreads out over a smaller 

range x (begin to end fo wave packet) if 

the velocity is lower. 
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V=0 

V=V0>E 

Tunnel effect 
What is the behavior of a matter wave coming in form the left? 

Griffiths book problem 2.33 

2a 
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See Griffiths book. Eq. [2.169] and problem 2.33 
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)sinh(x

2

xe
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xe

For a wide range of the parameters, the tunnel transmission  

(solution for E<V0) goes down exponentially with increasing mass m, and 

increasing thickness of the barrier a and height of the barrier V0. 
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V=0 

V=V0 

Weakly couple two quantum wells, with a single particle in the total system. 

What is the new wave function for the ground state? 

V= V= 

Coupling 2 quantum systems: LCAO 
Linear Combination of Atomic Orbitals 

Next slides show the approach as in 

problem W4.1 where we directly 

calculate the new energy eigenstates 

and eigenvalues of the system if the 

two wells are coupled, by solving the 

time-independent Schrödinger 

equation as a 2 by 2 matrix. 
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Two coupled wells                                        

 

Tunnel coupling gives OFF-DIAGONAL ELEMENTS 

x 

V(x) 

x1    x2       

Mechanical system, with 2 states 

Ei describes the energy of the system when it is only in the well at xi 

 

T describes the energy associated with the mechanism that makes 

transitions from well 1 to well 2, and vice versa, possible. 
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See also problem W4.1 
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New eigenvalues Eg and Ee 
(Note that this equation is the time-indepent Schrödinger equation) 

Assume E2 =E1 

Fill in for the general solution for 2x2 eigenvalue problem: 

See also problem W4.1 
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V=0 

V=V0 

What is the wavefunction for the ground state? 
The symmetric or the anti-symmetric superposition? 

V= V= 

a       b       a 

See also problem W4.1 

27 

 



V=0 

V=V0 

For the lowest two energy eigenstates: 
Write down an expression for calculating the amount of potential energy 

and kinetic energy that are present in Eg and Ee. 
Choose wise whether to do it in x-representation or k-representation. 

V= V= 

a       b       a 

See also problem W4.1 
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Calculations for this example are done for 

See also problem W4.1 
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V=0 

V=V0 

V= V= 

b 

0 

  0 b 

Energy eigenvalues 

Energy levels for isolated potential wells 
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0 

  0 b 

Energy eigenvalues 

Energy levels for isolated potential wells 

V=0 

V=V0 

V= V= 

b 

V=V0 

b 

3 or 4 levels? 

 3 
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0 

  0 b 

Energy eigenvalues 

Energy levels for isolated potential wells 

V=0 

V=V0 

V= 

b 

V=V0 

b 

V= 

V=V0 
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0 

  0 b 

Energy eigenvalues 

Energy levels for isolated potential wells 

“BANDS” 

V= V= 

b 

From 1D potential well to solid state material 

These figures must be understood 

qualitatively, also for making 

problem W8.3. 

Problem W8.3, these slides, and 

the general idea of the solid-state 

description in section 5.3 and 5.4 

(in particular Fig. 5.7) in the 

Griffiths book must be known for 

the exam. 

“BAND GAP” 
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Why is gold a conductor, and glass not? 

 

Why are some materials transparent? 

 

What is electrical current in a metal? 

 
(worked out on the blackboard) 
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Summary: 
1. Wavefunction incident on finite potential 

 

2. Tunnel effect 

 

3. Solid state physics has its basis in the physics of a 

particle in a quantum well (particle in a box) 

36 

 


