Midterm test for Kwantumfysica 1 - 2006-2007
 Friday 9 March 2007, 10:15-11:00
 Werkcollege-zalen group 1 and 2

READ THIS FIRST:

- Clearly write your name and study number on each answer sheet that you use.
- On the first answer sheet, write clearly the total number of answer sheets that you turn in.
- Note that this test has 2 questions, it continues on the backside of the paper!
- Start each question (number 1,2) on a new answer sheet.
- The test is open book within limits. You are allowed to use the book by Liboff, and one A4 sheet with notes, but nothing more than this.
- If you get stuck on some part of a problem for a long time, it may be wise to skip it and try the next part of a problem first. The test is only 45 minutes.

Useful formulas and constants:

Electron mass
Electron charge
Planck's constant
Planck's reduced constant

$$
\begin{array}{ll}
m_{\mathrm{e}} & =9.1 \cdot 10^{-31} \mathrm{~kg} \\
-e & =-1.6 \cdot 10^{-19} \mathrm{C} \\
h & =6.626 \cdot 10^{-34} \mathrm{Js}=4.136 \cdot 10^{-15} \mathrm{eVs} \\
\hbar & =1.055 \cdot 10^{-34} \mathrm{Js}=6.582 \cdot 10^{-16} \mathrm{eVs}
\end{array}
$$

Problem T1

The position x of a particle is at some time $t=0$ described by the normalized, real-valued wavefunction

$$
\begin{array}{ll}
\Psi(x)=A(b-|x|), & \text { for }-1 \mathrm{~nm}<x<1 \mathrm{~nm} \\
\Psi(x)=0, & \text { for } x<-1 \mathrm{~nm} \text { and } x>1 \mathrm{~nm}
\end{array}
$$

with $b=1 \mathrm{~nm}$ and $A=\sqrt{3 / 2} \mathrm{~nm}^{-3 / 2}$.
a) Make a sketch of both $\Psi(x)$ and the probability density $W(x)$ for the particle's position.
b) Show that the state is normalized for $A=\sqrt{3 / 2} \mathrm{~nm}^{-3 / 2}$, and explain the unit of A.
c) What is the expectation value $\langle\hat{x}\rangle$ for the particle's position at time $t=0$? Support the answer by showing a calculation, also when you can guess the answer.
d) What is the expectation value $\left\langle\hat{p}_{x}\right\rangle$ for the particle's momentum at time $t=0$? Support the answer by showing a calculation, also when you can guess the answer.
e) With the particle's wavefunction in this state, you plan to measure the position x at time $t=0$. What is the probability for detecting a value in the range $0.5 \mathrm{~nm}<x<4.5 \mathrm{~nm}$?

Z.O.Z.

Problem T2

For this problem, you must write up your answers in Dirac notation.

Consider a system with a time-independent Hamiltonian

$$
\hat{H}=\hat{T}+\hat{V},
$$

where T a kinetic-energy term and V a potential-energy term. With respect to a lowest point in the potential, defined as $V=0 \mathrm{~J}$, the lowest three energy eigenstates of the system are defined by

$$
\begin{aligned}
\hat{H}\left|\varphi_{1}\right\rangle & =E_{1}\left|\varphi_{1}\right\rangle \\
\hat{H}\left|\varphi_{2}\right\rangle & =E_{2}\left|\varphi_{2}\right\rangle, \\
\hat{H}\left|\varphi_{3}\right\rangle & =E_{3}\left|\varphi_{3}\right\rangle
\end{aligned}
$$

where $E_{1}<E_{2}<E_{3}$ the three energy eigenvalues, and $\left|\varphi_{1}\right\rangle,\left|\varphi_{2}\right\rangle$ and $\left|\varphi_{3}\right\rangle$ three orthogonal, normalized energy eigenvectors. The observable \hat{A}, is associated with the electric dipole A of this quantum system. For this system,

$$
\begin{aligned}
& \left\langle\varphi_{1}\right| \hat{A}\left|\varphi_{1}\right\rangle=0 \quad, \quad\left\langle\varphi_{2}\right| \hat{A}\left|\varphi_{2}\right\rangle=2 A_{0}, \quad\left\langle\varphi_{3}\right| \hat{A}\left|\varphi_{3}\right\rangle=3 A_{0}, \\
& \left\langle\varphi_{n}\right| \hat{A}\left|\varphi_{m}\right\rangle=\left\langle\varphi_{m}\right| \hat{A}\left|\varphi_{n}\right\rangle=A_{0}, \quad \text { for all cases } n \neq m .
\end{aligned}
$$

Note that the states $\left|\varphi_{1}\right\rangle,\left|\varphi_{2}\right\rangle$ and $\left|\varphi_{3}\right\rangle$ are energy eigenvectors, and that they are not eigen vectors of \hat{A}.
a) What can you say about the possible values of E_{1} ? Discuss the sign, whether it can be zero, and a typical magnitude that you can expect.
b) At some time, the state of the system is (with all c_{n} a complex-valued constant)

$$
\left|\Psi_{S}\right\rangle=c_{1}\left|\varphi_{1}\right\rangle+c_{2}\left|\varphi_{2}\right\rangle+c_{3}\left|\varphi_{3}\right\rangle=\frac{2 i}{3}\left|\varphi_{1}\right\rangle+\frac{1}{3}\left|\varphi_{2}\right\rangle+\frac{-2 i}{3}\left|\varphi_{3}\right\rangle
$$

Show that this is a normalized state.
c) What is for this state $\left|\Psi_{S}\right\rangle$ the expectation value $\langle\hat{A}\rangle$ for A, expressed in A_{0} ?
d) At some other time, defined as $t=0$, the normalized state of the system is (with again all c_{n} a complex-valued constant)

$$
\left|\Psi_{0}\right\rangle=c_{1}\left|\varphi_{1}\right\rangle+c_{2}\left|\varphi_{2}\right\rangle+c_{3}\left|\varphi_{3}\right\rangle=\frac{\sqrt{5}}{3}\left|\varphi_{1}\right\rangle+\frac{2 i}{3}\left|\varphi_{2}\right\rangle+0\left|\varphi_{3}\right\rangle
$$

Show that as a function of time $t>0$, the expectation value for $\langle\hat{A}\rangle$ has oscillations at one frequency only. Determine this frequency and the oscillation amplitude (expressed in the constants that are mentioned above), for the case that the system is in $\left|\Psi_{0}\right\rangle$ at $t=0$. Use the time-evolution operator (with $\hbar=h / 2 \pi)$

$$
\hat{U}=e^{\frac{-i \hat{H} t}{\hbar}}
$$

