Quantum Physics 1
2015-2016

Lectures of the 3rd and 4th week of the course

Question about anything till now
(lectures, problem sets)?

At start of 2nd |ecture this week:
Quick test/check and reminders mid-term exam



Homework for week 3 of the course

Study: Chapters 2 and 3,

emphasis on sections 2.4, 3.1, 3.2, 3.6
and Eqgs. [2.111]-[2.113] (Dirac delta function in Sec. 2.5, )

(2.1, 2.2, 2.3 was last week)
See http://www.quantumdevices.nl/teaching/
Problems:
To be made before the tutorial session

Chapter 2 - 2.18, 2.19, and 2.21
Chapter 3 - 3.1, 3.3, and 3.22
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Slides for week 3 and 4:

. Dirac delta function

. Fourier basics

1
2
3. Role Fourier in guantum mechanics
A4

. Dirac notation

And aISO thIS Or neXt Week (not for midterm exam):

5. Group and phase velocity of wave packets

6. Research examples particle in a box



What on these slides should you know for the mid-term exam?

The set of slides includes the topics:

- the Dirac delta function

- the Fourier transform and its role in qguantum physics

- basics of wave packets

- Dirac notation

This is part of week 3 (and must be known for the midterm exam).
These topics are also needed for problem W3.1.

Some topics on these slides are presented in week 4 (not for mid term exam). These are:
- group velocity and phase velocity for wave packets (and any wave phenomenon),
- some research topics related to a particle-in-a-box system



Delta
function



K fronecC ker d e I ta (Eq. [2.31] in Griffiths book)

1 for n=m

0, for n=m




Intermezzo: (Egs. [2.111]-[2.113] in Griffiths book)

Dirac-delta function 6(x)

Fourier transformation

....same as from the course that introduced Fourier Theory

(this was in recent years the course Calculus 3 or Mathematical Physics)
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Dirac-delta function 6(x)

0, x> <

5(x) = lim: 2
e—0 E

_ ‘X‘S—

E 2

Té(x)dx =1

]if(x)&(x—a)dx: f(a)




Dirac-delta function 6(x) from block function

0, X

\Y

5(X)= lim-
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Dirac-delta function 6(x) from a Gaussian

olz)

5(x )"g'l‘é‘gr
T5(x)dx:1
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Dirac-delta function (x)

]if (x)5(x—a)dx = f(a)

f(x),

S(x—a)




Dirac-delta function (x)

Té(x—a) S(x—a)dx = s(a—a)=5(0)= oo

Wave functions in the form of a Dirac delta
function cannot be normalized.

The fact that a wave functions §(x-a) cannot be normalized, is because Iin
guantum mechanics the uncertainty Ax in the position of the particle can
never be really zero (see also Griffiths near Egs. [2.90]-[2.99]). Physically,
the state o(x-a) cannot exist. However, the Dirac delta function is a very
useful mathematical tool for calculations with wave functions. The same is
true for plane waves as in Griffiths near Egs. [2.90]-[2.99], [3.32]-[3.35] and

Liboff p. 72, that run by definition from -« to +«, and which also do not exist
In practice.
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Fouriler



In the lecture, first ask students to work out a regular inner product for 2 simple 3D vectors.

Goal for today:
At the end of this lecture, these equations
should be very familiar and natural to you

X(t) = ;ﬂ j e X (o) doo
-
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Tutorial on Fourier theory

and its role in quantum mechanics

FOURIER IS VERY WIDELY USED IN PHYSICS
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First very basic:
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19
I[dea behind Fourier transformation:

Every physical signal as a function of time can be written in a
unique (and therefore Invertible) manner as a linear
combination of sines and cosines of various frequencies.

Thus, it can be represented as a amplitude-spectrum and a

phase-spectrum.

X(t)= ; A, cos(wt)+ B, sin(wt)
=>"C,cos(wt+4,)

with wo=2xf

“Physical signal ” means continuous, differentiable,
Integrable from —e to +.



But then we also must have:

Every physical signal as a function of frequency can be
written in a unique (and therefore invertible) manner as a
linear combination of sines and cosines of various
dependencies on time.
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Paired variables with a Fourier relation

Time versus frequency, in time

X(t)e X(w)  with o=27f

Position versus frequency, in space

g(x)>G(k)  with k= 27”

Wave function W(X) versus wave function W(p,)

¥(x)< P(p,)  with p, =&k en k:%”
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Say x(t) is even: X(t) = Z Aw COS(C{)t)

What is a good measure for Aa) ?

A o Tcos(cot)-x(t) dt

2 X(1)

AW/A AWAWAWAW \WANWAWAWA A\ WA

S~V V V V V VgV V V V V V Y

Note: Solve the integral graphically on the board.



Say x(t) is odd: X(t) = Z B_si n(a)t)

What is a good measure for Bw ?

B o Tsin(a)t) . x(t) dt

2 X(1)
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Say x(t) is real and a sum of even and odd: X(t)=>_A, cos(wt)+ B, sin(wt)

, =Y'C', cos(wt+g,)
What is a good measure for Cw? @
Easier with complex spectrum: x(t)= Z Re(Ca,eiwt)
Ca) oC je_i“’t y X(t) dt Ca) has amplitude and phase
- AX(t)
AWAWAWAY AWAY FAW AWAWAWAWA ¢
VARV vV VUV V V V \/

0



Say x(t) is complex and a sum as X(’[)z ZC giot 25

(with various phase values): - @

What is a good measure for the (complex!) Cw ?

Again a complex spectrum:

Ca) oC je_iwt : X(t) dt Cw Has an amplitude and phase
$ X (1)l
AWAWAWAY AWAY AW ANWAWANWAWA t
VARV VUV V V \/

0



General presentation Fourier and inverse Fourier transformation:

Xt) X(w)




The factor 1/2rmris sometimes distributed differently,
a matter of definition:

(engineers vs physicists, but in both cases you get back where you started if you do two transforms in sequence)

or
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Velocity of a plane wave

Propagation of a plane wave
\P(X t): pikx  gmiet _ ei(kx—a)t)
To determine the propagation speed, follow a point of
constant phase kKX— at.

kx—awt =C

dx ) .
— =+— = PHASE velocity
dt K



For a wave packet AX Ak ~1/2 (k + BK)/2TF

X

-2 -1 0 +1 +2
,szl\ Ak = 21




Amplitude

Large Ax, small Ap,

Small Ax , large Ap,
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For this wave packet | AX Ak ~1/2

Smaller AX is only possible with larger AK.

Smaller AK is only possible with larger AX.

This is in fact a consequence of the Fourier
transform relation for waves:
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Fourier in Quantum
Fourier transformation between x-representation
and k-representation (or p-representation) of a state

Fourier in Griffiths book (2" ed.) is around Egs. [2.100]-[2.102] and [2.33]-[2.36]

Wx) & Tk

_ 1 %
Y e'X\I’ dx
(k)= Zﬂjw (x)

1 ( IKX \1r
¥ LIJ dk
(x) = — |

—Q0

32
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Summary Fourier and wave packets:

1. The state of a quantum particle is often in a the form
of a wave packet.

2. The wave function in terms of x and the wave
function in terms of p, are each others Fourier
transform.

3. Heisenberg uncertainty relation follows directly from
the wave character of Fourier-relation for states.

To be continued on the topic:
Group and phase velocity of a wave packet



See problem W3.1 34

Example representations, Fourier

The same state of a quantum system can be
represented in many different ways.

a wave function that is a function of position x

a wave function that is a function of wave number k (or, p,=hk)

a superposition of energy eigenstates

X-0r p-representation versus Dirac notation

1
=
o
=
o)



V(X)

¥(x)
________ 1
Ja
a2 al2
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\/a SI ﬂ(% k) See problem W3.1 36




W)= C|on) '
N

What are the ‘¢n> ?

What arethe C, ?







See problem W3.1
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See problem W3.1 40
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Heisenberg
game



Wave packets and Heisenberg
-—V\r\/\/\/ \| ﬂ/\/\APM
AN

Size (e.q. In space)

Velocity = PHASE velocity (detalls later)

GROUP velocity (detalls later)

Shows that Heisenberg uncertainty relation follows

from wave nature of quantum states
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First: the Heisenberg uncertainty game

Say, you have a system for making an acoustic tone of
finite duration. These tones always have a smooth
envelope function. You can control the frequency of the
tone and the moment of emission.

Amplitude

‘N\/\/\/\MMAJ\AW

time

v



This Is the question to the listening party:

Determine as accurately as possible
-When do you hear the tone?
-What is the frequency of the tone?

Amplitude At

“W\/\WMJ\MW

time




Amplitude

A

Small Af error

Small At error

'}

At error is the FWHM of the Gaussian envelope

time

v

(N +1) - I\Iperiod = 1/At

o AfAt= 1

period

Af erroris
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Heisenberg uncertainty relation for energy - time

HYDROGEN

Af Atw 1

HELIUM

hatat=h 1
_A%Fi
AE At >h/2

This determines, for example, the width Af of spectral
lines. An electron in an atom that decays from an
excited state to the ground sate emits optical wave,
but only for a short duration At (because of electric
dipole oscillation of the atom). The frequency of these
oscillation can therefor not exist (or be observed) more
precisely than the uncertainty Af.



Dirac
notation



Formalism:

Dirac notation
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Dirac notation
Describe the state of a system as some abstract

state vector ‘ ‘1’>

Why use this notation?

~ Compact (¥|p)= f‘{’

o PRiCE
- More general, abstract, 2
also for systems (e.g.spin) /

whose state cannot be written as “P> <> T(X)

—~ Basis (presentation) independent \I"(X) VS ?(px)
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Dirac notation

State vector ‘ \P> “Ket”-vector

<\P ‘ “Bra”-vector

<\P‘g0>, <\P‘A‘¢>, <A> —  Between brackets

(|A[¥) =

(A A, Ag)(e) L areal
(cf c, cg) Ay A, Agllc, =D cicA = scalar
A A, Ayle) T number
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Dirac notation

<\P‘ g0> = I\P(X)*go(X)dX Inner product — as in linear algebra

<‘P‘A‘ §D> = I\P(X)* Aqo(X)dX Term for expectation value

*

(Flo) = {o]¥) -
N Etc., as in linear algebra, see also
<a\P‘(D> =d <\P‘(0> Griffiths around Egs. [3.2]-[3.10] and

\a‘P + b¢> — a‘ \IJ> 4 b‘ ¢> Egs. [A.19]-[A.28]



DiraC nOtatiOn (needs delta function)
¥) <> ¥(x)

(/) = [5(xx, ) W(x)ox = W(x,)

|

Basis (eigen) vector of x-basis

Relation with previous notation

But also, for example,
<¢k0‘qj> — jg(px o pr)*?(px)dpx :?(pxo)

|

Basis (eigen) vector of p,-basis
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There was a short blackboard presentation on a few examples of

common mistakes with using Dirac notation (or better said, mixed
up notation which is very wrong). Only one example here.

It is by now clear what we mean with:
) > P(x)
(W] P(x)

In this context it is really nonsense and wrong to write things like
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Hilbert s pace (Griffiths section 3.1)

The linear vector space where the state vectors \gp} live.

It is the space that contains all the possible state for a system.

Say the state of some system can be completely characterized by the
physical property A, with associated observable A.

Then, every possible state W of the system can be described as a
superposition of eigenvectors |p,) of A .

The eigenvectors |, ) of A then span the Hilbert space of this system.

¥)=> c.|e.) with (@, |@, ) =5, .

C. = (0. |'Y) P(a)=(o.|¥)f
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Her m |t| an adj O | nt (NOT MID-TERM exam, but study for final exam)

Note
order!
) o (9] (AB) = B*A"
A o A A=A
W)= A) o (V= (¥ |A" A =c"A"



Hermitian operators
P)=AY) o (P|=(¥|A

A

Hermitian if A+ — A

and then <\P‘A‘ §D> = <§D‘A‘ LP>*

Hermitian operators (observables) have
real eigenvalues
.orthogonal eigenvectors

1,for n=m

<(p” \(pm> = Onm :{O for nm -

a, ,forn=m

Ao )= _
(20| A Pn) =20 {O for n=m

Ag,(x)=a,0,(x)
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Postulate 5

Generalized and In
Dirac notation



Postulate 5 — General formulation using Dirac notation
(not treated very well in the book)

Probability P, for a measurement outcome with result a

§0a> Eigenstate associated with eigenvalue a

)

The state before the measurement
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Group
velocity



More on wave packets:

Velocity of wave packets
(group velocity)
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Velocity of a plane wave

Propagation of a plane wave
\P(X t): pikx  gmiet _ ei(kx—a)t)
To determine the propagation speed, follow a point of
constant phase kKX— at.

kx—at=C
dx ) |
— =+— = PHASE velocity
dt K
2
But dX_+a):ha):p /2m:£:h o

dt k7K P 2m 2



For a wave packet AX Ak ~1/2 (k + BK)/2TT

X

-2 -1 0 +1 +2
,szl\ Ak = 21

4
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More realistic, a wave packet:

Velocity of a wave packet

-—W\/\/\A”HHAW\W
\ !




» X

e

a)_
2m

Say ‘P(X,t):\/g(ei([kﬁa(]x[a’o+5‘0]t)_|_ei(koxwot)_l_ei([ko&]X[wo&O]t))

_ \/gei(koxa)ot)(ei(&x—&ot) +1+e—i(6kx—&ot))

= \/ge‘("ox%t)(H 2 cos(kx— swt) )

Interference maximum propagates at
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For the case of matter waves, the
w-k relation gives

=2V

group phase*

In the movie snap shots here, the blue
line moves with the phase velocity of the
middle plane wave (black), attached at a
point with constant phase (red dot). The
three plane waves have a different phase
velocity. This causes that the velocity of
the constructive interference of the three
plane waves (velocity of the red wave
packet) is in this case twice as fast.

t=t,

t=t,

t=t,
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Another way to describe this:

Maximum of wave packet is a point where many
plane ways e'l=at) with different k interfere
constructively = They all have and keep the
same phase (kx - wt) for realizing this constructive
Interference maximum, whatever their k.

9 (kx—at)=0

oK

x—ggt:O
ok

dx OJw



Group velocity more general:

A wave packet has a maximum due to interference of many
olane waves g'(K*=@t) with amplitudes A(K).

The velocity of this maximum (group velocity) is determined

by the variation of w (around a central wy) with respect to
changes Ak in k around the average k =k,

A(k) A

AK = k-K,
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Group velocity: depends on dispersion (w-k relation):

For Electro Magnetic wave packets (optical pulses)
In free space (no dispersion):

0 2
Voriase (k) = Varoup (k) =2 @ = Cck k=2~

=—=¢C
ok A

For quantum waves of massive particles
(de Broglie matter waves)

ow TNk
Veroup = E = E

e

Q) =
2m



Commutator



Commutator bracket:

A, B|= AB—BA Commutator (in general an operator)

A

%0, ]=in-1 = AxaAp, >h/2
" V, 0Y0 T 0 VT
H,H; & =

0 V,\T 0) \\V,T 0
. 0 TYV, O 0 V,T
H, H, -

T 0\NO V,) (VT 0

=5 o - s

A,é =0 A and B commute, same eigenvectors
X

J



Commutator bracket:

A, B|= AB—BA Commutator (in general an operator)

ABl=0 A and B commute, same eigenvectors

A

X, X]:'h-f =  AXAp, >hl2

\

Measure A with result a,, then B, then again A
= Aand B commute, measurement gives again result a,

>

— A and B do not commute, gives arbitrary outcome
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Particle
IN a bOX




Particle in a box: important model system.
For example, very simple model for electron trapped around nucleus.

To characterize system: First solve time-independent Schrodinger Eq.
(this system has time-independent Hamiltonian)

e

I:I = I:Ikin + H pot
V(x) =0, 0<Xx<a  This gives the Hamiltonian of a free particle for the
V (X) = o, all other x  interval O<x<a, but with boundary conditions.

Some additional assumptions needed to find eigenstates:
p(x)=0 outside interval O<x<a

9(0)=p(a)=0continuous at x=0 and x=a

solving gives that ¢(x)can be taken real over O<x<a > oo

V(X) o0 o0

See Griffiths Chapter 2

Ground state has
finite energy!

Why?
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Peer instruction question

How many graphs do you see at the same time here?

OO m>
A OWDNPRP
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Very simple model for V(r) for potential for electron in
Hydrogen atom
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Summary
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Summary:

Formalism and notation

. Dirac notation
. State vector space = Hilbert space
. Hermitian operators

Wave packets and Heisenberg

Particle in a box



Some extra’s on
current research
topics:

Particle In a box



Experiments on electron in a box

VOLUME 69, NUMBER 10 PHYSICAL REVIEW LETTERS 7 SEPTEMBER 1992

Zero-Dimensional States and Single Electron Charging in Quantum Dots

A. T. Johnson,® L. P. Kouwenhoven, W. de Jong, N. C. van der Vaart, and C. J. P. M. Harmans
Faculty of Applied Physics, Delft University of Technology, P.O. Box 5046, 2600GA Delft, The Netherlands

C. T. Foxon™

Philips Research Laboratories, Redhill, Surrey RHI5SHA, United Kingdom
(Received 19 May 1992)

We observe new transport effects in lateral quantum dots where zero-dimensional (0D) states and sin-
gle electron charging coexist. In linear transport we see coherent resonant tunneling, described by a
Landauer formula despite the many-body charging interaction. In the nonlinear regime, Coulomb oscil-
lations of a qunatum dot with about 25 electrons show structure due to 0D excited states as the bias volt-
age increases, and the current-voltage characteristic has a double-staircase shape.
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GaAs - Al,Ga, ,As hetero-structure

Side view

82

Electrons in a
layer of about
10 nm thickness




QUANTUM DOT (top view)




Side view 84
/’* EIeCtronS

<

2D electron sea
present where

Top view — yellow

Negative voltage on
electrodes on surface
pushes electrons away
from the area below it




]

CURRENT [nA|
T

(3%

-2 0 2
VOLTAGE [mV]

FIG. 3. Zero-field I-V curves at various center gate voltages
for dot 2, showing the double-staircase structure. From the bot-
tom, the center gate voltage is —920, =910, —907, and —905
mV. The curves are offset for clarity; all traces have I =0 when
V'=0. Inset: Sample 2 gate geometry. Transport is from left
to right through QPCs | and 2.
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Gate voltage controls the

potential energy level

that corresponds to the

botton of the well.

CURRENT [nA]

1 \
0 AN L ] L

-0.75 0.7
CENTER GATE VOLTAGE [V]

FIG. 2. (a) Potential energy landscape (left) and Coulomb
oscillation with 0D shoulders (right) for a quantum dot with
bias voltage eV =u; —ur=1.88FE. Solid lines in the dot are the
electrochemical potentials pg(N) and ua(N+1). Dashed lines
show excitations with splitting E. The number of states avail-
able for transport, noted by the peak, changes as 0-2-1-2-0 as
Ve varies. (b) Evolution of 0D shoulders with increasing bias
voltage in dot 2. The curves are offset for clarity. From the
bottom, the bias voltages are 100, 400, and 700 uV. The mag-
netic field is 4 T.
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1 JANUARY 1999 VOL 283 SCIENCE www.sciencemag.org

Imaging Electron Wave
Functions of Quantized Energy
Levels in Carbon Nanotubes

Liesbeth C. Venema, Jeroen W. G. Wildder, Jorg W. Janssen,
Sander J. Tans, Hinne L. J. Temminck Tuinstra,
Leo P. Kouwenhoven, Cees Dekker™

Carbon nanotubes provide a unique system for studying one-dimensional quan-
tization phenomena. Scanning tunneling microscopy was used to observe the
electronic wave functions that correspond to quantized energy levels in short
metallic carbon nanotubes. Discrete electron waves were apparent from pe-
riodic oscillations in the differential conductance as a function of the position
along the tube axis, with a period that differed from that of the atomic lattice.
Wave functions could be observed for several electron states at adjacent
discrete energies. The measured wavelengths are in good agreement with the
calculated Fermi wavelength for armchair nanotubes.
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0.3 nm
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di/dV (nAlV)

z (pm)

10

Position x along the tube axis (nm)




To do

list for the teacher:

Example of determining velocity given a certain Psi(x)

Probability for a measurement outcome in a certain velocity range
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