Problem set with Chapter 4 for werkcollege Kwantumfysica 1 For werkcolleges in December 2010, see the schedule with detailed planning per group

Work out the problem below and these problems in the book: 4.6 (use p. 857), 4.9, 4.10 (only for $\langle p_x \rangle$), 4.15, 4.17, 4.21, 4.22, 4.33, 4.35, 4.36

(Homework was problems: 4.1, 4.2, 4.3, 4.4, 4.5, 4.11, 4.12, 4.13, 4.14, 4.16, 4.25, 4.29)

Problem C4.1

This problem continues on the derivation of the states for a particle in a box in the book, and uses notation as on p. 92.

- a) What are the energy eigenfunctions for n=1 and n=2?
- **b)** Calculate $\langle p_x \rangle$ and Δp_x for n=1 and n=2.
- c) The value of the energy of the ground state E_I is higher than the lowest potential (the bottom) of the box: $E_I > 0$. Is it possible to reduce this ground state energy by reducing the uncertainty Δx ? Explain qualitatively why it is not possible to reduce this ground state energy by reducing the uncertainty Δx . Hint: use the Heisenberg uncertainty relation, and use the answer for Δp_x in b) and a quick rough estimate for Δx and assume that the width a cannot be changed.
- d) The same question as c), but now for Δp_x . Explain qualitatively that this does not work out either.
- e) Calculate for the ground state the expectation value for the particle's kinetic energy.
- f) By definition, an energy eigenvalue of a time-independent Hamiltonian has a well-defined energy, with zero uncertainty: ΔH =0. The expression for E_1 with the momentum expressed in terms of k_1 = p_x / \hbar suggests that also k_1 must have a well-defined value (with zero uncertainty) for the energy eigenstate $|\varphi_1\rangle$. However, the answer on b) gives $\Delta p_x > 0$ and seems to contradict this. Explain why there is no contradiction, and why $\langle p_x \rangle = 0$.

P.S. Some useful integrals solved:

$$\int \sin(Ax)\cos(Ax)dx = \frac{-1}{2A}(\cos^2(Ax) - 1)$$
$$\int \sin^2(Ax)dx = \frac{1}{2A}(Ax - \sin(Ax)\cos(Ax))$$