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These slides: The Harmonic Oscillator 
 

 

Lectures for the 7th and 8th week of the course 

 

Last lectures mainly re-visit Chapter 2 and present 

The solid-state physics topics of Chapter 5 

 

 

 

Any questions on the material till now? 
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Today 

 

Harmonic oscillators, photons 
 

 

 

 

 

….vacuum fluctuations 

 

….Casimir effect 
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1D Harmonic oscillator 

Very important model systems 

EM waves (photons) 

 

Lattice vibrations (phonons) 
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Small oscillations around equilibrium 

in a coupled system (e.g. effective 

potential in solid state) 

Taylor expansion for small deviations around the x-position of the potential minimum show 

that the effective potential is here very close to parabolic (Griffiths Eqs. [2.42]-[2.43]). 
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Solving time-independent Schrodinger equation – As in lecture on wave mechanics 5 

 

Local (x-dependent) 

solutions have the 

following character: 
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Groundstate has 

nonzero energy: 

Zero-point or vacuum 

fluctuations 
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Eigen states and zero-point or vacuum fluctuations 
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1D Harmonic oscillator 
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Any harmonic oscillator can be expressed in a pair of 

normalized, dimensionless, conjugate coordinates 
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Other example of harmonic oscillator system that can be 

mapped on dimensionless coordinates ax and ap: LC circuit 
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kinetic-energy-like term 

(C is “mass”, Q is “momentum”) 

potential-energy-like term 

( is “position”) 

9 

 



-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Vacuum and spontaneous emission by 2-level systems 
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Vacuum 

Two-level system 
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Hamiltonian for oscillating modes of 

the EM field in vacuum 

(here expressed as the energy density of E and B field) 
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Groundstate has 

nonzero energy: 

Zero-point or vacuum 

fluctuations 
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Eigen states and zero-point or vacuum fluctuations 
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Note: the notation on these slides differs a bit from the Griffiths book, 

according to                     and                      .   I do this on purpose, since 

the notation used here is much more widely used in the literature. 

 

 

 

 

  1

2

2

1

2

1
2

1





































aa

aa
i

a

aaa

aiaa

aiaa

p

x

px

px

ˆ,ˆ

ˆˆˆ

ˆˆˆ

ˆˆˆ

ˆˆˆ

Creation operator 

Annihilation/destruction operator 

Why use this notation? 

 Algebraic convenience 

 Physical meaning op creation and annihilation 

Non-Hermitian 

operators! 
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Creation operator 

         – adds a photon to a state 

Annihilation/destruction operator 

                    - removes a photon from a state 

Only positive photon numbers 
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Discussion of Wikipedia page about Jaynes–Cummings model 

 

http://en.wikipedia.org/wiki/Jaynes%E2%80%93Cummings_model 

 

as an example of how raising and lowering operators, and creation and 

annihilation operators can be very useful. Here it is used when an atom 

is coupled to a photonic mode. 
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http://en.wikipedia.org/wiki/Jaynes%E2%80%93Cummings_model
http://en.wikipedia.org/wiki/Jaynes%E2%80%93Cummings_model


Casimir effect 

16 

 



17 

 



Summary: 
 

 

 

 

 

 

Last 2 lectures: 
    

  Wave mechanics, tunneling 

  Coupling 2 quantum systems: LCAO 

  From 1D potential well to solid state 

   

 

   

Harmonic oscillator, photons 
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