Quantum Physics 1 2015-2016

These slides: The Harmonic Oscillator

Lectures for the $7^{\text {th }}$ and $8^{\text {th }}$ week of the course
Last lectures mainly re-visit Chapter 2 and present
The solid-state physics topics of Chapter 5

Any questions on the material till now?

Today

Harmonic oscillators, photons

....vacuum fluctuations
....Casimir effect

1D Harmonic oscillator

1D Harmonic oscillator Very important model systems

EM waves (photons)

Lattice vibrations (phonons)

Small oscillations around equilibrium in a coupled system (e.g. effective potential in solid state)

Taylor expansion for small deviations around the x-position of the potential minimum show that the effective potential is here very close to parabolic (Griffiths Eqs. [2.42]-[2.43]).

Solving time-independent Schrodinger equation - As in lecture on wave mechanics

Eigen states and zero-point or vacuum fluctuations

Groundstate has nonzero energy:
Zero-point or vacuum
fluctuations

$$
\begin{aligned}
& \hat{H}=\hbar \omega_{0}\left(\hat{N}+\frac{1}{2}\right) \\
& \hat{H}|n\rangle=\hbar \omega_{0}\left(n+\frac{1}{2}\right)|n\rangle
\end{aligned}
$$

1D Harmonic oscillator

$$
\hat{H}=\frac{\hat{p}_{x}^{2}}{2 m}+\frac{K}{2} \hat{x}^{2}
$$

$\left\langle\hat{H}=\frac{\hat{p}_{x}^{2}}{2 m}+\frac{m \omega_{0}^{2}}{2} \hat{x}^{2}, \quad \omega_{0}=\sqrt{\frac{K}{m}} /\right.$

1D Harmonic oscillator

Any harmonic oscillator can be expressed in a pair of normalized, dimensionless, conjugate coordinates

Other example of harmonic oscillator system that can be mapped on dimensionless coordinates a_{x} and a_{p} : LC circuit

$\hat{H}=\frac{\hat{Q}^{2}}{2 C}+\frac{\hat{\Phi}^{2}}{2 L}, \quad \omega_{0}=\sqrt{\frac{1}{L C}}$

$$
\begin{aligned}
& \hat{H}=\frac{\hbar \omega_{0}}{2}\left(\hat{a}_{p}^{2}+\hat{a}_{x}^{2}\right) \\
& \hat{a}_{p}=\sqrt{\frac{1}{C \hbar \omega_{0}}} \hat{Q} \\
& \hat{a}_{x}=\sqrt{\frac{C \omega_{0}}{\hbar}} \hat{\Phi} \\
& {\left[\hat{a}_{x}, \hat{a}_{p}\right]=i}
\end{aligned}
$$

Vacuum and spontaneous emission by 2-level systems

Vacuum

Two-level system

Hamiltonian for oscillating modes of the EM field in vacuum (here expressed as the energy density of E and B field)

$$
\hat{H}=\frac{\varepsilon_{0}}{2} E^{2}+\frac{1}{2 \mu_{0}} B^{2}
$$

Eigen states and zero-point or vacuum fluctuations

Groundstate has nonzero energy:
Zero-point or vacuum
fluctuations

$$
\begin{aligned}
& \hat{H}=\hbar \omega_{0}\left(\hat{N}+\frac{1}{2}\right) \\
& \hat{H}|n\rangle=\hbar \omega_{0}\left(n+\frac{1}{2}\right)|n\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \int \hat{a}=\frac{1}{\sqrt{2}}\left(\hat{a}_{x}+i \hat{a}_{p}\right) \quad \text { Annihilation/destruction operator } \\
& \hat{a}^{+}=\frac{1}{\sqrt{2}}\left(\hat{a}_{x}-i \hat{a}_{p}\right) \quad \text { Creation operator } \\
& \left\{\begin{array}{l}
\hat{a}_{x}=\frac{1}{\sqrt{2}}\left(\hat{a}^{+}+\hat{a}\right) \\
\hat{a}_{p}=\frac{i}{\sqrt{2}}\left(\hat{a}^{+}-\hat{a}\right)
\end{array}\right. \\
& {\left[\hat{a}, \hat{a}^{+}\right]=1 \quad \text { Why use this notation? }} \\
& \text { Algebraic convenience } \\
& \text { Physical meaning op creation and annihilation }
\end{aligned}
$$

Note: the notation on these slides differs a bit from the Griffiths book, according to $\hat{a} \rightarrow \hat{a}_{-}$and $\hat{a}^{+} \rightarrow \hat{a}_{+}$. I do this on purpose, since the notation used here is much more widely used in the literature.

$$
\begin{aligned}
& {\left[\hat{a}, \hat{a}^{+}\right]=1} \\
& \hat{a} \hat{a}^{+}-\hat{a}^{+} \hat{a}=1 \\
& \hat{a} \hat{a}^{+}=\hat{a}^{+} \hat{a}+1 \\
& \hat{a}^{+} \hat{a}=\hat{N} \\
& \hat{a} \hat{a}^{+}=\hat{N}+1
\end{aligned}
$$

$$
\hat{H}=\hbar \omega_{0}\left(\hat{N}+\frac{1}{2}\right)
$$

$$
\hat{H}|n\rangle=\hbar \omega_{0}\left(n+\frac{1}{2}\right)|n\rangle
$$

Nature of eigensates leads to the concept of PHOTONS
$\hat{N}|n\rangle=n|n\rangle$
$\hat{a}|n\rangle=\sqrt{n}|n-1\rangle \quad$ Annihilation/destruction operator

- removes a photon from a state
$\hat{a}^{+}|n\rangle=\sqrt{n+1}|n+1\rangle \quad$ Creation operator
- adds a photon to a state
$\hat{a}|0\rangle=0$
Only positive photon numbers

Eigen states and zero-point or vacuum fluctuations

Groundstate has nonzero energy:
Zero-point or vacuum
fluctuations

$$
\begin{aligned}
& \hat{H}=\hbar \omega_{0}\left(\hat{N}+\frac{1}{2}\right) \\
& \hat{H}|n\rangle=\hbar \omega_{0}\left(n+\frac{1}{2}\right)|n\rangle
\end{aligned}
$$

Discussion of Wikipedia page about Jaynes-Cummings model

http://en.wikipedia.org/wiki/Jaynes\%E2\%80\%93Cummings model

as an example of how raising and lowering operators, and creation and annihilation operators can be very useful. Here it is used when an atom is coupled to a photonic mode.

Casimir effect

Harmonic oscillator, photons

Last 2 lectures:

Wave mechanics, tunneling
Coupling 2 quantum systems: LCAO From 1D potential well to solid state

