Quantum Physics 1

Key formulas and extra pictures
on the
guantum description of the hydrogen atom

Hydrogen Electron Orbitals

Probability Density
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The main ideain Sec. 4.1 and 4.2 is to characterize/describe the
guantum states of the hydrogen atom

This means, that it is nothing more or less than working out
H|¥)=E|¥)

This is now a problem in 3D, it is solved in spherical coordinates, and then it looks like

21198 (,00 1 8 Iy 1 3%y
SN P e — {sing—
m [;-2 ar (' a;-) t 7 sing 90 (S'" ae) T e (aqb?)]

+Vy=Ey. [4.14]
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where V =V (r) =
Arg, T

[4.52]
and it leads to a bit more algebra than for a particle in a 1D infinitely deep potential well

But the final results can be fully summarized by 3 integer quantum numbers
(defining the eigen values) n, |, and m,

and is much more concise and elegant than the pages of algebra that lead to this result.



In 3D, a particle that moves around a nucleus has angular
momentum. First a question about this:

What is the character of the set of eigenvalues for
an operator for angular momentum (and what is
the reason, give the best answer)?

A) Continuous: It is like the position of a free particle,
It can take on any value when measured.

B) Continuous: Since there are no boundary
conditions for the eigenvalue problem.

C) Discrete: Since you only get discrete answers
when you measure it.

—> D) Discrete: Since the eigenstates need to fulfill

constructive interference with themselves upon
rotation.

Periodic boundary conditions for the eigenvalue
problem.



Done on the black board:
Tutorial and discussion on how to build an atomic clock

These weeks also: re-visit the postulates of week 2, now in Dirac
notation.



Atomic clocks

1991 Cesium standard clock 2013 New research
NIST-F1 begins operation with an uncertainty NIST ytterbium atomic clocks set
of 1.7 x 1015, or accuracy to about one record for stability.

second in 20 million years. Ticks stable to within less than two

Crucial for GPS and many other applications. parts in 1018




Some key point in the derivation as in the Griffiths book, p. 136 6

®(0) = AP (cosh), [4.26]
where P/ is the associated Legendre function, defined by®
I
NI A
P (x)=(1- xa2)lmiz2 (T-) Pr(x). [4.27]
dx

and Pj(x) is the /th Legendre polynomial, defined by the Rodrigues formula:

Py = = (d o 1) [4.28
RO TT d.r) e 28]
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Section 4.1: Schrodinger Equation in Spherical Coordinates 137

TABLE 4.1: The first few Legendre polynomials, Pj(x): (a) functional form,
(b) graphs.

A
!
P,=1
P/ =x
Py=1(3x2 - 1)
Py=+(5x% - 3x)
P, = (35x% =305 +3)
Ps= (6313 = 7053 + 15y)

(a) (b)



138 Chapter 4 Quantum Mechanics in Three Dimensions 8

TABLE 4.2: Some associated Legendre functions, Pf" (cos@): (a) functional form,
(b) graphs of r = P{" (cos ) (in these plots r tells you the magnitude of the function in
the direction 6; each figure should be rotated about the z-axis).

~

PO=1 PY= L3 cos” 61

0 173 ) PiB) Pl
Pl=sinf P3 =15 sin 6(1 — cos” 6) ) )
P =cos 0 Pi=15sin’0 cos @ ) Po)

H

P§=35in26‘ P}:%sinﬁ(ﬁcos:&—l) I
le — 3 sin 8 cos 6 P%} - -['_(5 cosi @ — 3 cos 9) P‘:'(H] P_;(HJ

(a) (b)



Section 4.1: Schrédinger Equation in Spherical Coordinates

TABLE 4.3: The first few spherical harmonics, Y ;”(9. o).

YY) = (k%)“2 (3cos’0—1)
i »
Yl =7 (g) sin 6 cos Pe=¢

Y= (-?—n) - (5 cos*0— 3 cos 6)

1 - . .
Y =% (___)m sin 8 (5 cos” 6 — 1)ei®
k T
=5 ].I’r: . ¥ -
Yit= (.@) sin” 0 cos Ge T2

_ 12 . :
Y =% (3—51) sin® Pe i@

The normalized angular wave functions

8

er‘mtp P;H (cos 9)‘

—_ |
ern(g! 0) = 6‘/(ZI + 1) (I — |m|)!

(I + |m|)!

are called spherical harmonics:

139 °

[4.32]



Section 4.1: Schrodinger Equation in Spherical Coordinates

TABLE 4.4: The first few spherical Bessel and Neumann functions,
Jn(x) and n;(x); asymptotic forms for small x.

. sinx cas x
J()=T ny==—"7
., _sinx  cosx g = _COS X sin x
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= Lx". n;%—& L, forx << 1.
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FIGURE 4.2: Graphs of the first four spherical Bessel functions.

143

10



where

LY  (x)= (-7 e pL--(x)
Pt © \dx “

is an associated Laguerre polynomial, and

(1:)—8 (

d

- )'q (e x9)

p.152 1

[4.87]

[4.88]

is the gth Laguerre polynomial.'® (The first few Laguerre polynomials are listed
in Table 4.5; some agsociated Laguerre polynomials are given in Table 4.6. The
fitst few radial wave functions are listed in Table 4.7, and plotted in Figure 4.4.)

The normalized hydrogen wave functions are
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TABLE 4.5: The first few Laguerre polynomials, Lg(x).

Section 4.2: The Hydrogen Atom

LQ=1

Ly=—x+1
Ly=x*—4x+2
Ly=—x>+9%*— 18x +6

Ly =x"—16x3 + 72x2 — 96x + 24
Ls =—x> +25x* — 200x3 + 600x2 — 600x + 120
Lg=x —36x5 + 450x% — 24003 + 5400x2 — 4320% + 720

TABLE 4.6: Some associated Laguerre

polynomials, Lf;_ p (%)

L§=1

Lf-:—x+1
L§=x2—4x-+2'
Li=1
Li=-2x+4
L}=3x-18x+18
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12x2 — 96 + 144
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154 Chapter 4 Quantum Mechariics in Three Dimensions

TABLE 4.7: The first few radial wave functions for hydrogen,
'Rn'i CF ]'

R g =2a"32 exp(~ria)

Ry = g 302 (1 Ll )exp (—r/24)

2 2
Ry :ﬁ a2 ﬁ exp (—r2a)

R1V30
_1 —afi( _3r l(z’)?ﬁi(_r;)‘) _
Rap 2 =727 35lG 192\a exp.(-r/4a)
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Section 4.2: The Hydrogen Atom 155 14
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FIGURE 4.4: Graphs of the first few hydrogen radial wave functions, R,;;(r)
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Chapter 4 Quantum Mechanics in Three Dimensions

(2,0,0) (3,1,0) N (4,0,0)

(4,1,0) (4,2,0) (4,3,0)

FIGURE 4.5: Density plots for the hydrogen wave functions (#, /, #), Imagine each
plot to be rotated about the (vertical) z axis. Printed by permission using “Atom in.a
Box,” v1.0.8, by Dauger Research. You can make your own plots by going to the Web
site http://danger.com.
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Section 4.2: The Hydrogen Atom
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For the hydrogen atom

0.5 A
0.5+
The integrated
probability density in 0.4
a spherical shell
with radius r and 0.3 7

thickness dr

15 orbital

2p orbital 25 orbital

r in units of the Bohr radius
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Section 4.2: The Hydrogen Atont
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FIGURE 4.7: Energy levels and transitions in the spectrum of hydrogen.
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