Problem set for Chapter 3 for werkcollege Kwantumfysica 1
For 2" werkcollege of 2" week and 1% werkcollege of 3" week (Nov. 2010)

Problems (Homework, to be made before the werkcollege)
Book Chapter 3 - 3.1, 3.2, 3.3, 3.4, 3.5, 3.10,
3.11 (lots of algebra, use first X,=0 and P,=0 if you get stuck),

Problems to work on during werkcollege
Problems C3.1 — C3.4 (this handout) and Book Chapter 3 - 3.12, 3.15, 3.16, 3.20, 3.21

Problem C3.1

One of the first expressions that we usually learn in quantum mechanics is an expression for the photon
energy when a quantum system decays from a quantum level with energy E,, to a level with energy E,; :
ho=E, - E; (see e.g. p. 41). This expression did not return this week as one of the postulates, so one
should be able to derive it using the postulates. This problem illustrates how this comes about. Assume
there is a simplified model for the electron dynamics in the hydrogen atom, which gives only three
energy levels (eigenvalues for the total energy). This simple model is based on a time-independent
Hamiltonian /7 (with only a term for kinetic energy 7', and a term for potential energy I}p that results

from the Coulomb interaction with the nucleus). In this model, the time-independent Schrédinger
equation (the eigenvalue equation for the system's energy levels) gives the following three solutions
(with eigenvalues E,, and eigenfunctions ¢,):

A

Ho =E ¢
flgoz =F, @, ,  with E;< E,<E;.
Ho,=E; @,

Note that terms in a calculation of the expectation value of the total energy < / > obey (by definition of
the eigenvalue):

I¢:ﬁ¢nd,’:En b

V

I¢;Ifl¢ndr:0 , forn#m
V

Here V is the total relevant volume, and r the position coordinate.

a) Assume that at /=0, the system is in the ground state, ¥(¢ = 0) = ¢,. What is now the expectation
value for the total energy < /7 >? Also calculate it for ¥(z = 0) = @,.
1

\/E ((pl +‘/’3)'

b) Assume that at /=0, the system is in the state \y(t _ 0) _
What is now the expectation value for the total energy < H>?
¢) What is for the state as in b), the uncertainty in the total energy <A f >.

d) Assume that at =0, the system is in the state ‘P(t = ()): ¢, @, +c,p, - Consider ¢, and ¢, to be real
numbers and the eigenfunctions @, and @, to be normalized. Also ¢, and @, obey the orthogonality
condition: I¢:¢mdr =0 for n#m. From the fact that ¥(¢ = 0) must also be normalized prove that

Vv
clz+c22:1. Calculate expectation value of Hamiltonian in the state ‘P(t = 0) =c,p, +C,0, - Explain the

last result obtained in terms of the probability of finding the system in states ¢; and ¢,.
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This model system is time-independent, so we can use the operator U = e "

how its states evolve in time.

on p. 84 to calculate

e) For the states as in a) and b), write down an expression for () for £ > 0 in terms of ¢, and E.,.

f) For the initial states as in a) and b), write down how the expectation value for the total energy
<H>(t) depends on £ .

Consider now the operator 4 for the electric dipole moment of this system, which is mainly responsible
for the emission of optical fields. It obeys (note that the second equation is not zero because ¢, are
eigenfunctions of 7, and not of 4):

[o:4p,dr =4, , forn=1,2,3
V

>

.[(p;;l(pndr =4, , forallcasesn #m
4

g) For the states as in a) and b), write down how the expectation value for the electric dipole moment
< 4>(1) depends on ¢. What is the frequency of the electric dipole oscillation for state b)?

h) Now assume that at 7 = 0, the system is in the state ¥(r = 0) = a ¢, + f ¢;. Note that a and f are in
general complex constants, but assume them real and 0 < a <1 for this problem. This initial state is

normalized, and therefore o and obey‘a‘z + ‘ ﬁ‘z =1. Calculate how the amplitude of the oscillating

dipole moment < 4 >(1) at some ¢ > 0 depends on a. Express the answer on a scale compared to 4.

i) For the state in h) Note that the expression ‘a‘z + ‘ ,3‘2 = ]invites us to express o and f as a = sin(6/2)

and S = cos(0/2). We use as most text books the angle as 0/2, because decay from the excited state to
the ground state can then be pictured as some rotation from top to bottom, with 6 running from 0 to =.
Make a sketch of how a, ff and the amplitude of the oscillating dipole moment at > 0 depend on 0
(assume 0 < 0 < ). Express the number for the amplitude on a scale compared to 4.

j) How much energy does the system loose when it decays from the state ¢; to the ground state ¢?
How many photons are emitted, what is the photon energy?

k) Note that in classical physics an electromagnetic field is radiated from an oscillating dipole as in g)
and h). However for the state Y(t=0)= 1 (0, +0,) (that is © = 7t /2), the result of f) shows that

V2

<H >(t) is constant. In terms of the sketch for i), this means d6/d¢ = 0. The system does not decay!
Explain why this is, for the model used here.

1) A second problem with the model is the following. If the system is at # = 0 in the excited state,

Y(¢ = 0) = @3, it has no observable property that depends on time (see g) and i)). One could argue, that
(besides the problem of k)) the system will therefore never start with its radiative decay to the ground
state. Why does in practice an atom in the state ¥'(# = 0) = ¢; nevertheless always start its decay to the
ground state immediately?

Problem C3.2

The problems C3.2 and C3.3 are meant to clarify how an operator works on a wavefunction, and to
clarify the theory around Eq. (3.26) on p. 74 and Eq. (3.67) on p. 85 in the book. You will also get
familiar with the properties of the Dirac delta function &x). We will consider here the

operator X associated with the position x of a particle in one dimension (as Eq. (3.26), but we use
slightly different notation here), defined by the following eigenvalue equation:

A

Xo(x—x)=x6(x-x) ,
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where &x-x,) the eigenfunction for the associated eigenvalue x,,. We consider situations where the state
of a particle is described by one of the following three time-independent wavefunctions that describe
the position x (in problems C3.2 and C3.3, assume that x is a dimensionless coordinate, the ratio of
position to a certain length scale)

ox)=6(x+2)
(Dz(x):%( 5(X—1)+5(x—3)) ,
(03(X)=Zn:cn5(x—xn), with Zn:

a) For ¢, and ¢,, describe what the possible outcomes are when we measure the position of the
particle, and calculate the probabilities (give a number) for each of the measurement results. For each
measurement outcome, give the state of the particle immediately after the measurement.

S

ci’l

b) For @3, describe what the possible outcomes are when we measure the position of the particle, and
calculate the probabilities for each of the measurement results (give the answer in terms of x,,, ¢,).

¢) Show that these three wavefunctions cannot be normalized.

The fact that these wavefunctions cannot be normalized, is because in quantum mechanics the
uncertainty Ax in the position of the particle can never be really zero (see also p. 164). Physically, a
particle in the state Jx-x,) cannot exist. A state in the form of true plane wave (that runs by definition
from -oo to +o0) as used on p. 72, also cannot exist. However, it will turn out that the Dirac delta
function and plane waves are very useful mathematical tools for calculating with wavefunctions.

Problem C3.3
Consider again the operator X of problem C3.2, and also the wavefunctions ¢, ¢, and @;.

a) Calculate the wavefunction that results if X operates on @, @,, and @3 in terms of wavefunctions
5()(-)(,,)

b) Calculate the wavefunction that results if X > operates on ¢, and ¢, in terms of wavefunctions
O(x-x,,).

¢) Calculate the wavefunction that results if the operator ( X + X %) operates on @1 and @, in terms of
wavefunctions d(x-x,).

d) Prove for ¢; that )”(Z%(x) = Z(Cn X 5(x_xn))

n

¢) We now consider the operator S = e . Write down the first three terms of the Taylor expansion of
S in X . Use for the notation of the identity operator in your answer ] .

f) Prove for ¢; that 3'(03 (x)z Z(Cn e 5(x—xn))

n
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Problem C3.4

a) Consider a free particle with mass m, with kinetic energy E = p*/2m, moving in 1 dimension. The
uncertainty in its location is Ax. Show that if AxAp > h/2, its energy-time uncertainty then obeys
AEAt > 1h/2. Show first that (p/m)At = Ax.

One technique to study physical processes in solid state systems as a function of time, is making use of
ultrafast pulsed lasers. Such lasers produce Heisenberg limited optical pulses with an energy spread AE
and have a duration At. The duration At limits the resolution at which we can study processes in solid
state systems. A typical spectrum of the laser pulses ranges from 780 to 820 nm.

b) Calculate the temporal resolution of such a laser.

For some systems, we do not only want to study certain properties in time, but we also like to know
how they depend on the spectrum with which we excite the system.

¢) Say we have a experiment in which we need to excite our system with 10 ps time resolution or

better. To what spectral resolution are we limited in this case, if we need to study the system with
pulses that have an average wavelength of 800 nm? Give the answer both in units nm and eV.
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