Quantum Physics 1
 Lecture of 17 Sept. 2015

Quick check list and mini test for midterm exam

Concepts you must know, be able to apply for the mid-term exam:

- Expectation value $\langle\mathrm{x}\rangle$ for a state $\Psi(\mathrm{x})$
- Uncertainty Δx for a state $\Psi(x)$
- Normalizing a state $\Psi(\mathrm{x})$
- Heisenberg uncertainty relation
- Probability for measurement outcomes if you measure x, given a state $\Psi(x)$
- State of a system after measurement
- Dirac notation
- Inner product in Dirac notation
- Expectation value in Dirac notation
- Hamiltonian
- Energy eigenvalues and eigenvectors
- Eigenvectors of an observable are orthogonal
- Expectation value as a function of time for any observable Â
- Time evolution operator $\hat{U}=e^{\frac{-i \hat{H} t}{\hbar}}$ for "kets" and $\hat{U}^{+}=e^{\frac{+i \hat{H} t}{\hbar}}$ for "bra's"
- Fourier transform between x-representation and k-representation of a state
- Particle in a box (infinitely deep square well)

Write down -by heart- the expression for calculating the Fourier transform from x-representation to k-representation of a state

$$
\begin{array}{lll}
\Psi(x) & \stackrel{\mathscr{F}}{\leftrightarrow} & \bar{\Psi}(k) \\
\bar{\Psi}(k)= &
\end{array}
$$

Write down -by heart- the expression for calculating the Fourier transform from x-representation to k-representation of a state

$$
\begin{aligned}
& \Psi(x) \stackrel{\mathscr{F}}{\leftrightarrow} \bar{\Psi}(k) \\
& \bar{\Psi}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x} \Psi(x) d x \\
& \Psi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i k x} \bar{\Psi}(k) d k
\end{aligned}
$$

Quick check:

\hat{A} is an observable (operator) with eigenvalues A_{1} and A_{2}, and associated normalized eigenfunctions $\varphi_{1}(x)$ and $\varphi_{2}(x)$.

Say:

$$
\Psi=\sqrt{\frac{1}{3}} \varphi_{1}+\sqrt{\frac{a}{3}} \varphi_{2}
$$

For what \boldsymbol{a} is this state normalized?

2

Note: Can also be done in Dirac notation

Quick check:

\hat{A} is an observable (operator) with eigenvalues A_{1} and A_{2}, and associated eigenfunctions $\varphi_{1}(x)$ and $\varphi_{2}(x)$.

Say:

$$
\Psi=\sqrt{\frac{1}{3}} \varphi_{1}+\sqrt{\frac{2}{3}} \varphi_{2}
$$

What is the probability for measurement outcome A_{1} ?

Quick check:

Â is an observable (operator) with eigenvalues $A_{1}=0$ and $A_{2}=1$, and associated eigenfunctions $\varphi_{1}(\mathbf{x})$ and $\varphi_{2}(x)$.

Say:

$$
\Psi=\sqrt{\frac{1}{3}} \varphi_{1}+i \sqrt{\frac{2}{3}} \varphi_{2}
$$

What is now the probability for measurement outcome A_{2} ?

Quick check:

\hat{A} is an observable (operator) with eigenvalues $A_{1}=1$ and $A_{2}=2$, and associated eigenfunctions $\varphi_{1}(x)$ and $\varphi_{2}(x)$.

Say:

$$
\Psi=\sqrt{\frac{1}{3}} \varphi_{1}+i \sqrt{\frac{2}{3}} \varphi_{2}
$$

What is the value of $\int_{-\infty}^{\infty} \varphi_{1}^{*}(x) \hat{A} \varphi_{2}(x) d x ?$

Quick check:

Â is an observable (operator) with eigenvalues $\mathrm{A}_{1}=0$ and $\mathbf{A}_{2}=1$, and associated eigenvectors $\left|\varphi_{1}\right\rangle$ en $\left|\varphi_{2}\right\rangle$.

Say:

$$
|\Psi\rangle=\sqrt{\frac{1}{3}}\left|\varphi_{1}\right\rangle+i \sqrt{\frac{2}{3}}\left|\varphi_{2}\right\rangle
$$

What is the value of $\langle\hat{A}\rangle$?

$$
\langle\hat{A}\rangle=\langle\Psi| \hat{A}|\Psi\rangle
$$

2/3

