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For the exam you should be familiar with the following concepts. You should be able
to answer theory questions about them, and to apply them in problems about physical
systems (order of presentation here is not related to order in the book).

Postulates of quantum mechanics

Formulating a theory for physics on the basis of postulates

Position of quantum theory with respect to classical theories, relativistic theories,
thermo-dynamical theory

Wavefunction describes the state of a system, contains al/ information
Wavefunction interpretation, relation to probability density
Superposition principle, superposition of states of a system

Physical properties are describes by an operator, an observable
Time-dependent Schrodinger equation

Measuring a quantum system

Probabilities for measurement outcomes

Ensemble average versus expectation value for a single system

Describing physical systems

Number of degrees of freedom of a system

Generalized coordinates

Conjugate variables

Quantizing a system (defining the relevant operators for a system, from determining
the number of degrees of freedom, and the classical variables that describe the
dynamics)

Representation of states and notation

Wavefunction notation and Dirac notation

x-representation, p,-representation, representation in terms of eigenstates of an
arbitrary operator (for example energy eigenstates)

Fourier transform relation between x-representation, p,-representation

Dirac delta function and its properties in integrals

“Spectral decomposition” of an arbitrary state into eigenstates of an operator

Transforming wavefunction notation into Dirac notation and vice versa

Inner product in Dirac notation and wavefunction notation, and the meaning of it

Expectation value for an operator in Dirac notation

Fourier examples with Gaussian-, block- and sinc-function states.

Basis

Hilbert space

Complete Set of Commuting Observables to get vectors that span the Hilbert space
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Operators
How to calculate physical properties of a system in a certain state with operators
Eigenvalue equation
Eigenvalues
Eigenstates
Eigenstates of an observable are orthogonal, eigenvalues are real
Hermitian operators
Hermitian adjoint of an operator, properties and algebraic relations for this
Operators which are functions (and Taylor series) of another operator
Examples of operators

Position operator

Momentum operator

Operator for total energy (Hamiltonian)

Commutator bracket

Commutator algebra

Meaning of the fact that two operators commute / do not commute
Relation with Heisenberg uncertainty relation

Time evolution described using M - i<l}1‘[H ;1]‘ )
dt h

Ehrenfest principle
Constants of motion — operator commutes with Hamiltonian
Conservation laws

Parity, and parity operator

Time-evolution
Hamiltonian
Bound states
Discrete versus continuous systems

Systems with a time-independent (stationary) Hamiltonian

Energy eigenvalues and eigenvectors

Deriving time-independent Schrédinger eq. from time-dependent Schrodinger eq.
Stationary states (and meaning for closed system versus open system)
Expectation value as a function of time for an arbitrary observable A.
Oscillations of a system
Deriving photon energy is 7o

=FE, - E, , radiative emission from a system
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Describing time-evolution with operator U/ =¢ * for ketsand " =e » bra’s
Time evolution of wavepackets
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Wavefunction of a particle moving in 1 dimension

Free particle versus bound particle

Expectation value (x) for a state ‘¥'(x)

Uncertainty Ax for a state W(x)

Normalizing a state V(x)

Heisenberg uncertainty relation

Probability for measurement results if you measure x on a system in the state ‘¥(x)
State of a system after a measurement

Wavepackets
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Double-slit experiments
Quantum interference of the wavefunction of a system
Wave-particle duality for photons, big macroscopic hard balls, electrons

Wave mechanics

Broglie wavelength

Wave packets

Phase velocity and group velocity

Wave mechanics for plane waves incident on a tunnel barrier, step-potential
Tunnel effect

Particle in a box

Its energy eigenstates and eigenvalues

Particle in a infinite / finite potential well

2D box

2 particles in a single 1D box

Coupling two quantum wells with in total one particle in the system

Harmonic oscillator

Its energy eigenstates and eigenvalues

Simple 1D Harmonic oscillator
Annihilation/destruction and creation operators
Energy quanta (photons) in this system
Formulated in x-space and k-space

2D harmonic oscillator

Coupling quantum wells

Linear Combination of Atomic Orbitals

How solid-state physics (energy bands) emerges from the physics of the 1D potential
well.

Systems with more than one degree of freedom

Simple examples of systems with 2 particles

Simple examples of systems with 1 particle in a 2D or 3D potential
Basis states to describe these systems

Degeneracy and identical particles

As a result of exchanging identical particles in a system with two particles
As a result of symmetry in the 2D or 3D potential of a single particle
Accidental degeneracy

Symmetric and antisymmetric states

Exchange

Quantum mechanical treatment of angular momentum

Operators for total, and x-, y-, and z-component of angular momentum

Intrinsic (spin) versus orbital angular momentum

General form of eigenvalues and eigenfunctions of angular momentum operators
Commutation and uncertainty relations between angular momentum operators
Rotation operator

Spherical harmonics
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NOTE:

Fourier transform between x-representation and k-representation is not treated at a
specific location in the book, but you get a good overview following the sections
listed here (see also hoorcollege slides):

p. 100 and 117 Expansion into a series of discrete states
p. 102 Projection onto k-states (plane waves)
p. 125 Delta function in x-representation

p. 122 and 158 Square wave in x-representation

p. 156 Wave packet in x- and p,-representation
p. 160 Gaussian in x- and p,-representation

p. 211 Applied to the harmonic oscillator states
p. 849 and 857 Appendix A, C

Note on notation for Fourier transforms:

The book uses b(k) to denote the Fourier transform of ¢(x). The function ¢(x) is then a
superposition of (integral over) plane waves with amplitude b(k). The book denotes
these plane waves as ¢. This leads to the following (somewhat confusing) notation
for the pair of Fourier transform equations,

plx) = [b(k) g, dk

bk) = [o(x)g; d

where the plane waves are denoted as [see Eq. (4.40), p. 102, and Eq. (5.25), p. 122]
1 ikx
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It is, however, conventional to use a related symbol for a function and its Fourier
transform, for example as

Fourier Fourier

o) S BE) . o W) S T

One also usually keeps the plane waves expressions explicitly written in the Fourier
transform integrals. This notation is used for the lecture slides, the handout on Fourier
transforms from the Cohen-Tannoudji book, and the problem sets. This gives for
example the following pair of equations for the Fourier relation between x-
representation and k-representation of a state:

P(x) = ﬁj‘@(k)e”“ dk

0

ﬁ_]‘l’(x)e"’“ dx

Y(k)=
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