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Chapter 1

Introduction – Unraveling chirality-induced
spin selectivity (CISS)

T
wo hundred years before the start of this PhD project, Biot experimentally observed that
the solution of certain organic compounds could rotate linearly polarized light [1]. De-
pending on the rotation direction, the compound could be classified as either right-handed
or left-handed. This handedness would later be termed chirality, following the Greek word
for hand, χειρ (cheir). Interestingly, Biot conducted this famous experiment as part of a
combat against the then increasingly prevailing theory that light travels as waves rather
than particles. This battle would not settle for another 109 years, until de Broglie for-
mulated the groundbreaking theory of wave-particle duality [2]. In the same year, Pauli
outlined his monumental exclusion principle [3], and proposed a classically indescribable
degree of freedom of electrons, which we now call spin. That was year 1924, at the height
of the establishment of a revolutionary facet of modern physics — quantum mechanics.
Decades later, the quantum mechanical understanding of electrons in matter has trans-
formed humanity from an industrial civilization into an information civilization, and is
moving forward at an unprecedented pace. This grand journey is now joined by this the-
sis. Herein, I will connect the concepts of (molecular) chirality and (electronic) spin, and
shed light on how their potential interaction, described as chirality-induced spin selectiv-
ity (CISS), can be harnessed for future technologies.
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2 Chapter 1.

1.1 Nature is chiral

Our understanding of nature is founded on iterations of curious observations and
insightful interpretations. Not long after Biot observed the optical rotation of po-
larized light [1], Fresnel interpreted the phenomenon as a result of velocity differ-
ence between right-handed and left-handed circular light waves [4]. He suggested
that this might have originated from peculiar constitutions of the optical medium,
which allowed to distinguish between right and left handednesses [4, 5]. This later
inspired Pasteur that handed molecules and crystals might exist in mirror-imaged
three-dimensional forms, which he went on to eventually separate [6], laying the
foundation for Le Bel and van ’t Hoff to establish the field of stereochemistry [7, 8].

We now refer to the distinguishable pair of mirrored molecules as chiral enan-
tiomers, and describe their difference in terms of fundamental symmetries [5]. We
became aware that the optical rotation observed by Biot is in fact quite normal for
natural compounds, and the underlying chirality has profound consequences for all
life on Earth [9].

Nearly all naturally occurring and biologically active compounds are chiral and
exist in only one enantiomeric form. A famous example is the DNA double helix.
It encodes essential genetic information for all known organisms, and is uniformly
right-handed. Furthermore, 19 out of the 20 natural amino acids are left-handed (the
other one is not chiral), and all natural sugars are right-handed.

This biological homochirality gives us the ability to literally taste and smell chi-
rality. For instance, the left-handed form of aspartame tastes sweet and is widely
used as artificial sweeteners, whereas the right-handed form is tasteless [10]. More-
over, one enantiomer of carvone carries the refreshing fragrance of mint, while the
mirror-imaged form smells like caraway seeds. It is for this reason that distinguish-
ing chiral enantiomers is crucially important for us, particularly when it comes to
pharmaceutical applications, since while one enantiomer may be therapeutic, the
other can be detrimental.

However, it is not an easy task to distinguish and separate chiral enantiomers
without using other chiral agents, because the mirrored forms often exhibit identical
physical and chemical properties [11, 12]. Therefore, the observation that molecular
chirality may interact with electronic spin—later termed chirality-induced spin selectiv-
ity (CISS)—intrigued intensive research interests, not only in the century-old field of
stereochemistry, but also in the emerging area of spin electronics, or spintronics [13].
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1.2 A spintronics vision for the future

The notion of spintronics emerged at the beginning of the 21st century as a promising
candidate for next-generation electronics [14–16]. That was when the decades-long
exponential growth of the electronics industry was seen to reach fundamental limits
set by conventional silicon-based technologies [17]. Unlike the existing technologies
that rely solely on the charge of electrons, spintronics envisions also using their spin
degree-of-freedom to process and store digital information.

The realization of spintronics requires to prepare, control, and detect electronic
spins, and this can be done using magnetic and electric fields [18, 19]. To under-
stand this, we interpret the spin as the rotational motion of an electron around its
own axis, which can be either clockwise or counter-clockwise, commonly referred
to as the spin-up or spin-down state [20]. Associated with this spin state is an in-
trinsic magnetic dipole moment, which interacts with magnetic fields. In a uniform
magnetic field, spins precess around the field direction (Larmor precession), whereas
in a nonuniform magnetic field, electrons also acquire a spin-dependent linear mo-
mentum along the gradient of the field (Stern-Gerlach experiment). Furthermore, a
moving electron in an electric field experiences a relativistic effective magnetic field,
which also interacts with the spin (spin-orbit coupling).

A generic spintronic device, as illustrated by Datta and Das [21], consists of three
major components: a spin injector where charge signals are converted into spin sig-
nals, a spin transport channel where spin signals are controlled and manipulated,
and a spin detector that converts spin signals back to charge signals. Researchers in
the field have been looking into mechanisms for efficient interconversion between
charge and spin [22–25], for improving spin lifetime and transport distance [26–31],
as well as for separating spin signals from undesired charge backgrounds [32–34].

Organic materials have also been considered for spintronic applications for the
potential of reducing device size and lowering cost [35–37]. Mostly, they were only
used as spin transport channels rather than spin injectors or detectors [38, 39], be-
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ted through a thin film of chiral stearoyl lysine molecules adsorbed on the substrate.
It was observed that the transmission probability of the photoelectrons depended
on the circular polarization of the light, as well as on the chirality of the molecules.
This suggested a chirality-related spin-selective electron transmission through the
molecules.

This type of electron photoemission experiments accounted for a large part of
early observations associated with CISS. In many cases, after transmitting through
the chiral molecular layer, the spin polarization of the photoelectrons was directly
measured, and it could reach as high as tens of percent [45]. The molecules used
ranged from large biological systems such as peptides [46, 47], proteins [48, 49], and
DNA [45, 50] to small molecules such as 1,2-diphenyl-1,2-ethanediol (DPED) [51]
and helicenes [52]. The results on helicenes were particularly surprising, since the
nearly 10% spin polarization was achieved through a film of molecules that were
atomically thin, consisted of only light-weighted carbon atoms, did not contain any
atomic chiral centers, and formed only one helical turn in the secondary structure [52].

Meanwhile, observations based on electron magnetotransport experiments also
showed connections between electronic spin (collectively exhibited as magnetiza-
tion) and molecular chirality. These experiments often used two electrodes, one mag-
netic and the other not, to apply a charge current through a chiral molecule (or an
ensemble of chiral molecules), and observed an electrical resistance that depended
on the magnetization direction of the magnetic electrode. This magnetoresistance
would also change sign if the opposite chiral enantiomers were used [53–63]. In one
case, researchers used a special chiral molecule that could reverse chirality under
light illumination, and indeed, they observed that the illumination also induced a
sign change of the magnetoresistance [64].

Other experiments, too, found connections between magnetism and chirality.
For example, one experiment observed that chiral adsorbates may alter the mag-
netic atomic-force-microscopy (mAFM) signals obtained on a ferromagnetic sub-
strate [65]. In other cases, the presence of chiral molecules was related to a transverse
electrical conduction that usually is associated with the presence of a magnetic field
or magnetization [66–68]. A number of electrochemistry experiments showed that in
electrochemical cells, the voltage drop across a ferromagnetic electrode with chiral
adsorbates might depend on magnetization [48, 61, 69–71]. Also, some photolu-
minescence and fluorescence experiments demonstrated magnetization-dependent
light emission properties of optically responsive chiral structures adsorbed on ferro-
magnetic substrates [49, 70, 72–74]. Most remarkably, it was recently reported that
an achiral ferromagnetic substrate could be used to distinguish and even separate
chiral enantiomers [75].

All these exciting observations not only strongly indicate the potential interaction

1

1.3. The rise of CISS 5

between molecular chirality and electronic spin, but also urgently call for a thorough
theoretical understanding. This understanding should answer two core questions.
First, how does chirality interact with spin on a microscopic level? Second, how does
this interaction generate the signals in various types of experiments?

A majority of theoretical efforts focused on the first question. They interpreted
CISS as a result of spin-orbit coupling (SOC), and numerically calculated the spin-
dependent electron transmission through assumed chiral (helical) molecular struc-
tures [76–83]. Sometimes, the role of a built-in electric dipole or an electric field was
also considered [84–87]. These results were able to qualitatively explain experimen-
tal observations, but cannot quantitatively account for the magnitude of the signals.
First-principle calculations were scarce and also could not provide quantitative ex-
planations [52, 88].

Very recently, it was proposed that there may exist a non-relativistic counterpart
of SOC that could fill up the quantitative gap [89]. This curvature-induced effect
parallels earlier observations that curved carbon structures exhibited much stronger
SOC than the flat two-dimensional carbon, graphene [90–93]. However, even if this
would indeed be applicable to generic chiral molecules, it could still only address
the first of the two questions.

When the second question is taken into consideration, it becomes clear that only
addressing microscopic mechanisms like SOC cannot fully explain experimental ob-
servations. As we will find out in this thesis (Chapter 3 and 4), fundamental sym-
metry considerations require nonunitary mechanisms within chiral molecules in or-
der for them to generate any spin-polarized electron transmission [78, 94, 95]. This
inspires to consider the role of contact and interface effects and spin-flip and spin-
absorption mechanisms in the molecules [96–100]. Moreover, nonlinear effects such
as orbital magnetization [101], electron-electron interactions [102], and energy relax-
ation [103] may also significantly contribute.

To date, a comprehensive and quantitative interpretation of various CISS-related
observations still remains missing, and it is partly the aim of this thesis to provide
some insights.

Before moving on, I would like to point out a few review articles on CISS. For
general discussions on the progress of the field, see a series of reviews by Naaman
and coauthors [13, 104–106]. For a summary of solid-state-device-based experiments
on CISS, see articles by Michaeli et al. [62, 107]. For a review of electrochemical
experiments on CISS, see Mondal et al. [108]. For an overview on experiments that
involved photoluminescent chiral molecules or chiral structures, see Abendroth et
al. [49].
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1.4 Open questions

Two decades into the CISS discussion, this growing field is facing a growing amount
of open questions. Here, I break the two core questions down into details, in order to
address some urgent issues puzzling the theoretical and experimental developments
of CISS.

1. How does chirality interact with spin on a microscopic level?

(a) What are the fundamental restrictions?

(b) Can we confirm the spin-orbit origin?

(c) Can we distinguish CISS from other spin–charge conversion mechanisms?

2. How does this interaction generate signals observed in various types of exper-
iments?

(a) What are the requirements for experimental geometries?

(b) Can the magnetic-field- or magnetization-dependent signals be interpreted
as due to electronic spin?

(c) How to better characterize CISS using (other) spintronic experiments?

1.5 This thesis

This thesis intends to address these open questions by combining the fundamental
properties of CISS with theoretical and experimental tools that have guided the de-
velopment of spintronics, and provide guidelines for future researches. The chapters
are arranged as follows.

• Chapter 1 (this chapter) provides a historical overview of the topic.

• Chapter 2 approaches the concepts of spin and chirality from a symmetry per-
spective. It introduces physical principals that are fundamental to spintronics,
and physical phenomena that are characteristic to chirality. It addresses the
above Question 1.

• Chapter 3 presents a theoretical model that analyzes spin-dependent electron
transmission through chiral (molecular) structures, and highlights the limita-
tions of conventional magnetotransport experimental geometries. It addresses
the above Questions 2.
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• Chapter 4 discusses the important distinctions between observations obtained
in the linear and in the nonlinear response regimes, and shows theoretically
how nonlinearities can help overcome the limitations of certain experimental
geometries. It addresses the above Question 2.

• Chapter 5 provides a theoretical tool for analyzing a common type of electronic
device used in CISS experiments, and demonstrates how quantitative analysis
can be carried out even when involving highly complicated chiral systems. It
addresses the above Question 2

• Chapter 6 experimentally demonstrates charge transport properties of a chiral
two-dimensional van der Waals material, Tellurene. It paves way for further
investigations of CISS in solid-state materials.

• Chapter 7 reports experimental results on charge transport through a bio-molecular
junction that contains a photosynthetic protein complex, and shows how the
charge transport is affected by biochemical functionalizations. It provides in-
sights for futures CISS researches using bio-organic materials.

• Chapter 8 concludes the thesis and envisions a future where chirality and spin
are incorporated for electronic applications.

1.6 Guideline to readers

Chapter 1 introduces relevant background of the thesis topic, while Chapter 8 sum-
marizes the main findings of the thesis. These two chapters focus on the big picture,
and do not require the readers to have any expertise on the topic.

Chapters 2 introduces the theoretical knowledge that are relevant to later discus-
sions. The main text includes essential contents that are sufficient for understanding
later chapters, while further technical details are provided in the Appendices for
readers who are particularly interested.

Chapters 3 through 7 each focus on one aspect of the thesis topic. These chap-
ters also only include essential arguments in the main text, and leave mathematical
derivations and technical discussions to the Appendices. Details related to experi-
ments are provided in the Methods section.

At the end of the thesis, there is an English and a Dutch summary that target
general readers who are interested in scientific developments in the field, but have
little or no knowledge in this specialized area of physics.
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C. Fontanesi, “Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane,”
Proceedings of the National Academy of Sciences 110(37), pp. 14872–14876, 2013.

[49] J. M. Abendroth, D. M. Stemer, B. P. Bloom, P. Roy, R. Naaman, D. H. Waldeck, P. S. Weiss, and P. C. Mondal, “Spin
selectivity in photoinduced charge-transfer mediated by chiral molecules,” ACS Nano 13(5), pp. 4928–4946, 2019.

[50] S. G. Ray, S. S. Daube, G. Leitus, Z. Vager, and R. Naaman, “Chirality-induced spin-selective properties of self-
assembled monolayers of DNA on gold,” Physical Rreview Letters 96(3), p. 036101, 2006.
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[86] E. Medina, L. A. González-Arraga, D. Finkelstein-Shapiro, B. Berche, and V. Mujica, “Continuum model for chiral
induced spin selectivity in helical molecules,” The Journal of Chemical Physics 142(19), p. 194308, 2015.

[87] K. Michaeli, D. N. Beratan, D. H. Waldeck, and R. Naaman, “Voltage-induced long-range coherent electron transfer
through organic molecules,” Proceedings of the National Academy of Sciences 116(13), pp. 5931–5936, 2019.

[88] V. V. Maslyuk, R. Gutierrez, A. Dianat, V. Mujica, and G. Cuniberti, “Enhanced magnetoresistance in chiral molec-
ular junctions,” The Journal of Physical Chemistry Letters 9(18), pp. 5453–5459, 2018.

[89] A. Shitade and E. Minamitani, “Geometric spin-orbit coupling and chirality-induced spin selectivity,”
arXiv:2002.05371 , 2020.

[90] H. Min, J. Hill, N. A. Sinitsyn, B. Sahu, L. Kleinman, and A. H. MacDonald, “Intrinsic and Rashba spin-orbit
interactions in graphene sheets,” Physical Review B 74(16), p. 165310, 2006.

[91] D. Huertas-Hernando, F. Guinea, and A. Brataas, “Spin-orbit coupling in curved graphene, fullerenes, nanotubes,
and nanotube caps,” Physical Review B 74(15), p. 155426, 2006.

[92] F. Kuemmeth, S. Ilani, D. C. Ralph, and P. L. McEuen, “Coupling of spin and orbital motion of electrons in carbon
nanotubes,” Nature 452(7186), p. 448, 2008.

[93] G. Steele, F. Pei, E. Laird, J. Jol, H. Meerwaldt, and L. Kouwenhoven, “Large spin-orbit coupling in carbon nan-
otubes,” Nature Communications 4, p. 1573, 2013.

[94] S. Matityahu, Y. Utsumi, A. Aharony, O. Entin-Wohlman, and C. A. Balseiro, “Spin-dependent transport through a
chiral molecule in the presence of spin-orbit interaction and nonunitary effects,” Physical Review B 93(7), p. 075407,
2016.

[95] S. Matityahu, A. Aharony, O. Entin-Wohlman, and C. A. Balseiro, “Spin filtering in all-electrical three-terminal
interferometers,” Physical Review B 95(8), p. 085411, 2017.

[96] J. Gersten, K. Kaasbjerg, and A. Nitzan, “Induced spin filtering in electron transmission through chiral molecular
layers adsorbed on metals with strong spin-orbit coupling,” The Journal of Chemical Physics 139(11), p. 114111, 2013.

[97] A.-M. Guo, E. Dı́az, C. Gaul, R. Gutierrez, F. Domı́nguez-Adame, G. Cuniberti, and Q.-F. Sun, “Contact effects in
spin transport along double-helical molecules,” Physical Review B 89(20), p. 205434, 2014.
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Chapter 2

A symmetry perspective of chirality, spin, and
CISS

S
ymmetry is of paramount importance for understanding nature. It is particularly help-
ful in determining whether a physical phenomenon can exist in a specific material, and
whether it can be experimentally detected. Therefore, it would not be proper to attempt to
answer the two core questions about CISS (see Chapter 1) without first understanding the
fundamental restrictions imposed by symmetry. In this chapter, I will relate chirality and
spin to the fundamental symmetries of space and time, and explain how they give rise to
certain physical phenomena. From this perspective, I examine experimental observations
of CISS and outline further questions that need to be addressed in future researches.
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2.1 Symmetry and chirality

The concept of symmetry is carried out by symmetry operations. It is an action applied
to an object which leaves the object appearing unchanged. The operation can be
a physical action, such as a translational or rotational motion, or a mathematical
transformation, such as a space-inversion or time-reversal operation. Likewise, the
object can be a concrete body, such as a molecule or a crystal, or an abstract concept,
such as a Hamiltonian or an arbitrarily defined quantity.

2.1.1 Molecular symmetry operations

We illustrate the concepts about symmetry using a simple ball-and-stick model of a
tetrahedral molecule, as shown in Fig. 2.1a. Here, a 120◦ rotation about the vertical
axis leaves the molecule indistinguishable from the state prior to the rotation. This
rotation is therefore a symmetry operation of the molecule. The rotational axis, in this
case, is the corresponding symmetry element. Also, this molecule is indistinguishable
to itself (symmetric) under a mirror reflection (symmetry operation) with respect
to a mirror plane (symmetry element) that contains the vertical axis and one of the
off-axis atoms.

It is generally considered that there are five types of molecular symmetry opera-
tions: identity (Ê), proper rotation (Ĉn), reflection (σ̂), inversion (̂i), and improper rotation
(Ŝn) [1], and their definitions are summarized in Table 2.1.

Table 2.1: Molecular symmetry operations

Symmetry operation symmetry element definition

Ê identity the object itself doing nothing
Ĉn n-fold proper rotation an axis of symmetry rotating the object by 2π/n around the axis a

σ̂ reflection a mirror plane reflecting the object with respect to the plane b

î inversion a center of symmetry inverting the object with respect to the center
Ŝn n-fold improper rotation a rotatory reflection axis an n-fold proper rotation followed by a reflection c

a For an object with multiple rotational axes, the one with largest value n is called the principal axis of symmetry.
b When the mirror plane contains the principal axis of symmetry, it is vertical, and the symmetry operation is denoted
σ̂v . A horizontal plane is perpendicular to the principal axis and is denoted σ̂h.

c The reflection mirror plane is perpendicular to the rotational axis.

When a molecule is not symmetric under any improper rotation Ŝn, it is chiral.
Note that because Ŝ1 ≡ σ̂ and Ŝ2 ≡ î, a chiral molecule also does not have reflection
or inversion symmetries (Fig. 2.1b).

These molecule-based symmetry operations can be extended to solid-state crys-
tals, although a thorough analysis must also include translational symmetry opera-
tions. For a certain molecule or crystal, its set of symmetry operations form a sym-
metry group, as introduced in Appendix A.
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Figure 2.1: Symmetry and chirality for stationary (a, b, c) and moving (d, e) objects. a. A
tetrahedral molecule (e.g. methane) is transformed to itself by a Ĉ3 rotational symmetry oper-
ation (axis indicated by the dash-dot line). It also has σ̂v symmetry, for example, with respect
to a plane defined by the rotational axis and one of the off-axis atoms. b. When the four
outer atoms all differ from one another, the tetrahedral molecule is chiral. A mirror reflection
(with respect to the dashed line) transforms the molecule to its opposite enantiomer. Each
enantiomer alone contains only the trivial identity symmetry operation. c. A helix is chiral,
it transforms to opposite handedness by improper rotations (including reflection and inver-
sion), but not by proper rotations. Each helix alone is symmetric under Ĉ2 proper rotations
(rotational axes in the plane perpendicular to the helical screw axis). d. A spinning top has
two enantiomeric forms of rotation (clockwise vs. counter-clockwise) that are interconverted
by space-inversion, as well as by time-reversal plus a proper rotation Ĉ2. This rotational mo-
tion is therefore not truly chiral. e. A spinning top that is moving along its spinning axis is
truly chiral, because the two enantiomeric forms of motion (spin parallel to linear momentum
vs. antiparallel) are interconverted only by space-inversion but not by time-reversal plus any
proper rotations.
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2.1.2 Fundamental symmetries of space and time

Time-reversal symmetry

The molecular and crystal symmetries only address the stationary constitutions of
atoms, but do not consider motion. However, it is the dynamical movements of
elementary particles, like electrons or photons, that evoke observable physical phe-
nomena.

In order to describe the symmetry of these time-dependent processes, an addi-
tional symmetry operation of time-reversal (T̂ ) is introduced. It manifests as the rever-
sal of all microscopic motion. A system is called time-reversal symmetric (invariant)
if it appears unchanged under this operation [2].

Together with charge-conjugation (Ĉ, sign change of electric charge) and space-
inversion (P̂ , reversing the handedness of the space coordinate system), time-reversal
(T̂ ) is one of the most fundamental symmetry operations that has roots in how we
describe nature. This is detailed in Appendix B.

Space and time symmetries of physical quantities

Space-inversion P̂ and time-reversal T̂ are of direct relevance to solid-state physics.
Understanding their implications on common physical quantities greatly help un-
derstand phenomena related to chirality and spin in electronic devices.

The P̂ and T̂ operations characterize physical quantities as odd and even. Vec-
tors that are P̂ -odd change sign under space-inversion, and are called polar vectors.
In contrast, P̂ -even vectors retain their sign under P̂ , and are called axial vectors (or
pseudovectors). For example, spatial position r and linear momentum p both change
sign under P̂ , and are thus both polar, whereas their cross product, angular momen-
tum L = r × p, retains sign and is thereby axial. Unlike vectors, scalars are usually
defined without the sense of direction, and are therefore P̂ -even. However, a scalar
product of a polar and an axial vector is P̂ -odd, and is called a pseudoscalar. An ex-
ample of a pseudoscalar is helicity (H = S · p/|p|), which is the projection of (spin)
angular momentum S (axial) onto the direction of linear momentum p (polar).

Similarly, T̂ distinguishes physical quantities into time-odd and time-even. Quan-
tities that are time-odd involve motion. For instance, magnetic field B and magne-
tization M are defined by dynamical processes (charge current and electronic spin,
respectively), and are thus both T̂ -odd. In comparison, the electric field E is T̂ -even,
because it is defined by a stationary spatial displacement of electric charges. A sum-
mary of common physical quantities and their symmetries under P̂ and T̂ is given
in Table 2.2.

The inclusion of time symmetry and its relevance to magnetism allows us to ex-
tend the symmetry classifications of solid-state materials to time-reversal space groups,
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Table 2.2: Symmetry of physical quantities under P̂ and T̂ operations

Physical quantity symmetry under P̂ symmetry under T̂

r position odd even
t time even odd
p linear momentum odd odd
k wavevector odd odd
F force odd even

L, S angular momenta even odd
E electric field odd even
B magnetic field even odd
P electric polarization odd even
M magnetization even odd
H helicity odd even

which are introduced in Appendix A.

2.1.3 True chirality

The concept of true chirality was introduced by Barron to define physical quantities
that exhibit the same symmetry properties as chiral enantiomers [3–7], and it is based
on the fundamental symmetries of space and time:

“True chirality is exhibited by systems that exist in two distinct enantiomeric states that
are interconverted by space-inversion, but not by time-reversal combined with any proper
spatial rotation.” (Quoted from Ref.6)

Truly chiral systems can distinguish and may even separate opposite chiral enan-
tiomers close to thermodynamic equilibrium, and are therefore important for stere-
ochemistry applications. We illustrate this concept with a few examples.

First, we compare the motion of electrons in two distinct systems: a conducting
wire winded into a solenoid, and a collinear alignment of an electric and a magnetic
field (both fields are static and uniform). In both systems, electrons can trace a helical
path, and the helix can be of either handedness. However, only the helical wire is
truly chiral, because its shape, as a stationary geometry, is converted to the opposite
handedness by space-inversion but not by time-reversal; whereas the helical motion
of electrons in the collinear fields is converted to opposite handedness by both space-
inversion and time-reversal (see Table 2.2). In fact, the unawareness of this true
chirality consideration has led to numerous failed attempts to separate enantiomers
using collinear electric and magnetic fields [6, 8–10].
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2.1.2 Fundamental symmetries of space and time

Time-reversal symmetry
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Space and time symmetries of physical quantities
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derstand phenomena related to chirality and spin in electronic devices.

The P̂ and T̂ operations characterize physical quantities as odd and even. Vec-
tors that are P̂ -odd change sign under space-inversion, and are called polar vectors.
In contrast, P̂ -even vectors retain their sign under P̂ , and are called axial vectors (or
pseudovectors). For example, spatial position r and linear momentum p both change
sign under P̂ , and are thus both polar, whereas their cross product, angular momen-
tum L = r × p, retains sign and is thereby axial. Unlike vectors, scalars are usually
defined without the sense of direction, and are therefore P̂ -even. However, a scalar
product of a polar and an axial vector is P̂ -odd, and is called a pseudoscalar. An ex-
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tities that are time-odd involve motion. For instance, magnetic field B and magne-
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respectively), and are thus both T̂ -odd. In comparison, the electric field E is T̂ -even,
because it is defined by a stationary spatial displacement of electric charges. A sum-
mary of common physical quantities and their symmetries under P̂ and T̂ is given
in Table 2.2.

The inclusion of time symmetry and its relevance to magnetism allows us to ex-
tend the symmetry classifications of solid-state materials to time-reversal space groups,
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Table 2.2: Symmetry of physical quantities under P̂ and T̂ operations
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Another example is the spinning top considered by Barron, see Figure 2.1d-e.
It shows that a spinning motion is not truly chiral although it can be in either left-
handed or right-handed form, because the two forms are interconverted by both
space-inversion and time-reversal (plus a proper rotation). However, a spinning
motion combined with a linear motion is truly chiral. The two enantiomeric forms
are the parallel and antiparallel alignments of the linear and angular momentum
vectors. These two alignments are interconverted only by space-inversion but not
time-reversal (plus any proper rotations). The chirality of this combined motion is
described by the aforementioned pseudoscalar, helicity H, which is odd under space-
inversion and even under time-reversal.

The latter example can be generalized to the statement that any pseudoscalar
that is time-even is truly chiral. As a result, any collinear alignment of a polar and an
axial vector, either both time-even or both time-odd, is truly chiral, and the two enan-
tiomeric forms are the parallel and antiparallel alignments of the two vectors [6, 11].

2.2 Spin-related symmetry implications

The heart of spintronics is the spin-dependent electronic property of (solid-state)
materials. These properties are quantum mechanical by nature, but can be described
semi-classically using the theories of solid-state physics [12]. The core of this is the
band theory, which describes the collective energy and momentum distribution of
electrons in a solid using energy bands in reciprocal space. The spin degree-of-freedom
is incorporated by accounting for the spin-orbit coupling (SOC). Also, symmetry op-
erations can be applied to an energy band as mathematical operators. These are
introduced in Appendix C.

2.2.1 The Kramers degeneracy theorem

Before discussing spintronic effects using the semi-classical picture provided by solid-
state physics, we must emphasize again that spin is purely a quantum mechanical
concept without any classical analogue. It has a fundamental link with time-reversal
symmetry.

As described in Eqn. 2.13, the preservation of time-reversal symmetry manifests
as the commutation of the (anti-unitary) operator T̂ with the Hamiltonian H . Under
this condition, if ψ is an eigenstate of H , T̂ψ is also an eigenstate with the same
energy eigenvalue. Further, as pointed out by Kramers [13], if the system has half-
integer total spin (e.g. odd-number of electrons), ψ and T̂ψ are orthogonal, and
therefore the system has at least a two-fold (spin) degeneracy. This is known as the
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Kramers degeneracy theorem.
At thermodynamic equilibrium, the Kramers degeneracy theorem means that

there cannot be a net spin polarization without breaking the time-reversal symme-
try [14].

The Kramers degeneracy also extends to electron scattering. Bardarson proved
that in a generic scattering event where an incoming electron can either be trans-
mitted or reflected, the transmission eigenvalues are also spin-degenerate [15]. As
a result, a spin-up and a spin-down electron (of equal energy) must have the same
probability to transmit through a two-terminal phase-coherent system (conductor).
This Kramers transmission degeneracy implies that a phase-coherent electron transport
system cannot be used as a spin filter. For example, a 2D topological insulator has
spin-polarized conductive edge channels, but it cannot generate a spin-polarized
charge current, because the channels on its opposite edges carry opposite spins [16].

2.2.2 Symmetry restrictions on electronic energy band

The fundamental space and time symmetries impose restrictions on energy band
of a generic electronic system. We consider here the symmetry constraints on two
physical quantities that are important to charge and spin transport: the band energy
εn(k,S) (here subscript n denotes the n-th energy band, k is momentum, and S is
spin), and the momentum-space Berry curvature Ωn(k).

(a) If a crystal is symmetric under space-inversion, its energy dispersion must
obey εn(k,S) = εn(−k,S), and its Berry curvature must obey Ωn(k) = Ωn(−k).
In other words, both the (spin-specific) band energy and the Berry curvature
are even functions of wavevector k.

(b) If the system is invariant under time-reversal, i.e. there is no magnetic field or
magnetization, the energy dispersion must obey εn(k,S) = εn(−k,−S), and
for the Berry curvature Ωn(k) = −Ωn(−k). This means that the band energy is
symmetric under the simultaneous reversal of momentum and spin, and that
the Berry curvature is an odd function of momentum.

(c) If space-inversion and time-reversal are both preserved, the above require-
ments imply εn(k,S) = εn(k,−S), and Ωn(k) = 0. Therefore, there is a two-
fold spin degeneracy and a vanishing Berry curvature for any momentum k.

2.2.3 Spin–charge conversion by symmetry breaking

The above restrictions suggest that breaking certain symmetries can give rise to
physical properties that are otherwise absent. Fig. 2.2a illustrates an energy band
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2.2.3 Spin–charge conversion by symmetry breaking
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physical properties that are otherwise absent. Fig. 2.2a illustrates an energy band
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under space-inversion and time-reversal symmetric conditions. Here the band is an
exact overlap of two spin subbands due to the symmetry-required spin-degeneracy
for all k values. This degeneracy can be lifted by breaking either the time-reversal or
the space-inversion symmetry.

Time-reversal symmetry can be broken by applying an external magnetic field
B, which interacts with the magnetic dipole moment µS of electrons with an inter-
action energy HB = −µS ·B. This allows to distinguish and separate opposite spin
states energetically, as illustrated by the vertical splitting of the two spin subbands
in Fig. 2.2b. This is known as the Zeeman splitting.

The breaking of space-inversion symmetry is associated with the (crystal) struc-
ture of an electronic system. It can take place at surfaces or interfaces, be induced by
defects or strain, or be intrinsic to a bulk inversion-asymmetric crystal [17]. This sym-
metry breaking manifests as a horizontal splitting of the spin subbands in wavevec-
tor space due to SOC, as illustrated in Fig. 2.2c. At the Fermi surface, the spin orien-
tations of the conduction electrons are locked to the wavevector k, and this depen-
dence is called a spin texture.

Spin texture bridges electronic spin and momentum, and thereby gives rise to
spin-dependent electron transport. However, generating an observable spin imbal-
ance still requires to either break the time-reversal symmetry, or to bring the system
out of equilibrium, which can be done by a charge current. On one hand, a charge
current can induce a nonequilibrium occupation of momentum states, which gener-
ates a net spin imbalance [18]. On the other hand, a net spin imbalance can generate
a net momentum imbalance, which results in a charge current [19]. These are known
as the (inverse) Edelstein effect, and are introduced in Appendix D.

In Fig. 2.2d-f we show three typical types of spin textures. For convenience, we
also refer to each spin texture as a type of SOC.

The first is the Rashba SOC. It arises at surfaces and interfaces, and is caused by
an interfacial electric field E = Eẑ. It produces a winding spin texture where spins
are always locked orthogonally to the momentum [20], as illustrated in Fig. 2.2d. It
is a commonly observed type of spin texture since most electrical measurements are
performed on sample surfaces [21–25].

The second is the Dresselhaus SOC. It stems from the lack of inversion symmetry
in the bulk due to crystal structure, defects, or strain. An example spin texture is
shown in Fig. 2.2e [26]. The combination of Rashba and Dresselhaus SOC can lead
to more complicated spin textures, for example, one that all spins are aligned in the
x = y direction [22, 27–29].

The third type is the chiral-Weyl SOC. It has a radial spin texture where spins are
always aligned parallel to the momentum, as illustrated in Fig. 2.2f. This hedgehog-
style spin texture can appear in some chiral crystals or Weyl semimetals [30–34].
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Figure 2.2: Energy band splitting and spin textures induced by symmetry breaking. a. A
generic energy band under time-reversal and space-inversion symmetric conditions. At each
wavevector kx there exists a two-fold spin degeneracy, and at each energy ε, there is a four-
fold degeneracy involving two opposite wavevectors and the two opposite spins. b. Breaking
time-reversal symmetry using an out-of-plane magnetic field B gives rise to Zeeman splitting.
The two vertically shifted spin subbands are colored red and blue respectively. c. Breaking
space-inversion symmetry gives rise to horizontal subband splitting. At each wavevector
the opposite spin states no longer have the same energy, and at each energy ε, the four-fold
degeneracy is split in k. At the Fermi surface, as indicated by the line cut, the momentum-
dependent spin orientations form a spin texture. d-f. Three types of two-dimensional spin
textures, known as the Rashba type, the Dresselhaus type, and the chiral-Weyl type, respec-
tively.

Examples of these crystals include trigonal tellurium and selenium [35, 36]. Note
that here we only consider solid-state materials where an energy band picture is
suited. Whether this spin texture can be generalized to chiral molecules or molecular
assemblies remains to be investigated.



2

20 Chapter 2.

under space-inversion and time-reversal symmetric conditions. Here the band is an
exact overlap of two spin subbands due to the symmetry-required spin-degeneracy
for all k values. This degeneracy can be lifted by breaking either the time-reversal or
the space-inversion symmetry.

Time-reversal symmetry can be broken by applying an external magnetic field
B, which interacts with the magnetic dipole moment µS of electrons with an inter-
action energy HB = −µS ·B. This allows to distinguish and separate opposite spin
states energetically, as illustrated by the vertical splitting of the two spin subbands
in Fig. 2.2b. This is known as the Zeeman splitting.

The breaking of space-inversion symmetry is associated with the (crystal) struc-
ture of an electronic system. It can take place at surfaces or interfaces, be induced by
defects or strain, or be intrinsic to a bulk inversion-asymmetric crystal [17]. This sym-
metry breaking manifests as a horizontal splitting of the spin subbands in wavevec-
tor space due to SOC, as illustrated in Fig. 2.2c. At the Fermi surface, the spin orien-
tations of the conduction electrons are locked to the wavevector k, and this depen-
dence is called a spin texture.

Spin texture bridges electronic spin and momentum, and thereby gives rise to
spin-dependent electron transport. However, generating an observable spin imbal-
ance still requires to either break the time-reversal symmetry, or to bring the system
out of equilibrium, which can be done by a charge current. On one hand, a charge
current can induce a nonequilibrium occupation of momentum states, which gener-
ates a net spin imbalance [18]. On the other hand, a net spin imbalance can generate
a net momentum imbalance, which results in a charge current [19]. These are known
as the (inverse) Edelstein effect, and are introduced in Appendix D.

In Fig. 2.2d-f we show three typical types of spin textures. For convenience, we
also refer to each spin texture as a type of SOC.

The first is the Rashba SOC. It arises at surfaces and interfaces, and is caused by
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wavevector kx there exists a two-fold spin degeneracy, and at each energy ε, there is a four-
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time-reversal symmetry using an out-of-plane magnetic field B gives rise to Zeeman splitting.
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dependent spin orientations form a spin texture. d-f. Three types of two-dimensional spin
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tively.

Examples of these crystals include trigonal tellurium and selenium [35, 36]. Note
that here we only consider solid-state materials where an energy band picture is
suited. Whether this spin texture can be generalized to chiral molecules or molecular
assemblies remains to be investigated.
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2.2.4 The Onsager reciprocity

We have described the time-reversal symmetry as the microscopic reversibility: it re-
verses all microscopic motion and leaves the system appearing unchanged. How-
ever, macroscopic processes are generally governed by thermodynamics rather than
equations of motion of microscopic particles, and are therefore irreversible. Inter-
estingly, as discovered by Onsager, even irreversible processes are subject to con-
straints imposed by time-reversal symmetry. He proved that correlated macroscopic
thermodynamic processes show certain symmetries in their linear response tensors,
provided that the system is at the vicinity of thermodynamic equilibrium [37, 38].
This is later celebrated as the Onsager reciprocity.

It should be noted at first that the Onsager relations consider systems that un-
dergo a small perturbation around the thermodynamic equilibrium, in a way that
the response to the perturbation (for returning to equilibrium) is approximately lin-
early proportional to the perturbation itself. This is generally referred to as the linear
response regime, and is where most solid-state electrical measurements are performed.
A safe estimate for the range of the linear response regime is that the perturbation
to the single-particle energy is within kBT , where kB is the Boltzmann constant and
T is temperature [39]. We emphasize that while a perturbation within this range can
definitely be considered linear, one outside this range may nevertheless still remain
linear.

We illustrate the Onsager reciprocity using the three-dimensional coupled charge
and heat transport in solids. The coupled transport equations are [40]

j = S(1)(H,M)(E +
1

e
∇µ) + S(2)(H,M)

1

T
∇T, (2.1)

Q = −S(3)(H,M)(E +
1

e
∇µ)− S(4)(H,M)

1

T
∇T, (2.2)

where j is charge current density, Q is heat flux density, E is electric field, µ is the
electrochemical potential of the system, e is elemental charge (positive value), and
S(n) are linear response tensors that are dependent on magnetic field H and magne-
tization M .

The Onsager reciprocity then requires [40]

S
(1)
ij (H,M) = S

(1)
ji (−H,−M), (2.3)

S
(2)
ij (H,M) = S

(3)
ji (−H,−M), (2.4)

S
(4)
ij (H,M) = S

(4)
ji (−H,−M). (2.5)

Note that here S(1) is the linear response tensor for (nearly) free electrons in an elec-
tric and a magnetic field. It becomes the conductivity tensor (σ)µν when considering
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the classical electron transport in a crystal.

At mesoscopic scales, charge transport is also affected by the geometry of the
conductor, and the conduction is described by the mesoscopic conductance rather
than the material-averaged property of conductivity. For this, Büttiker extended the
Onsager relations into the reciprocity theorem of liner conductance [41–43]

Gij,mn(H,M) = Gmn,ij(−H,−M), (2.6)

where G is linear conductance, whose first pair of subscripts numbers the current
contacts, and the second pair denotes the voltage probe. The theorem describes that
when an interchange of current and voltage probes is accompanied by the rever-
sal of magnetic field and magnetization, the measured linear conductance remains
unchanged [41–43].

In a two-terminal conductor (circuit), the reciprocity theorem reduces to

G12(H,M) = G12(−H,−M), (2.7)

which states that the conductance is unaffected by magnetic field and magnetization
reversal.

The Onsager relations and the reciprocity theorem hold strictly in the linear re-
sponse regime, regardless of the microscopic details of the experiment. Its micro-
scopic origin (the microscopic reversibility) is the same as Barron’s true chirality
consideration for absolute asymmetric synthesis, which is a chemical reaction that
starts from achiral (racemic) reactants but yields products with a net enantiomeric
excess [44].

2.3 Chirality-induced physical phenomena

Just like spin is linked to the fundamental symmetry of time-reversal, chirality relates
to the fundamental symmetry of space-inversion [17]. The presence of chirality gives
rise to several interesting physical phenomena, as introduced below.

2.3.1 Optical rotation and circular dichroism

The oldest yet still the most popular way to detect and distinguish chiral enan-
tiomers is the chiral optical rotation experiment that Biot discovered in 1815 [45]. It ob-
serves the polarization rotation of linearly polarized light after transmitting through
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2.2.4 The Onsager reciprocity
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where j is charge current density, Q is heat flux density, E is electric field, µ is the
electrochemical potential of the system, e is elemental charge (positive value), and
S(n) are linear response tensors that are dependent on magnetic field H and magne-
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Note that here S(1) is the linear response tensor for (nearly) free electrons in an elec-
tric and a magnetic field. It becomes the conductivity tensor (σ)µν when considering
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a chiral medium (e.g. solution of chiral molecules or a chiral crystal) [46]. The direc-
tion of the rotation is opposite for opposite chiral enantiomers, but the rotation an-
gles are the same. Later, it was discovered that the ellipticity of the transmitted light
also changes after the chiral medium, and this is known as circular dichroism [47, 48].

Fresnel interpreted the linear polarization of light as an equal-amplitude super-
position of left and right circular polarizations [49]. In a chiral medium, the oppo-
site circular waves experience different (complex) refractive indices, whose real part
relates to the group velocity of light, and the imaginary part relates to the absorp-
tion coefficient. This induces a difference in both phase and amplitude for the two
transmitted circular waves, and therefore gives rise to optical rotation and circular
dichroism, respectively.

Because of their common root in refractive index, the dispersion spectra (wave-
length dependence) of the optical rotation and circular dichroism relate to each other
via the Kramers-Kronig relations [50, 51]. Complete knowledge of one spectrum allows
the calculation of the other.

Interestingly, optical rotation and circular dichroism are sensitive not only to chi-
rality (the breaking of space-inversion symmetry [17]), but also to magnetism (the
breaking of time-reversal symmetry). For the latter the effects are known as Faraday
rotation (or Kerr rotation) and magnetic circular dichroism. The different symmetry
origins lead to their different application scenarios, as explained from a true chirality
point of view in Appendix E.

2.3.2 Generalized helicity-induced dichroism

The chiral optical rotation and circular dichroism can also be interpreted in terms
of photon helicity, which, as introduced before, is the (spin) angular momentum
projected along the direction of linear momentum (wavevector).

For photons, which are massless spin-one particles, a measurement of its helicity
yields either � or −�, corresponding to either the left or the right circular polariza-
tion, respectively [6, 8]. The opposite helicities represent two forms of photons that
are interconverted only by space-inversion but not by time-reversal, and are thereby
a pair of truly chiral enantiomers (see again Fig. 2.1e). Because of this true chirality,
they interact differently with the chiral medium, which gives rise to optical rotation
and circular dichroism.

This helicity interpretation suggests that the dichroism effects can be generalized
for other particles too. Indeed, it was proposed and later observed for electrons that
their transmission through a vapor of chiral molecules is helicity-dependent [52–55].
A similar effect for neutrons were also proposed [56–58], and a suitable experimental
setup was designed [59], but a convincing observation is still not realized.
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Although helicity is closely related to spin, it is important to distinguish the he-
licity dichroism from a general spin-dependent effect [60, 61]. Unlike photons, elec-
trons are spin-half particles with a finite rest mass. As a result, the helicity measure-
ment of a free electron can already yield three values �/2, 0, and −�/2. It becomes
more complicated for a bound electron, since its total angular momentum has both
spin and orbital contributions, which codetermine the helicity. Moreover, when rela-
tivistic effects are included, the electron helicity also depends on its velocity and the
frame of reference [6, 62, 63].

2.3.3 Magnetochiral effects

Another truly chiral physical quantity is the collinear alignment of a wavevector k

and a magnetic field B. Their parallel and antiparallel alignments are a pair of chiral
enantiomers. They can also interact differently with chiral molecules or crystals, and
the corresponding effects are generally termed the magnetochiral effects. We introduce
here two forms of magnetochiral effect, the optical and the electrical ones.

The optical magnetochiral effect concerns the transmission of nonpolarized light
(with wavevector k) through a chiral medium under the influence of a magnetic
field B. The transmission depends on whether k and B are parallel or antiparallel.
It is effectively described by a term in the refractive index of the chiral medium that
scales linearly with k · B. This term is independent of the polarization of light,
but changes sign when the chirality of the medium is reversed. This effect was
initially independently predicted for chiral systems as a magnetic-field-dependent
dielectric constant [64, 65] and a magnetic-field-induced shift of optical absorption
spectrum [66, 67], before being unified by Barron from the true-chirality point of
view [11]. It took another two decades until it was finally experimentally veri-
fied [68–72], and later confirmed across the electromagnetic spectrum [73–76].

Shortly after the observation of the optical magnetochiral effect, its electrical
counterpart was experimentally reported in a twisted (helical) conducting wire [77].
The wavevector k is here carried by a charge current I , and the effect manifests as a
dc electrical resistance that contains a term scaling with I ·B. This term also changes
sign with chirality reversal [77]. Later, the same effect was also observed in vari-
ous materials such as chiral carbon nanotubes [78, 79], chiral molecular crystals [80],
chiral magnets [81, 82], and most recently, chiral elemental tellurium [83].

Thanks to the broad concept of wavevector k, the magnetochiral effect can also
be generalized for other waves. Indeed, it was also observed for spin waves [84, 85]
and sound waves [86].
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2.4 CISS experiments revisited

We now review typical CISS experiments by comparing them with other chirality-
related effects, and discuss some major differences.

2.4.1 Photoemission experiments

In CISS photoemission experiments (e.g. [87, 88]), the electron transmission through
(a layer of) chiral molecules was described as spin-dependent. These experiments
were similar to electron helicity dichroism (e.g. [54]), in the sense that both observed
the (averaged) spin polarization of electrons transmitted through a chiral environ-
ment. However, the quantitative results were drastically different. For CISS, the
polarization was about 60% [88], whereas for electron helicity dichroism, it was
only 10−4 [54]. More interestingly, the quantitative analyses for electron helicity
dichroism suggested its origin as spin-dependent scattering [54], but the same the-
ory would expect much lower spin polarization for CISS, due to the light-weight
elements in the DNA molecules [89–91].

This discrepancy draws attention to major differences between the two exper-
iments. First, the electrons traveled through very different environments. In the
chiral vapor used in the helicity dichroism experiment, electrons largely traveled
through (achiral) space and only occasionally scattered with chiral molecules; while
in the CISS photoemission experiment, the electrons supposedly transmitted through
the chiral molecules themselves. Second, the chiral molecules were in different con-
ditions. In the helicity dichroism experiment, the molecules were (nearly) not in-
teracting with each other or the environment, whereas for the CISS case, they were
densely packed on a gold substrate, and thereby strongly interacting with each other
and the substrate. Finally, the chiral molecules underwent different physical pro-
cesses. In the helicity dichroism experiment, the chiral molecules only interacted
with the traveling electrons, while in the CISS experiment, the molecules first inter-
acted with incident photons, and then with the electrons.

These, among other differences, need to be addressed in future experiments in
order to provide a more complete picture of CISS.

2.4.2 Magnetotransport experiments

Another major class of CISS experiment is magnetotransport [92–94]. It differs from
photoemission in two key aspects. First, in transport experiments, it is the net im-
balance of counter-propagating electrons that generates signals, so the single elec-
tron transmission picture for photoemission is not suited. Second, the observable in
transport experiments is a charge signal (a magnetoresistance, MR), instead of a spin
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polarization. Therefore, it is best to compare these experiments to other transport
experiments.

The first to compare is the electrical magnetochiral effect, and again there are
notable differences. First, the electrical magnetochiral effect is characterized by an
additional dc resistance (∆ReMCh ∝ ±I ·B) introduced by chirality. Evidently, this
only generates a second-order correction (∆V = ∆ReMCh I ∝ ±I2B) to the dc
conduction [80]. In comparison, the MR reported for CISS often reaches tens of per-
cent, and sometimes even appears in the linear response regime (first order) [93].
Second, the electrical magnetochiral effect is caused by a magnetic field, while CISS
transport is mostly interpreted as due to magnetization (although a magnetic field
is sometimes also present) [93]. Third, the electrical magnetochiral effect generates
an MR that is odd in the magnetic field, but CISS transport experiments often report
MR that is even in magnetic field/magnetization [92–94].

This encourages us to compare CISS to other transport effects that may not neces-
sarily relate to chirality, for example, the Edelstein effect (Appendix D) [19]. Because
of its SOC origin, the Edelstein effect can be observed in the linear response regime,
and it generates a spin imbalance from a charge current, similar to the description
of CISS. However, this spin imbalance cannot be detected as a charge signal using
two-terminal electrical measurements due to the Kramers transmission degeneracy
and the Onsager reciprocity. In contrast, CISS describes a spin imbalance that is
measured using two-terminal geometries, although it remains unclear whether this
happens within the linear response regime.

It may therefore be helpful to consider nonlinear effects. We will show later
(Chapter 4) that elementary nonlinear mechanisms like energy-dependent transport
and energy relaxation can lift the restrictions of two-terminal measurement geome-
tries [95, 96]. In addition, it is known that charge transport in molecular systems
may be highly nonlinear [97, 98], and nonlinear mechanisms may give rise to CISS-
like phenomena [99, 100]. To obtain further insight about CISS, it is important that
future experiments carefully distinguish results obtained in the linear and nonlinear
response regimes.

2.4.3 The role of substrate

We should also not neglect possible extrinsic contributions to the observations of
CISS.

A key feature that exists in all CISS experiments is the use of substrates, and for
most cases the substrate is either made of a heavy metal like gold, or a ferromagnet
like nickel. There have been indications that the substrates were interacting with the
adsorbed chiral molecules [101, 102], but it is still unclear what this interaction is and
what consequences it may have for electron transport.
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This extrinsic aspect has been given attention to [103], but there are very few thor-
ough and quantitative theoretical analyses [104, 105]. Future investigations should
therefore address this issue, and carefully assess whether and how the extrinsic
mechanisms are related to the intrinsic chirality.

2.5 Appendices

A. Symmetry groups

Molecular point groups

For every molecule, there exists at least one point (not necessarily occupied by an atom) that remains un-
moved under all symmetry operations of the molecule. This point is where all corresponding symmetry
elements intersect. It identifies the molecule into a specific point group [1]. According to the Schönflies
notation system, the point group of the tetrahedral molecule in Figure 2.1a is denoted C3v , signifying its
Ĉ3 rotation and σ̂v mirror reflection operations.

Crystal space groups and Bravais lattices

Unlike molecules, crystals extend infinitely in space (for an ideal case). They can be seen as repetitive ar-
rangements of identical clusters of atoms, and thus require additional translational symmetry operations
to describe the repetition patterns. These include translation (move along a defined vector), glider plane
(reflection followed by a translation parallel to the reflection plane), and screw axis (rotation followed by
a translation parallel to the rotational axis).

Based on the point-group and translational symmetry operations, crystals can be categorized into
230 space groups, among which 22 groups are chiral and form 11 enantiomeric pairs [106]. Note that
while a crystal from a chiral group must be chiral, the opposite does not have to be true. A chiral crystal
may belong to 65 different groups known as the Sohncke groups, which contain the 22 chiral groups as
a subset [107, 108]. A definitive description of all space groups and their notations can be found in the
International Tables for Crystallography [109].

The 230 space groups can be further classified into 14 Bravais lattices, which are networks of lattice
points that represent the repetitive clusters of atoms. A lattice point can be made unmoved under all
point-group symmetry operations of the lattice, and can be transformed to another lattice point under a
translation along a lattice vector t. Depending on the angle and length relations among the lattice vectors,
Bravais lattices form 7 crystal systems: triclinic, monoclinic, orthorhombic, tetragonal, cubic, trigonal, and
hexagonal [12].

Time-reversal space groups

When the magnetic properties of a crystal is of interest, the space group discussion must include the T̂

symmetry. It reverses all angular momenta, and therefore reverses the magnetization M of a magnetic
crystal.

A general symmetry operator considering all point-group, translational, and time-reversal operations
can be expressed as

Ĝ = (R̂+ t)T̂ , (2.8)

where R̂ is a three-dimensional (proper or improper) rotation matrix and t is a three-dimensional trans-
lation vector.
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This then classifies all crystals into 1651 time-reversal space groups, which belong to three cate-
gories [40, 110]:

(a) 230 nonmagnetic space groups, which contain time-reversal as a symmetry element;

(b) 230 magnetic space groups, corresponding to those of group (a) but without time-reversal;

(c) The remaining 1191 magnetic groups, whose Ĝ contains time-reversal only in combination with
other symmetry operations.

These symmetry groups put restrictions on the anisotropic linear response tensors of a solid-state ma-
terial to a time-dependent perturbation. For our interest in the linear-regime heat, charge, and spin trans-
port, the translation and inversion operators can be omitted because they are included in the nature of lin-
ear response itself. This largely reduces the number of groups that need to be separately treated. Detailed
discussions on the shape restrictions of various linear-response tensors can be found in Refs. [40, 111–113].

B. Fundamental symmetries

On a fundamental level, symmetries are related to our subjective perceptions of objective physical pro-
cesses. Physical processes in nature are governed by fundamental laws, and are not affected by how they
are interpreted. However, we adopt scientific interpretations that are built on top of systematic mathemat-
ical descriptions, which may contain ingredients that are introduced artificially and cannot be absolutely
measured.

These arbitrarily defined ingredients are called nonobservables. They are the signs of the elemental
charge, the handedness of the space coordinate system, and the arrow of time. For the scope of solid-state
physics, we consider them independent of each other [114]. Therefore, reversing each of these signs will
leave the entire physical process (including the system in question, all instruments for observation, and
the entire associated space and time) appearing unchanged. They are called the charge, parity and time
symmetries, and the sign reversals are termed charge conjugation (Ĉ), space-inversion (P̂ ), and time-reversal
(T̂ ) [115], as summarized in Table 2.3.

Table 2.3: Summary of fundamental symmetry operations

Symmetry operation nonobservable definition

Ĉ charge conjugation the absolute sign of charge sign reversal of electric charge a

P̂ space-inversion the absolute handedness of space b space coordinate reversal: r to −r

T̂ time-reversal the absolute direction of time c time coordinate reversal: t to −t

a This interconverts particles with antiparticles.
b This can be understood as the absolute chirality (or handedness).
c This can be understood as the absolute direction of microscopic motion.

As an example, an electric current through a solenoid causes it to interact with a magnet. This inter-
action dose not depend on how we define the electron charge, the solenoid handedness, or the magnetic
poles. If we were to change our definition of these quantities, and at the same time consistently reverse
their corresponding signs in all mathematical formulas, we will obtain new formulas that still describe
exactly the same physical process, and can still make correct predictions.
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Ĉ3 rotation and σ̂v mirror reflection operations.

Crystal space groups and Bravais lattices

Unlike molecules, crystals extend infinitely in space (for an ideal case). They can be seen as repetitive ar-
rangements of identical clusters of atoms, and thus require additional translational symmetry operations
to describe the repetition patterns. These include translation (move along a defined vector), glider plane
(reflection followed by a translation parallel to the reflection plane), and screw axis (rotation followed by
a translation parallel to the rotational axis).

Based on the point-group and translational symmetry operations, crystals can be categorized into
230 space groups, among which 22 groups are chiral and form 11 enantiomeric pairs [106]. Note that
while a crystal from a chiral group must be chiral, the opposite does not have to be true. A chiral crystal
may belong to 65 different groups known as the Sohncke groups, which contain the 22 chiral groups as
a subset [107, 108]. A definitive description of all space groups and their notations can be found in the
International Tables for Crystallography [109].

The 230 space groups can be further classified into 14 Bravais lattices, which are networks of lattice
points that represent the repetitive clusters of atoms. A lattice point can be made unmoved under all
point-group symmetry operations of the lattice, and can be transformed to another lattice point under a
translation along a lattice vector t. Depending on the angle and length relations among the lattice vectors,
Bravais lattices form 7 crystal systems: triclinic, monoclinic, orthorhombic, tetragonal, cubic, trigonal, and
hexagonal [12].

Time-reversal space groups

When the magnetic properties of a crystal is of interest, the space group discussion must include the T̂

symmetry. It reverses all angular momenta, and therefore reverses the magnetization M of a magnetic
crystal.

A general symmetry operator considering all point-group, translational, and time-reversal operations
can be expressed as

Ĝ = (R̂+ t)T̂ , (2.8)

where R̂ is a three-dimensional (proper or improper) rotation matrix and t is a three-dimensional trans-
lation vector.
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This then classifies all crystals into 1651 time-reversal space groups, which belong to three cate-
gories [40, 110]:

(a) 230 nonmagnetic space groups, which contain time-reversal as a symmetry element;

(b) 230 magnetic space groups, corresponding to those of group (a) but without time-reversal;

(c) The remaining 1191 magnetic groups, whose Ĝ contains time-reversal only in combination with
other symmetry operations.

These symmetry groups put restrictions on the anisotropic linear response tensors of a solid-state ma-
terial to a time-dependent perturbation. For our interest in the linear-regime heat, charge, and spin trans-
port, the translation and inversion operators can be omitted because they are included in the nature of lin-
ear response itself. This largely reduces the number of groups that need to be separately treated. Detailed
discussions on the shape restrictions of various linear-response tensors can be found in Refs. [40, 111–113].

B. Fundamental symmetries

On a fundamental level, symmetries are related to our subjective perceptions of objective physical pro-
cesses. Physical processes in nature are governed by fundamental laws, and are not affected by how they
are interpreted. However, we adopt scientific interpretations that are built on top of systematic mathemat-
ical descriptions, which may contain ingredients that are introduced artificially and cannot be absolutely
measured.

These arbitrarily defined ingredients are called nonobservables. They are the signs of the elemental
charge, the handedness of the space coordinate system, and the arrow of time. For the scope of solid-state
physics, we consider them independent of each other [114]. Therefore, reversing each of these signs will
leave the entire physical process (including the system in question, all instruments for observation, and
the entire associated space and time) appearing unchanged. They are called the charge, parity and time
symmetries, and the sign reversals are termed charge conjugation (Ĉ), space-inversion (P̂ ), and time-reversal
(T̂ ) [115], as summarized in Table 2.3.

Table 2.3: Summary of fundamental symmetry operations

Symmetry operation nonobservable definition

Ĉ charge conjugation the absolute sign of charge sign reversal of electric charge a

P̂ space-inversion the absolute handedness of space b space coordinate reversal: r to −r

T̂ time-reversal the absolute direction of time c time coordinate reversal: t to −t

a This interconverts particles with antiparticles.
b This can be understood as the absolute chirality (or handedness).
c This can be understood as the absolute direction of microscopic motion.

As an example, an electric current through a solenoid causes it to interact with a magnet. This inter-
action dose not depend on how we define the electron charge, the solenoid handedness, or the magnetic
poles. If we were to change our definition of these quantities, and at the same time consistently reverse
their corresponding signs in all mathematical formulas, we will obtain new formulas that still describe
exactly the same physical process, and can still make correct predictions.
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C. Electrons in solid-state materials

Band theory

In a molecule, electrons are described to be bound to the nuclei backbone (termed tight binding model). In
contrast, a (conductive) solid has (conduction) electrons that are often assumed to move nearly freely in
a periodic potential V (r) (r denotes space coordinate) provided by the crystal lattice (termed nearly free
electron model). These conduction electrons can be easily manipulated using electric and magnetic fields,
and their motion can be measured accurately as charge currents. Therefore, the electron transport behavior
in a solid provides a powerful tool to probe its properties.

Quantum mechanics describes an electron using a space- and time-dependent wave function, which is
obtained by solving the Schrödinger equation. Central to this is a Hamiltonian operator that describes the
total energy of the electron. Under the nearly free electron model, the Hamiltonian of an electron is given
by

H = −
�2

2m
∇2 + V (r), (2.9)

where � is the reduced Planck constant, m is the electron mass, and V (r) is the lattice periodic potential
satisfying V (r + t) = V (r). The eigenfunctions of this Hamiltionian constitute the wave function of the
electron (without the time-variant part), which is described by a Bloch wave

ψk(r) = uk(r) exp(ik · r), (2.10)

where k is a wavevector, and uk(r) modulates the wave amplitude with the same period t.
The wavevector k determines a crystal momentum �k and an energy ε(k) of the electron. The rela-

tion between k and ε(k) is called the dispersion relation, and captures essential electron transport properties
of the crystal. It is mostly continuous with k but has gaps at ki (i represents spatial coordinate) values
that are integer multiples of π/ai, where ai is the lattice spacing in the corresponding direction [116]. The
energy gaps separate the allowed energies of an electron into energy bands.

In an actual crystal formed by a large but finite number of unit cells, each energy band breaks into the
same number of discrete wavevector states, which are equally spaced in k and can each accommodate two
valence electrons with opposite spins (two-fold spin degeneracy). The electrons in the crystal occupy these
states from low to high energy. If a number of bands would be exactly filled with electrons and the rest
left completely empty, the crystal would be an insulator [117]. Otherwise, if a band would be only partially
filled, the crystal would be a metal or a semimetal. In between the two cases is a semiconductor, in which the
bands could have been filled like an insulator, but due to a relatively small gap between the highest filled
band (valence band) and the lowest unfilled one (conduction band), electrons occupy a number of states in
the latter due to thermal distribution (Fermi-Dirac distribution), giving rise to finite conductivity. The band
gap of a semiconductor is usually comparable to the energy of visible-range photons, and therefore allows
for the manipulation of conduction electrons using light.

Spin-orbit coupling

A moving electron in the potential V (r) experiences an effective magnetic field Beff in its rest frame
due to relativistic transformations between electric and magnetic fields

Beff = −
∇V (r)× p

emc2
, (2.11)

where p is the linear momentum of the electron. This magnetic field interacts with the electron’s intrinsic
magnetic dipole moment µS = −gµBS/� (g ≈ 2, S is the spin angular momentum of the electron
and µB = e�/2m is the Bohr magneton). This interaction is called spin-orbit coupling (SOC), and it has
energy HSO = −µS ·Beff/2 (the factor 1/2 comes from a relativistic correction due to Thomas preces-
sion [118]).
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The quantum mechanical operator for SOC is

HSO =
1

2
µBσ ·Beff = i

�2

4m2c2
σ ·

(
∇V (r)×∇

)
, (2.12)

where momentum p is replaced by its operator representation −i�∇, and σ = 2S/� is the Pauli matrix

vector for spin, whose elements are σ̂x =

(
0 1

1 0

)
, σ̂y =

(
0 −i

i 0

)
, σ̂z =

(
1 0

0 −1

)
.

For an electron in a crystal, the term HSO is added to the original Hamiltonian (Eqn. 2.9) to take into
account spin-orbit effects. As a result, Eqn. 2.10 is no longer a solution to the Schrödinger equation. The
new solution contains spin as a variable, and writes ψk,S(r). It is still a Bloch wave, but the two-fold
spin degeneracy for each k-state is lifted. Consequently, the crystal now has spin-dependent dispersion
relation ε(k,S), and the exact dependence is determined by the crystal symmetry.

Symmetry operation on energy bands

In general, the crystal symmetry operator Ĝ leaves the crystal, as well as its potential V (r), appearing
unchanged. Consequently, as pointed out by Wigner, Ĝ commutes with the Hamiltonian H of the nearly
free electrons in the crystal [2]. It further implies that, if ψ is a Bloch eigenstate of H with energy ε, Ĝψ
is also a Bloch eigenstate of H with exactly the same energy. This is shown by applying Ĝ to the entire
Schrödinger equation

Ĝ(Hψ) = Ĝ(εψ) ⇒ H(Ĝψ) = ε(Ĝψ). (2.13)

The symmetry operator Ĝ therefore transforms the old eigenstate ψk,S(r) to the new one Ĝψk,S(r),
which has the same energy.

In order to obtain Ĝψk,S(r), one can apply Ĝ to the original Schrödinger equation, and then modify
the indices of wavevector k to k′ and spin S to S′, in order to reconstruct a new Schrödinger equation
that has the same energy eigenvalue. The transformations k ⇒ k′ and S ⇒ S′ then describe the sym-
metry operations on the energy band. The transformed wave function Ĝψk,S(r) also provides symmetry
information about phase-related properties, such as the Berry curvature.

Table 2.4: Symmetry operations on an energy band

Symmetry operation Ĝ transformation of k, S transformation of wave function

Lattice translation: k ⇒ k,
Ĝψk,S(r) = ψk,S(r) exp(ik · t) = ψk,S(r).a

r ⇒ r + t S ⇒ S.

Proper rotation: k ⇒ R̂−1
r k,

Ĝψk,S(r) = R̂−1
S ψk,S(R̂rr).b

r ⇒ R̂rr S ⇒ R̂SS.

Space-inversion: k ⇒ −k,
Ĝψk,S(r) = ψk,S(−r).

r ⇒ −r S ⇒ S.

Time-reversal: k ⇒ −k, for ψk,S(r) = α| ↑> +β| ↓>,
t ⇒ −t, i ⇒ −i. c S ⇒ −S. Ĝψk,S(r) = −β∗| ↑> +α∗| ↓>.d

a Lattice translation is by definition an intrinsic symmetry of all Bloch waves.
b R̂r and R̂S denote the same rotation, but act in real space and spin space respectively.
c The time-reversal operator T̂ is antiunitary, it reverse t and converts all complex values to their

complex conjugate [2]. For a spin-half system T̂ 2ψ = −ψ.
d The ∗ denotes complex conjugate, | ↑>, | ↓> are spin angular momentum eigenvectors for S, and
α, β contain the spatial coordinate. Note that the inner product < Ĝψk,S |ψk,S >= 0, indicating
that the two time-reversed states are orthogonal, and have opposite spins.
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C. Electrons in solid-state materials

Band theory

In a molecule, electrons are described to be bound to the nuclei backbone (termed tight binding model). In
contrast, a (conductive) solid has (conduction) electrons that are often assumed to move nearly freely in
a periodic potential V (r) (r denotes space coordinate) provided by the crystal lattice (termed nearly free
electron model). These conduction electrons can be easily manipulated using electric and magnetic fields,
and their motion can be measured accurately as charge currents. Therefore, the electron transport behavior
in a solid provides a powerful tool to probe its properties.

Quantum mechanics describes an electron using a space- and time-dependent wave function, which is
obtained by solving the Schrödinger equation. Central to this is a Hamiltonian operator that describes the
total energy of the electron. Under the nearly free electron model, the Hamiltonian of an electron is given
by

H = −
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∇2 + V (r), (2.9)

where � is the reduced Planck constant, m is the electron mass, and V (r) is the lattice periodic potential
satisfying V (r + t) = V (r). The eigenfunctions of this Hamiltionian constitute the wave function of the
electron (without the time-variant part), which is described by a Bloch wave
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where k is a wavevector, and uk(r) modulates the wave amplitude with the same period t.
The wavevector k determines a crystal momentum �k and an energy ε(k) of the electron. The rela-

tion between k and ε(k) is called the dispersion relation, and captures essential electron transport properties
of the crystal. It is mostly continuous with k but has gaps at ki (i represents spatial coordinate) values
that are integer multiples of π/ai, where ai is the lattice spacing in the corresponding direction [116]. The
energy gaps separate the allowed energies of an electron into energy bands.

In an actual crystal formed by a large but finite number of unit cells, each energy band breaks into the
same number of discrete wavevector states, which are equally spaced in k and can each accommodate two
valence electrons with opposite spins (two-fold spin degeneracy). The electrons in the crystal occupy these
states from low to high energy. If a number of bands would be exactly filled with electrons and the rest
left completely empty, the crystal would be an insulator [117]. Otherwise, if a band would be only partially
filled, the crystal would be a metal or a semimetal. In between the two cases is a semiconductor, in which the
bands could have been filled like an insulator, but due to a relatively small gap between the highest filled
band (valence band) and the lowest unfilled one (conduction band), electrons occupy a number of states in
the latter due to thermal distribution (Fermi-Dirac distribution), giving rise to finite conductivity. The band
gap of a semiconductor is usually comparable to the energy of visible-range photons, and therefore allows
for the manipulation of conduction electrons using light.

Spin-orbit coupling

A moving electron in the potential V (r) experiences an effective magnetic field Beff in its rest frame
due to relativistic transformations between electric and magnetic fields

Beff = −
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where p is the linear momentum of the electron. This magnetic field interacts with the electron’s intrinsic
magnetic dipole moment µS = −gµBS/� (g ≈ 2, S is the spin angular momentum of the electron
and µB = e�/2m is the Bohr magneton). This interaction is called spin-orbit coupling (SOC), and it has
energy HSO = −µS ·Beff/2 (the factor 1/2 comes from a relativistic correction due to Thomas preces-
sion [118]).

2

2.5. Appendices 31

The quantum mechanical operator for SOC is

HSO =
1

2
µBσ ·Beff = i

�2

4m2c2
σ ·

(
∇V (r)×∇

)
, (2.12)

where momentum p is replaced by its operator representation −i�∇, and σ = 2S/� is the Pauli matrix

vector for spin, whose elements are σ̂x =

(
0 1

1 0

)
, σ̂y =

(
0 −i

i 0

)
, σ̂z =

(
1 0

0 −1

)
.

For an electron in a crystal, the term HSO is added to the original Hamiltonian (Eqn. 2.9) to take into
account spin-orbit effects. As a result, Eqn. 2.10 is no longer a solution to the Schrödinger equation. The
new solution contains spin as a variable, and writes ψk,S(r). It is still a Bloch wave, but the two-fold
spin degeneracy for each k-state is lifted. Consequently, the crystal now has spin-dependent dispersion
relation ε(k,S), and the exact dependence is determined by the crystal symmetry.

Symmetry operation on energy bands

In general, the crystal symmetry operator Ĝ leaves the crystal, as well as its potential V (r), appearing
unchanged. Consequently, as pointed out by Wigner, Ĝ commutes with the Hamiltonian H of the nearly
free electrons in the crystal [2]. It further implies that, if ψ is a Bloch eigenstate of H with energy ε, Ĝψ
is also a Bloch eigenstate of H with exactly the same energy. This is shown by applying Ĝ to the entire
Schrödinger equation

Ĝ(Hψ) = Ĝ(εψ) ⇒ H(Ĝψ) = ε(Ĝψ). (2.13)

The symmetry operator Ĝ therefore transforms the old eigenstate ψk,S(r) to the new one Ĝψk,S(r),
which has the same energy.

In order to obtain Ĝψk,S(r), one can apply Ĝ to the original Schrödinger equation, and then modify
the indices of wavevector k to k′ and spin S to S′, in order to reconstruct a new Schrödinger equation
that has the same energy eigenvalue. The transformations k ⇒ k′ and S ⇒ S′ then describe the sym-
metry operations on the energy band. The transformed wave function Ĝψk,S(r) also provides symmetry
information about phase-related properties, such as the Berry curvature.
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Ĝψk,S(r) = R̂−1
S ψk,S(R̂rr).b
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b R̂r and R̂S denote the same rotation, but act in real space and spin space respectively.
c The time-reversal operator T̂ is antiunitary, it reverse t and converts all complex values to their
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α, β contain the spatial coordinate. Note that the inner product < Ĝψk,S |ψk,S >= 0, indicating
that the two time-reversed states are orthogonal, and have opposite spins.
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In Table 2.4 we list the symmetry operations on an energy band and the corresponding transformed
wave functions Ĝψk,S(r).

D. The Edelstein effect
When SOC is considered and for a inversion-asymmetric crystal, the Fermi surface contains a spin texture,
which correlates spin orientation with wavevector states.

At equilibrium, opposite wavevector states are always equally occupied. Consequently, if the crystal
preserves time-reversal symmetry, εn(k,S) = εn(−k,−S) provides that opposite spin states are also
always equally occupied. Therefore, conduction electrons on the Fermi surface will always have balanced
spins, i.e. there cannot be a net spin imbalance (spin accumulation). However, if the equilibrium is
broken, for example by a charge current, the opposite wavevector states (along the current direction)
will no longer be equally occupied. This consequently gives rise to a net spin imbalance. Such a current-
induced spin accumulation is the Edelstein effect, or Rashba-Edelstein effect, since it was originally calculated
by Edelstein for a Rashba-type spin texture [19].

There also exists an Onsager reciprocal effect, the inverse Edelstein effect, where a spin accumulation
injected into an inversion asymmetric crystal gives rise to a charge current. The Edelstein and inverse
Edelstein effects demonstrate the interconversion between charge and spin signals without evoking mag-
netism, and prove promising for spintronic applications. Both effects have been thoroughly theoretically
studied and experimentally confirmed [18, 119–124].

E. True chirality and optical rotations
The two types of (chiral and magnetic) optical rotation effects can be distinguished from the true chirality
point of view.

For the chiral optical rotation, the system in question is the solution of chiral molecules, and the
observable is the rotation of light polarization. A space-inversion operation reverts the chirality of all
molecules in the solution, and therefore changes the sign of the observed optical rotation, but a time-
reversal operation leaves the molecules unchanged. Therefore, the experiment is truly chiral.

The Faraday rotation also rotates linearly polarized light in an (achiral) medium, but only upon the
application of a longitudinal magnetic field. For this, the system in question is the medium and the
applied magnetic field, and the observable is again the optical rotation. The achiral medium itself is
unchanged under both space-inversion and time-reversal, so the symmetry of the observable is solely
determined by the symmetry of the magnetic field, which, as we already knew, is odd under time-reversal
and even under space-inversion. As a result, the Faraday rotation experiment is not truly chiral.

Because of this distinction, Faraday rotation is used in optical isolators [125], which is usually mounted
at the output of a laser to block reflected beams. It rotates both the output and the reflected linearly po-
larized laser beams by 45◦ to the same direction with respect to the magnetic field, so that the reflected
beam becomes orthogonally polarized to the output, and can be blocked by a linear polarizer. This can-
not be done by a chiral optical rotator, which rotates the output and reflected beams with respect to their
(opposite) propagation directions, and the two rotations always cancel each other out.
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In Table 2.4 we list the symmetry operations on an energy band and the corresponding transformed
wave functions Ĝψk,S(r).
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point of view.

For the chiral optical rotation, the system in question is the solution of chiral molecules, and the
observable is the rotation of light polarization. A space-inversion operation reverts the chirality of all
molecules in the solution, and therefore changes the sign of the observed optical rotation, but a time-
reversal operation leaves the molecules unchanged. Therefore, the experiment is truly chiral.

The Faraday rotation also rotates linearly polarized light in an (achiral) medium, but only upon the
application of a longitudinal magnetic field. For this, the system in question is the medium and the
applied magnetic field, and the observable is again the optical rotation. The achiral medium itself is
unchanged under both space-inversion and time-reversal, so the symmetry of the observable is solely
determined by the symmetry of the magnetic field, which, as we already knew, is odd under time-reversal
and even under space-inversion. As a result, the Faraday rotation experiment is not truly chiral.

Because of this distinction, Faraday rotation is used in optical isolators [125], which is usually mounted
at the output of a laser to block reflected beams. It rotates both the output and the reflected linearly po-
larized laser beams by 45◦ to the same direction with respect to the magnetic field, so that the reflected
beam becomes orthogonally polarized to the output, and can be blocked by a linear polarizer. This can-
not be done by a chiral optical rotator, which rotates the output and reflected beams with respect to their
(opposite) propagation directions, and the two rotations always cancel each other out.
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Chapter 3

Spin-dependent electron transmission model
for chiral molecules in mesoscopic devices

V
arious device-based experiments have indicated that electron transfer in certain chiral
molecules may be spin-dependent, a phenomenon known as the Chiral Induced Spin Se-
lectivity (CISS) effect. However, due to the complexity of these devices and a lack of
theoretical understanding, it is not always clear to what extent the chiral character of
the molecules actually contributes to the magnetic-field-dependent signals in these exper-
iments. To address this issue, we report here an electron transmission model that evalu-
ates the role of the CISS effect in two-terminal and multi-terminal linear-regime electron
transport experiments. Our model reveals that for the CISS effect, the chirality-dependent
spin transmission is accompanied by a spin-flip electron reflection process. Furthermore,
we show that more than two terminals are required in order to probe the CISS effect in
the linear regime. In addition, we propose two types of multi-terminal nonlocal transport
measurements that can distinguish the CISS effect from other magnetic-field-dependent
signals. Our model provides an effective tool to review and design CISS-related transport
experiments, and to enlighten the mechanism of the CISS effect itself.

This chapter is published as:
X. Yang, C. H. van der Wal & B. J. van Wees, ”Spin-dependent electron transmission
model for chiral molecules in mesoscopic devices,” Phys. Rev. B 99, 024418 (2019)
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Developments in the semiconductor industry have allowed integrated circuits to
rapidly shrink in size, reaching the limit of conventional silicon-based electronics.
One idea to go beyond this limit is to use the spin degree-of-freedom of electrons
to store and process information (spintronics) [1]. A spintronic device usually con-
tains two important components: a spin injector and a spin detector, through which
electrical or optical signals and spin signals can be interconverted. Conventionally,
this conversion is done with bulky solid-state materials, but the recently discovered
Chiral Induced Spin Selectivity (CISS) effect suggests that certain chiral molecules or
their assemblies are capable of generating spin signals as well. This effect describes
that electrons acquire a spin polarization while being transmitted through certain
chiral (helical) molecules. Notably, experimental observations of the CISS effect sug-
gest its existence, but complete theoretical insight in its origin is still lacking [2, 3].
The CISS effect is thus not only relevant for spintronic applications, but also funda-
mentally interesting.

The CISS effect has been experimentally reported in chiral (helical) systems rang-
ing from large biological units such as dsDNA [4, 5] to small molecules such as he-
licenes [6, 7]. Typically, these experiments can be categorized into either electron
photoemission experiments [4, 7–13] or magnetotransport measurements [5, 6, 14–
20]. The latter, in particular, are usually based on solid-state devices and are of
great importance to the goal of realizing chiral-molecule-based spintronics. Im-
portant to realize, in such devices, the CISS-related signals may often be overshad-
owed by other spurious signals that arise from magnetic components of the devices.
Therefore, it is essential to understand the exact role of chiral molecules in these de-
vices and to distinguish between the CISS-related signals and other magnetic-field-
dependent signals. However, this has not been addressed, and an effective tool to
perform such analyses is still missing.

We provide here a model that is based on the Landauer-Büttiker-type of anal-
ysis of linear-regime electron transmission and reflection. Unlike other theoretical
works [21–29], our model is derived from symmetry theorems that hold for elec-
trical conduction in general and does not require any assumptions about the CISS
effect on a molecular level. With this model, we quantitatively demonstrate how the
CISS effect leads to spin injection and detection in linear-regime devices, and ana-
lyze whether typical two-terminal and four-terminal measurements are capable of
detecting the CISS effect in the linear regime.

3

3.1. An electron transmission model for chiral molecules 41

3.1 An electron transmission model for chiral molecules

We consider a solid-state device as a linear-regime circuit segment whose constituents
are described by the following set of rules:

• A contact (pictured as a wavy line segment perpendicular to the current flow,
see e.g. Figure 3.1) is described as an electron reservoir with a well-defined
chemical potential µ, which determines the energy of the electrons that leave
the reservoir. A reservoir absorbs all incoming electrons regardless of its en-
ergy or spin;

• A node (pictured as a circle, see later figures for four-terminal geometries) is a
circuit constituent where chemical potentials for charge and spin are defined.
It is described by two chemical potentials µ→ and µ←, one for each spin species
with the arrows indicating the spin orientations. At a node a spin accumulation
µs is defined (µs = µ→ − µ←). Inside a node the momentum of electrons is
randomized, while the spin is preserved. The function and importance of the
node will be further addressed in the discussion section;

• A CISS molecule (pictured as a helix, color-coded and labeled for its chirality,
see e.g. Figure 3.1), a ferromagnet (a filled square, see e.g. Figure 3.1), and
a non-magnetic barrier (a shaded rectangle, see e.g. Figure 3.2) are viewed as
two-terminal circuit constituents with energy-conserving electron transmis-
sions and reflections. Each of them is described by a set of (possibly spin-
dependent) transmission and reflection probabilities;

• The above constituents are connected to each other via transport channels (pic-
tured as line segments along the current flow, see e.g. Figure 3.1), in which
both the momentum and the spin of electrons are preserved.

Before proceeding with introducing the model, we would like to highlight the
important role of dephasing in the generation of the CISS effect. In a fully phase-
coherent two-terminal electron transport system, time-reversal symmetry prohibits
the production of spin polarization by a charge current [30]. Consequently, a CISS
molecule requires the presence of dephasing in order to exhibit a CISS-type spin-
polarizing behavior. The necessity of dephasing has already been addressed by
other theoretical works [31–33]. Here we emphasize that the Landauer-Buttiker type
of analysis, on which our model is based, does not require phase coherence [34,
35]. Moreover, dephasing can be naturally provided by inelastic processes such as
electron-phonon interactions under experimental conditions. Therefore, it is reason-
able to assume that a CISS molecule is able to generate a spin polarization in a linear-
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mentally interesting.

The CISS effect has been experimentally reported in chiral (helical) systems rang-
ing from large biological units such as dsDNA [4, 5] to small molecules such as he-
licenes [6, 7]. Typically, these experiments can be categorized into either electron
photoemission experiments [4, 7–13] or magnetotransport measurements [5, 6, 14–
20]. The latter, in particular, are usually based on solid-state devices and are of
great importance to the goal of realizing chiral-molecule-based spintronics. Im-
portant to realize, in such devices, the CISS-related signals may often be overshad-
owed by other spurious signals that arise from magnetic components of the devices.
Therefore, it is essential to understand the exact role of chiral molecules in these de-
vices and to distinguish between the CISS-related signals and other magnetic-field-
dependent signals. However, this has not been addressed, and an effective tool to
perform such analyses is still missing.

We provide here a model that is based on the Landauer-Büttiker-type of anal-
ysis of linear-regime electron transmission and reflection. Unlike other theoretical
works [21–29], our model is derived from symmetry theorems that hold for elec-
trical conduction in general and does not require any assumptions about the CISS
effect on a molecular level. With this model, we quantitatively demonstrate how the
CISS effect leads to spin injection and detection in linear-regime devices, and ana-
lyze whether typical two-terminal and four-terminal measurements are capable of
detecting the CISS effect in the linear regime.
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3.1 An electron transmission model for chiral molecules

We consider a solid-state device as a linear-regime circuit segment whose constituents
are described by the following set of rules:

• A contact (pictured as a wavy line segment perpendicular to the current flow,
see e.g. Figure 3.1) is described as an electron reservoir with a well-defined
chemical potential µ, which determines the energy of the electrons that leave
the reservoir. A reservoir absorbs all incoming electrons regardless of its en-
ergy or spin;

• A node (pictured as a circle, see later figures for four-terminal geometries) is a
circuit constituent where chemical potentials for charge and spin are defined.
It is described by two chemical potentials µ→ and µ←, one for each spin species
with the arrows indicating the spin orientations. At a node a spin accumulation
µs is defined (µs = µ→ − µ←). Inside a node the momentum of electrons is
randomized, while the spin is preserved. The function and importance of the
node will be further addressed in the discussion section;

• A CISS molecule (pictured as a helix, color-coded and labeled for its chirality,
see e.g. Figure 3.1), a ferromagnet (a filled square, see e.g. Figure 3.1), and
a non-magnetic barrier (a shaded rectangle, see e.g. Figure 3.2) are viewed as
two-terminal circuit constituents with energy-conserving electron transmis-
sions and reflections. Each of them is described by a set of (possibly spin-
dependent) transmission and reflection probabilities;

• The above constituents are connected to each other via transport channels (pic-
tured as line segments along the current flow, see e.g. Figure 3.1), in which
both the momentum and the spin of electrons are preserved.

Before proceeding with introducing the model, we would like to highlight the
important role of dephasing in the generation of the CISS effect. In a fully phase-
coherent two-terminal electron transport system, time-reversal symmetry prohibits
the production of spin polarization by a charge current [30]. Consequently, a CISS
molecule requires the presence of dephasing in order to exhibit a CISS-type spin-
polarizing behavior. The necessity of dephasing has already been addressed by
other theoretical works [31–33]. Here we emphasize that the Landauer-Buttiker type
of analysis, on which our model is based, does not require phase coherence [34,
35]. Moreover, dephasing can be naturally provided by inelastic processes such as
electron-phonon interactions under experimental conditions. Therefore, it is reason-
able to assume that a CISS molecule is able to generate a spin polarization in a linear-
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regime circuit segment, and our discussions focus on whether this spin polarization
can be detected as a charge signal.

In the following part of this article, we first derive a key transport property of
CISS molecules and then introduce a matrix formalism to quantitatively describe
linear-regime transport devices. Later, in the discussion section, we provide analyses
for a few experimental circuit geometries.

3.1.1 Reciprocity theorem and spin-flip reflection by chiral molecules

In order to characterize the CISS effect without having to understand it on a molecu-
lar level, we look at universal rules that apply to any conductor in the linear regime,
namely the law of charge conservation and the reciprocity theorem.

The reciprocity theorem states that for a multi-terminal circuit segment in the
linear regime, the measured conductance remains invariant when an exchange of
voltage and current contacts is accompanied by a reversal of magnetic field H and
magnetization M (of all magnetic components) [36, 37]. Mathematically we write

Gij,mn(H,M) = Gmn,ij(−H,−M), (3.1)

where Gij,mn is the four-terminal conductance measured using current contacts i

and j and voltage contacts m and n. In two-terminal measurements, this theorem
reduces to

Gij(H,M) = Gij(−H,−M), (3.2)

meaning that the two-terminal conductance remains constant under magnetic field
and magnetization reversal. This theorem emphasizes the universal symmetry inde-
pendent of the microscopic nature of the transport between electrical contacts. It is
valid for any linear-regime circuit segment regardless of the number of contacts, or
the presence of inelastic scattering events [37].

FM 𝜇𝜇1 𝜇𝜇2 
P 

FM 𝜇𝜇1 𝜇𝜇2 
P 

Figure 3.1: A two-terminal circuit segment with a P-type CISS molecule and a ferromagnet
between contacts 1 and 2 (with chemical potentials µ1 and µ2). The notion P-type represents
the chirality of the molecule and indicates that it allows higher transmission for spins paral-
lel to the electron momentum. (The opposite chirality allows higher transmission for spins
anti-parallel to the electron momentum, and is denoted as AP-type.) The ferromagnet (FM) is
assumed to allow higher transmission of spins parallel to its magnetization direction, which
can be controlled to be either parallel or anti-parallel to the electron transport direction.
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By applying the reciprocity theorem to a circuit segment containing CISS molecules,
one can derive a special transport property of these molecules. For example, in
the two-terminal circuit segment shown in Figure 3.1, the reciprocity theorem re-
quires that the two-terminal conductance remains unchanged when the magnetiza-
tion direction of the ferromagnet is reversed. Since the two-terminal conductance
is proportional to the transmission probability between the two contacts (Landauer-
Büttiker) [35], this requirement translates to

T21(⇒) = T21(⇐), (3.3)

where T21 describes the transmission probability of electrons injected from contact 1
to reach contact 2, and ⇒ and ⇐ indicate the magnetization directions of the ferro-
magnet. This requirement gives rise to a necessary spin-flip process associated with
the CISS molecule, as described below.

For ease of illustration, we assume an ideal case where both the ferromagnet and
the CISS molecule allow a 100% transmission of the favored spin and a 100% reflec-
tion of the other (the general validity of the conclusions is addressed in Appendix A).
We consider electron transport from contact 1 to contact 2 (see Figure 3.1) and com-
pare the two transmission probabilities T21(⇒) and T21(⇐). For T21(⇒), the P-type
CISS molecule (favors spin parallel to electron momentum, see figure caption) al-
lows the transmission of spin-right electrons, while it reflects spin-left electrons back
to contact 1. At the same time, the ferromagnet is magnetized to also only allow the
transmission of spin-right electrons. Therefore, all spin-right (and none of the spin-
left) electrons can be transmitted to contact 2, giving T21(⇒) = 0.5. As for T21(⇐),
while the P-type CISS molecule still allows the transmission of spin-right electrons,
the ferromagnet no longer does. It reflects the spin-right electrons towards the CISS
molecule with their momentum anti-parallel to their spin. As a result, these elec-
trons are reflected by the CISS molecule and are confined between the CISS molecule
and the ferromagnet. This situation gives T21(⇐) = 0, which is not consistent with
Eqn. 3.3. In order to satisfy Eqn. 3.3, i.e. to have T21(⇐) = 0.5, a spin-flip process has
to take place for the spin-right electrons, so that they can be transmitted to contact
2 through the ferromagnet. Such a process does not exist for the ideal and exactly
aligned ferromagnet. Therefore, a spin-flip electron reflection process must exist for
the CISS molecule. Further analysis (Appendix A) shows that such a spin-flip re-
flection process completely meets the broader restrictions from Eqn. 3.2. In addition,
the conclusion that a spin-flip reflection process must exist is valid for general cases
where the ferromagnet and the CISS molecule are not ideal.

In these derivations, the only assumption regarding the CISS molecule is that
it allows higher transmission of one spin than the other, which is a conceptual de-
scription of the CISS effect itself. Therefore, the spin-flip reflection process has to
be regarded as an inherent property of the CISS effect in a linear-regime transport
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regime circuit segment, and our discussions focus on whether this spin polarization
can be detected as a charge signal.

In the following part of this article, we first derive a key transport property of
CISS molecules and then introduce a matrix formalism to quantitatively describe
linear-regime transport devices. Later, in the discussion section, we provide analyses
for a few experimental circuit geometries.

3.1.1 Reciprocity theorem and spin-flip reflection by chiral molecules

In order to characterize the CISS effect without having to understand it on a molecu-
lar level, we look at universal rules that apply to any conductor in the linear regime,
namely the law of charge conservation and the reciprocity theorem.

The reciprocity theorem states that for a multi-terminal circuit segment in the
linear regime, the measured conductance remains invariant when an exchange of
voltage and current contacts is accompanied by a reversal of magnetic field H and
magnetization M (of all magnetic components) [36, 37]. Mathematically we write

Gij,mn(H,M) = Gmn,ij(−H,−M), (3.1)

where Gij,mn is the four-terminal conductance measured using current contacts i

and j and voltage contacts m and n. In two-terminal measurements, this theorem
reduces to

Gij(H,M) = Gij(−H,−M), (3.2)

meaning that the two-terminal conductance remains constant under magnetic field
and magnetization reversal. This theorem emphasizes the universal symmetry inde-
pendent of the microscopic nature of the transport between electrical contacts. It is
valid for any linear-regime circuit segment regardless of the number of contacts, or
the presence of inelastic scattering events [37].
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Figure 3.1: A two-terminal circuit segment with a P-type CISS molecule and a ferromagnet
between contacts 1 and 2 (with chemical potentials µ1 and µ2). The notion P-type represents
the chirality of the molecule and indicates that it allows higher transmission for spins paral-
lel to the electron momentum. (The opposite chirality allows higher transmission for spins
anti-parallel to the electron momentum, and is denoted as AP-type.) The ferromagnet (FM) is
assumed to allow higher transmission of spins parallel to its magnetization direction, which
can be controlled to be either parallel or anti-parallel to the electron transport direction.
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By applying the reciprocity theorem to a circuit segment containing CISS molecules,
one can derive a special transport property of these molecules. For example, in
the two-terminal circuit segment shown in Figure 3.1, the reciprocity theorem re-
quires that the two-terminal conductance remains unchanged when the magnetiza-
tion direction of the ferromagnet is reversed. Since the two-terminal conductance
is proportional to the transmission probability between the two contacts (Landauer-
Büttiker) [35], this requirement translates to

T21(⇒) = T21(⇐), (3.3)

where T21 describes the transmission probability of electrons injected from contact 1
to reach contact 2, and ⇒ and ⇐ indicate the magnetization directions of the ferro-
magnet. This requirement gives rise to a necessary spin-flip process associated with
the CISS molecule, as described below.

For ease of illustration, we assume an ideal case where both the ferromagnet and
the CISS molecule allow a 100% transmission of the favored spin and a 100% reflec-
tion of the other (the general validity of the conclusions is addressed in Appendix A).
We consider electron transport from contact 1 to contact 2 (see Figure 3.1) and com-
pare the two transmission probabilities T21(⇒) and T21(⇐). For T21(⇒), the P-type
CISS molecule (favors spin parallel to electron momentum, see figure caption) al-
lows the transmission of spin-right electrons, while it reflects spin-left electrons back
to contact 1. At the same time, the ferromagnet is magnetized to also only allow the
transmission of spin-right electrons. Therefore, all spin-right (and none of the spin-
left) electrons can be transmitted to contact 2, giving T21(⇒) = 0.5. As for T21(⇐),
while the P-type CISS molecule still allows the transmission of spin-right electrons,
the ferromagnet no longer does. It reflects the spin-right electrons towards the CISS
molecule with their momentum anti-parallel to their spin. As a result, these elec-
trons are reflected by the CISS molecule and are confined between the CISS molecule
and the ferromagnet. This situation gives T21(⇐) = 0, which is not consistent with
Eqn. 3.3. In order to satisfy Eqn. 3.3, i.e. to have T21(⇐) = 0.5, a spin-flip process has
to take place for the spin-right electrons, so that they can be transmitted to contact
2 through the ferromagnet. Such a process does not exist for the ideal and exactly
aligned ferromagnet. Therefore, a spin-flip electron reflection process must exist for
the CISS molecule. Further analysis (Appendix A) shows that such a spin-flip re-
flection process completely meets the broader restrictions from Eqn. 3.2. In addition,
the conclusion that a spin-flip reflection process must exist is valid for general cases
where the ferromagnet and the CISS molecule are not ideal.

In these derivations, the only assumption regarding the CISS molecule is that
it allows higher transmission of one spin than the other, which is a conceptual de-
scription of the CISS effect itself. Therefore, the spin-flip reflection process has to
be regarded as an inherent property of the CISS effect in a linear-regime transport
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system, and this is guaranteed by the universal symmetry theorems of electrical con-
duction [36, 37].

3.1.2 Matrix formalism and barrier-CISS center-barrier (BCB) model
for CISS molecules

ॻ = 𝑡𝑡→→ 𝑡𝑡←→
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Figure 3.2: Transmission and reflection matrices (T and R) for a non-magnetic barrier (sub-
script B, here we use the term barrier, but it refers to any circuit constituent with spin-
independent electron transmission and reflection), a ferromagnet (subscript FM), and ideal
P-type (superscript P) and AP-type (superscript AP) CISS molecules. For the CISS molecules
the subscripts R (right) and L (left) denote the direction of the incoming electron flow, and
the indicator 0 in the subscripts means these matrices are for an ideal cases where all the ma-
trix elements are either 1 or 0. The matrices for AP-type molecules are derived from those
for P-type molecules under the assumption that opposite chiral enantiomers are exact mirror
images of each other, and therefore selects opposite spins with equal probability. Each matrix
element represents the probability of a spin-dependent transmission or reflection, with the
column/row position indicating the corresponding spin orientations before/after the trans-
mission or reflection (see general form in the top row).

We use matrices to quantitatively describe the spin-dependent transmission and
reflection probabilities of CISS molecules and other circuit constituents, as shown
in Figure 3.2. At the top of the figure, the general form of these matrices is intro-
duced. Matrix element tαβ (or rαβ), where α and β is either left (←) or right (→),
represents the probability of a spin-α electron being transmitted (or reflected) as a
spin-β electron, and α �= β indicates a spin-flip process. Here 0 ≤ tαβ , rαβ ≤ 1, and
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the spin orientations are chosen to be either parallel or anti-parallel to the electron
momentum in later discussions. Next, the transmission and reflection matrices of a
non-magnetic barrier are given. These matrices are spin-independent and are fully
determined by a transmission probability t (0 ≤ t ≤ 1), which depends on the ma-
terial and dimensions of the barrier. Here we use the term barrier, but it refers to
any circuit constituent with spin-independent electron transmission and reflection.
In the third row, we show the transmission and reflection matrices of a ferromagnet.
These matrices are spin-dependent, and are determined by the polarization PFM

(0 < |PFM | ≤ 1) of the ferromagnet. Finally, for P-type and AP-type CISS molecules,
we show here an ideal case where all the matrix elements are either 1 or 0. The non-
zero off-diagonal terms in the reflection matrices represent the characteristic spin-flip
reflections. These ideal CISS molecules are later referred to as CISS centers, and will
be generalized for more realistic situations.

In accordance with the matrix formalism, we use column vector µ =

(
µ→
µ←

)
to de-

scribe chemical potentials, and column vector I =

(
I→
I←

)
to describe currents, where

each vector element describes the contribution from one spin component (indicated
by arrow).

P 
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Figure 3.3: A generalized Barrier-CISS Center-Barrier (BCB) model for P-type CISS molecules.
The ideal, 100%-spin-selective CISS Center in the middle introduces the directional spin trans-
mission in a CISS molecule, while the two identical non-magnetic barriers (with transmission
probability t) contribute the non-ideal electron transmission and reflection behavior. The over-
all transmission and reflection matrices of the entire BCB module are fully determined by t and
have all elements taking finite values between 0 and 1.

A non-ideal CISS molecule with C2 symmetry (two-fold rotational symmetry
with an axis perpendicular to the electron transport path) can be modeled as a linear
arrangement of two identical barriers sandwiching an ideal CISS center, as shown in
Figure 3.3 (only the P-type is shown). In this Barrier-CISS Center-Barrier (BCB) model
we consider that all spin-dependent linear-regime transport properties of a CISS
molecule exclusively originate from an ideal CISS center inside the molecule, and the
overall spin-dependency is limited by the multiple spin-independent transmissions
and reflections at other parts (non-magnetic barriers) of the molecule. Therefore,
the barrier transmission probability t (0 < t ≤ 1) fully determines the transmission
and reflection matrices of the entire BCB molecule, and consequently determines the
spin-related properties of the molecule. The use of an identical barrier on each side
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system, and this is guaranteed by the universal symmetry theorems of electrical con-
duction [36, 37].

3.1.2 Matrix formalism and barrier-CISS center-barrier (BCB) model
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Figure 3.2: Transmission and reflection matrices (T and R) for a non-magnetic barrier (sub-
script B, here we use the term barrier, but it refers to any circuit constituent with spin-
independent electron transmission and reflection), a ferromagnet (subscript FM), and ideal
P-type (superscript P) and AP-type (superscript AP) CISS molecules. For the CISS molecules
the subscripts R (right) and L (left) denote the direction of the incoming electron flow, and
the indicator 0 in the subscripts means these matrices are for an ideal cases where all the ma-
trix elements are either 1 or 0. The matrices for AP-type molecules are derived from those
for P-type molecules under the assumption that opposite chiral enantiomers are exact mirror
images of each other, and therefore selects opposite spins with equal probability. Each matrix
element represents the probability of a spin-dependent transmission or reflection, with the
column/row position indicating the corresponding spin orientations before/after the trans-
mission or reflection (see general form in the top row).

We use matrices to quantitatively describe the spin-dependent transmission and
reflection probabilities of CISS molecules and other circuit constituents, as shown
in Figure 3.2. At the top of the figure, the general form of these matrices is intro-
duced. Matrix element tαβ (or rαβ), where α and β is either left (←) or right (→),
represents the probability of a spin-α electron being transmitted (or reflected) as a
spin-β electron, and α �= β indicates a spin-flip process. Here 0 ≤ tαβ , rαβ ≤ 1, and
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the spin orientations are chosen to be either parallel or anti-parallel to the electron
momentum in later discussions. Next, the transmission and reflection matrices of a
non-magnetic barrier are given. These matrices are spin-independent and are fully
determined by a transmission probability t (0 ≤ t ≤ 1), which depends on the ma-
terial and dimensions of the barrier. Here we use the term barrier, but it refers to
any circuit constituent with spin-independent electron transmission and reflection.
In the third row, we show the transmission and reflection matrices of a ferromagnet.
These matrices are spin-dependent, and are determined by the polarization PFM

(0 < |PFM | ≤ 1) of the ferromagnet. Finally, for P-type and AP-type CISS molecules,
we show here an ideal case where all the matrix elements are either 1 or 0. The non-
zero off-diagonal terms in the reflection matrices represent the characteristic spin-flip
reflections. These ideal CISS molecules are later referred to as CISS centers, and will
be generalized for more realistic situations.

In accordance with the matrix formalism, we use column vector µ =
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Figure 3.3: A generalized Barrier-CISS Center-Barrier (BCB) model for P-type CISS molecules.
The ideal, 100%-spin-selective CISS Center in the middle introduces the directional spin trans-
mission in a CISS molecule, while the two identical non-magnetic barriers (with transmission
probability t) contribute the non-ideal electron transmission and reflection behavior. The over-
all transmission and reflection matrices of the entire BCB module are fully determined by t and
have all elements taking finite values between 0 and 1.

A non-ideal CISS molecule with C2 symmetry (two-fold rotational symmetry
with an axis perpendicular to the electron transport path) can be modeled as a linear
arrangement of two identical barriers sandwiching an ideal CISS center, as shown in
Figure 3.3 (only the P-type is shown). In this Barrier-CISS Center-Barrier (BCB) model
we consider that all spin-dependent linear-regime transport properties of a CISS
molecule exclusively originate from an ideal CISS center inside the molecule, and the
overall spin-dependency is limited by the multiple spin-independent transmissions
and reflections at other parts (non-magnetic barriers) of the molecule. Therefore,
the barrier transmission probability t (0 < t ≤ 1) fully determines the transmission
and reflection matrices of the entire BCB molecule, and consequently determines the
spin-related properties of the molecule. The use of an identical barrier on each side
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of the CISS center is to address the C2 symmetry. However, we stress that not all
CISS molecules have this symmetry, and the BCB model is still a simplified picture.
The model can be further generalized by removing the restriction of the CISS center
being ideal, and this case is discussed in Appendix C. Despite being a simplified pic-
ture, the BCB model captures all qualitative behaviors of a non-ideal CISS molecule,
and at the same time keeps quantitative analyses simple. Therefore, we further only
discuss the case of BCB molecules, instead of the more generalized CISS molecules.

3.2 Discussion

In this section, we use different approaches to separately analyze two-terminal and
multi-terminal circuit geometries. For two-terminal geometries, we evaluate the con-
ductance of the circuit segment by calculating the electron transmission probability
T21 between the two contacts. In contrast, for multi-terminal geometries, we take a
circuit-theory approach to evaluate the spin accumulation µs at the nodes.

A major difference between the two approaches is the inclusion of nodes in multi-
terminal geometries. In our description, a node is the only location where spin accu-
mulation can be defined. It can be experimentally realized with a diffusive electron
transport channel segment that is much shorter (along the electron transport direc-
tion) than the spin-diffusion length λs of the channel material. Due to its diffusive
nature, a node emits electrons to all directions, so it can be considered as a source
of electron back-scattering. Notably, adding a node to a near-ideal electron trans-
port channel (with transmission probability close to 1) significantly alters its elec-
tron transmission probability. Nonetheless, this does not affect the validity of our
approach because we only address non-ideal circuit segments where electron back-
scattering (reflection) already exists due to other circuit constituents (CISS molecules,
ferromagnets, or non-magnetic barriers). Note that even when we discuss the use of
ideal CISS molecules or ideal ferromagnets, the entire circuit segment is non-ideal
due to the reflection of the rejected spins.

In the following discussion, we consider only the P-type BCB molecule, and we
use expressions TP

R,L and RP
R,L to describe transmission and reflection matrices of

the entire BCB module, where the subscripts consider electron flow directions. The
derivations of these matrices can be found in Appendix B.

3.2.1 Two-terminal geometries

We discuss here two geometries that are relevant for two-terminal magnetoresistance
measurements [38].

The first is an FM-BCB geometry, as shown in Figure 3.4. It simulates a common
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Figure 3.4: An FM-BCB geometry where a ferromagnet and a BCB molecule are connected in
series in a two-terminal circuit segment. The magnetization reversal of the ferromagnet does
not change the two-terminal conductance.

type of experiment where a layer of chiral molecules is sandwiched between a ferro-
magnetic layer and a normal metal contact. The other side of the ferromagnetic layer
is also connected to a normal metal contact (experimentally this may be a wire that
connects the sample with the measurement instrument). Due to the spin-dependent
transmission of the chiral molecules and the ferromagnet, one might expect a change
of the two-terminal conductance once the magnetization of the ferromagnet is re-
versed. However, this change is not allowed by the reciprocity theorem (Eqn. 3.2),
which can be confirmed with our model, as explained below.

In order to illustrate this, we calculate the electron transmission probabilities for
opposite ferromagnet magnetization directions, TFM−BCB

21 (⇒) and TFM−BCB
21 (⇐),

where the arrows indicate the magnetization directions.
For the magnetization direction to the right (⇒), we first derive the transmission

and reflection matrices with the combined contribution from the ferromagnet and
the BCB molecule
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RFM−BCB
11 (⇒)

= RFM (⇒) + TFM (⇒) ·
(
I− RP

R · RFM (⇒)
)−1

· RP
R · TFM (⇒),

(3.4b)

where the I =

(
1 0

0 1

)
is the identity matrix. The addition of the multiple reflec-

tion terms is due to the multiple reflections between the ferromagnet and the BCB
molecule. Next, we include the contribution from the contacts and derive the trans-
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of the CISS center is to address the C2 symmetry. However, we stress that not all
CISS molecules have this symmetry, and the BCB model is still a simplified picture.
The model can be further generalized by removing the restriction of the CISS center
being ideal, and this case is discussed in Appendix C. Despite being a simplified pic-
ture, the BCB model captures all qualitative behaviors of a non-ideal CISS molecule,
and at the same time keeps quantitative analyses simple. Therefore, we further only
discuss the case of BCB molecules, instead of the more generalized CISS molecules.
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the entire BCB module, where the subscripts consider electron flow directions. The
derivations of these matrices can be found in Appendix B.
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mission and reflection probabilities accounting for both spins

TFM−BCB
21 (⇒) =

(
1, 1

)
TFM−BCB
21 (⇒)

(
1/2

1/2

)
, (3.5a)

RFM−BCB
11 (⇒) =

(
1, 1

)
RFM−BCB

11 (⇒)

(
1/2

1/2

)
, (3.5b)

where the column vector
(
1/2

1/2

)
describes the normalized input current from contact

1 with equal spin-right and spin-left contributions, and the row vector
(
1, 1

)
is an

operator that describes the absorption of both spins into contact 2 (calculates the sum
of the two spin components).

For the opposite magnetization direction (⇐), we modify the terms in Eqn. 3.4
and Eqn. 3.5 accordingly. Detailed calculations (see Appendix B) show

TFM−BCB
21 (⇒) ≡ TFM−BCB

21 (⇐) (3.6)

for all BCB transmission probabilities t and all ferromagnet polarizations PFM . There-
fore, it is not possible to detect any variation of two-terminal conductance in this ge-
ometry by switching the magnetization direction of the ferromagnet. In Appendix B
we show that it is also not possible to detect any variation of two-terminal conduc-
tance by reversing the current, and that the above conclusions also hold for the more
generalized CISS model (Appendix C). These conclusions also agree with earlier re-
ports on general voltage-based detections of current-induced spin signals [39].
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Figure 3.5: A Spin Valve geometry with a BCB molecule placed in between two ferromagnets.
Unlike a conventional spin valve, here the magnetization reversal of one ferromagnet does
not change the two-terminal conductance due to the presence of the BCB molecule.

The second geometry, as shown in Figure 3.5, contains two ferromagnets, and is
similar to a spin valve. In a conventional spin valve (a non-magnetic barrier sand-
wiched between two ferromagnets), the magnetization reversal of one ferromagnet
leads to a change of the two-terminal conductance [38] (this does not violate the
reciprocity theorem since switching one ferromagnet does not reverse all magnetiza-
tions of the entire circuit segment), whereas in the geometry shown in Figure 3.5, this
change does not happen due to the presence of spin-flip electron reflections in the
BCB molecule. (See Appendix B for more details.) As a result, this geometry is not
able to quantitatively measure the CISS effect. We emphasize that here the absence
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of the spin-valve behavior is unique for the BCB model, which contains an ideal CISS
Center. In Appendix C we show that a further-generalized CISS model regains the
spin-valve behavior. Nevertheless, one cannot experimentally distinguish whether
the regained spin-valve behavior originates from the CISS molecule or a normal non-
magnetic barrier, and therefore cannot draw any conclusion about the CISS effect. In
general, it is not possible to measure the CISS effect in the linear regime using two-
terminal experiments.

3.2.2 Four-terminal geometries and experimental designs

Four-terminal measurements allow one to completely separate spin-related signals
from charge-related signals, and therefore allow the detection of spin accumulations
created by the CISS effect [40]. Here we analyze two geometries that are relevant
for such measurements. In the first geometry, we use a node connected to BCB
molecules to illustrate how spin injection and detection can occur without using
magnetic materials (Figure 3.6). In the second geometry, we use two nodes to decou-
ple a BCB molecule from electrical contacts and illustrate the spin-charge conversion
property of the molecule (Figure 3.7). In addition, we propose device designs that
resemble these two geometries and discuss possible experimental outcomes (Fig-
ure 3.8).

Figure 3.6(a) shows a geometry where a node is connected to four contacts. Two
of the contacts contain BCB molecules, and the other two contain non-magnetic (tun-
nel) barriers. We consider an experiment where contacts 1 and 2 are used for cur-
rent injection and contacts 3 and 4 are used for voltage detection. In terms of spin
injection, we first assume that the voltage contacts 3 and 4 are weakly coupled to
the node, and do not contribute to the spin accumulation in the node. This means
that the chemical potentials of contacts 1 and 2 fully determine the spin-dependent

chemical potential (column vector) of the node µnode =

(
µnode→
µnode←

)
. We also assume

µ2 = 0 for convenience since only the chemical potential difference between the two
contacts is relevant. Under these assumptions, the node receives electrons only from
contact 1, but emits electrons to both contact 1 and 2. Therefore, the incoming current
(column vector) into the node is

Iin =
G

e
TP
Rµ1

(
1

1

)
, (3.7)

and the outgoing current (column vector) from the node is

Iout =
G

e

(
(I− RP

L ) + (1− rB)I
)
µnode, (3.8)
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The second geometry, as shown in Figure 3.5, contains two ferromagnets, and is
similar to a spin valve. In a conventional spin valve (a non-magnetic barrier sand-
wiched between two ferromagnets), the magnetization reversal of one ferromagnet
leads to a change of the two-terminal conductance [38] (this does not violate the
reciprocity theorem since switching one ferromagnet does not reverse all magnetiza-
tions of the entire circuit segment), whereas in the geometry shown in Figure 3.5, this
change does not happen due to the presence of spin-flip electron reflections in the
BCB molecule. (See Appendix B for more details.) As a result, this geometry is not
able to quantitatively measure the CISS effect. We emphasize that here the absence
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of the spin-valve behavior is unique for the BCB model, which contains an ideal CISS
Center. In Appendix C we show that a further-generalized CISS model regains the
spin-valve behavior. Nevertheless, one cannot experimentally distinguish whether
the regained spin-valve behavior originates from the CISS molecule or a normal non-
magnetic barrier, and therefore cannot draw any conclusion about the CISS effect. In
general, it is not possible to measure the CISS effect in the linear regime using two-
terminal experiments.

3.2.2 Four-terminal geometries and experimental designs

Four-terminal measurements allow one to completely separate spin-related signals
from charge-related signals, and therefore allow the detection of spin accumulations
created by the CISS effect [40]. Here we analyze two geometries that are relevant
for such measurements. In the first geometry, we use a node connected to BCB
molecules to illustrate how spin injection and detection can occur without using
magnetic materials (Figure 3.6). In the second geometry, we use two nodes to decou-
ple a BCB molecule from electrical contacts and illustrate the spin-charge conversion
property of the molecule (Figure 3.7). In addition, we propose device designs that
resemble these two geometries and discuss possible experimental outcomes (Fig-
ure 3.8).

Figure 3.6(a) shows a geometry where a node is connected to four contacts. Two
of the contacts contain BCB molecules, and the other two contain non-magnetic (tun-
nel) barriers. We consider an experiment where contacts 1 and 2 are used for cur-
rent injection and contacts 3 and 4 are used for voltage detection. In terms of spin
injection, we first assume that the voltage contacts 3 and 4 are weakly coupled to
the node, and do not contribute to the spin accumulation in the node. This means
that the chemical potentials of contacts 1 and 2 fully determine the spin-dependent
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. We also assume

µ2 = 0 for convenience since only the chemical potential difference between the two
contacts is relevant. Under these assumptions, the node receives electrons only from
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Figure 3.6: (a). A four-terminal geometry that includes a node. Two of the contacts contain
BCB molecules, and the other two are coupled to the node via tunnel barriers (with trans-
mission probability tB). The node is characterized by a spin-dependent chemical potential

vector µnode

(
µnode→

µnode←

)
and each of the four contacts is characterized by a spin-independent

chemical potential µi, with i = 1, 2, 3, 4. (b). Calculated ratio between four-terminal and
two-terminal resistances for this geometry, plotted as a function of t (transmission probability
of the barriers in BCB molecules) for three tB (transmission probability of the barriers at the
contacts) values.

where G = Ne2/h is the N -channel, one-spin conductance of the channels connect-
ing the node to each of the contacts, and rB (0 ≤ rB ≤ 1) is the reflection probability
of the tunnel barrier between the node and contact 2 (different from the barriers in
BCB molecules). Due to the spin-preserving nature of the node, at steady state the
incoming current is equal to the outgoing current (for both spin components), or
Iin = Iout. From this relation we derive

µnode =
(
(1 + tB)I− RP

L

)−1

TP
Rµ1

(
1

1

)
, (3.9)

where tB = 1 − rB is the transmission probability of the tunnel barrier. Next, we
derive the spin accumulation in the node

µs = µnode→ − µnode←=
(
1,−1

)
µnode = kinjµ1, (3.10)

where a row vector
(
1,−1

)
is used as an operator to calculate the difference between
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the two spin chemical potentials, and

kinj =
(
1,−1

)(
(1+tB)I− RP

L

)−1

TP
R

(
1

1

)
,

with 0 < kinj ≤
1

4
,

(3.11)

is the spin injection coefficient for these current contacts. This expression shows that
the spin accumulation in the node depends linearly on the chemical potential differ-
ence between the current contacts, and the coefficient kinj is determined by both the
BCB molecule (with parameter t) and the tunnel barrier connected to contact 2 (with
parameter tB).

With regard to spin detection, we discuss whether the established spin accumu-
lation µs in the node can lead to a chemical potential difference (and thus a charge
voltage) between the weakly coupled voltage contacts 3 and 4. A contact cannot dis-
tinguish between the two spin components, therefore only the charge current (sum
of both spins, calculated by applying an operator

(
1, 1

)
to a current column vec-

tor) is relevant. At steady state, there is no net charge current at any of the voltage
contacts,

I3 =
G

e

(
1, 1

)(
(1− rB)µ3

(
1

1

)
− tBµnode

)
= 0, (3.12a)

I4 =
G

e

(
1, 1

)(
(I− RP

L )µ4

(
1

1

)
− TP

Rµnode

)
= 0, (3.12b)

which gives
µ4 − µ3 = kdetµs, (3.13)

where

kdet =
1

2

(
1, 1

)
TP
R

(
1

−1

)

(
1, 1

)
TP
L

(
1

1

) ,

with 0 < kdet ≤
1

2
,

(3.14)

is the spin detection coefficient for these voltage contacts. This expression shows that
the chemical potential difference between the two voltage contacts depends linearly
on the spin accumulation in the node, and the coefficient kdet is exclusively deter-
mined by the BCB molecule (with parameter t).

Combining Eqn. 3.10 and Eqn. 3.13 we obtain

R4T

R2T
=

µ4 − µ3

µ1 − µ2
= kinjkdet, (3.15)
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ence between the current contacts, and the coefficient kinj is determined by both the
BCB molecule (with parameter t) and the tunnel barrier connected to contact 2 (with
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With regard to spin detection, we discuss whether the established spin accumu-
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is the spin detection coefficient for these voltage contacts. This expression shows that
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where R4T is the four-terminal resistance (measured using contacts 3 and 4 as volt-
age contacts, while using contacts 1 and 2 as current contacts), and R2T is the two-
terminal resistance (measured using contacts 1 and 2 as both voltage and current
contacts). This ratio is determined by both the BCB molecule (with parameter t) and
the tunnel barrier connected to contact 2 (with parameter tB), and can be experimen-
tally measured to quantitatively characterize the CISS effect.

As an example, for t = tB = 0.5, we have kinj ≈ 0.11, kdet ≈ 0.17, and R4T /R2T ≈
0.02. In Figure 3.6(b) we plot R4T /R2T as a function of t for three different tB values.
Similar plots for kinj and kdet are shown in Appendix B.

The above results show that it is possible to inject and detect a spin accumulation
in a node using only BCB molecules and non-magnetic (tunnel) barriers, and these
processes can be quantitatively described by the injection and detection coefficients.
We stress that the signs of the injection and detection coefficients depend on the type
(chirality) of the BCB molecule and the position of the molecule with respect to the
contact. Switching the molecule from P-type to AP-type leads to a sign change of
the injection or detection coefficient. The sign change also happens if the contact is
connected to the opposite side of the BCB molecule. For example, in Figure 3.6(a),
contacts 1 and 4 are both connected to the node via P-type BCB molecules, but con-
tact 1 is on the left-hand side of a molecule, while contact 4 is on the right-hand side.
Electrons emitted from these two contacts travel in opposite directions through the
(same type of) BCB molecules before arriving at the node. As a result, using contact
4 instead of contact 1 as a current contact leads to a sign change of kinj . Similarly,
using contact 1 instead of contact 4 as a voltage contact leads to a sign change of
kdet. Experimentally, one can use three BCB contacts to observe this sign change: A
fixed current contact (thus a fixed kinj) in combination with two voltage contacts that
use the same type of BCB molecule but are placed on opposite sides of a node (thus
opposite signs for kdet). The voltages measured by the two voltage contacts (with re-
spect to a common reference contact) will differ by sign. This can be experimentally
measured as a signature of the CISS effect.

𝜇𝜇𝜇← = 𝜇𝜇→  𝜇𝜇3 = 𝜇𝜇𝜇→ 

𝜇𝜇1 

𝜇𝜇2 𝜇𝜇3 

𝜇𝜇4 A B P P P 
𝝁𝝁𝑨𝑨  𝝁𝝁𝑩𝑩  

Figure 3.7: A four-terminal geometry involving two nodes A and B, which are connected to
each other via a BCB molecule. A spin accumulation difference between the two nodes results
in a (charge) chemical potential difference between them, and vice versa.

Figure 3.7 shows a geometry where a BCB molecule is between two nodes A
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and B, and is decoupled from the contacts. The nodes themselves are connected to
contacts in a similar fashion as in the previous geometry. In node A, we consider
a chemical potential vector µA and a spin accumulation µsA, which are fully de-
termined by the current contacts 1 and 2. In node B, we consider weakly coupled
voltage contacts 3 and 4, so that its chemical potential vector µB and its spin accu-
mulation µsB , are fully determined by µA. At steady state, there is no net charge or
spin current in node B, which leads to

µB = (I− RP
L )

−1TP
RµA. (3.16)

Note that here the matrices only refer to the molecule between the two nodes. For
BCB molecules, this expression always gives µsB = 0, but for a more generalized
CISS molecule (as described in Appendix C), this expression can give µsB �= 0. This
shows that a spin accumulation at one side of a CISS molecule can generate a spin
accumulation at the other side of the molecule. Most importantly, for both the BCB
model and the more generalized model, Eqn. 3.16 predicts that a spin accumulation
difference across a CISS molecule creates a charge voltage across the molecule, and
vice versa (spin-charge conversion via a CISS molecule). Mathematically written, the
expression always provides µnA �= µnB when µsA �= µsB , and µsA �= µsB when
µnA �= µnB , where µnA (or µnB) is the average chemical potential of the two spin
components in node A (or in node B). A more detailed description of this geometry
can be found in Appendix C.
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Figure 3.8: Nonlocal device designs with CISS molecules adsorbed on graphene. (a). A device
where electrons travel through CISS molecules. All contacts are non-magnetic and are num-
bered in agreement with Figure 3.6(a). A variation of this device can be achieved by replacing
contact 1 with a ferromagnet, see inset. (b). A device where electrons travel in proximity to
CISS molecules. A ferromagnetic contact 2 is used for spin injection, but one can also use only
non-magnetic contacts, as in Figure 3.7.

Figure 3.8 shows two types of nonlocal devices that resemble the two geometries
introduced above. We realize the node function with graphene, chosen for its long
spin lifetime and long spin diffusion length [41].
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where R4T is the four-terminal resistance (measured using contacts 3 and 4 as volt-
age contacts, while using contacts 1 and 2 as current contacts), and R2T is the two-
terminal resistance (measured using contacts 1 and 2 as both voltage and current
contacts). This ratio is determined by both the BCB molecule (with parameter t) and
the tunnel barrier connected to contact 2 (with parameter tB), and can be experimen-
tally measured to quantitatively characterize the CISS effect.

As an example, for t = tB = 0.5, we have kinj ≈ 0.11, kdet ≈ 0.17, and R4T /R2T ≈
0.02. In Figure 3.6(b) we plot R4T /R2T as a function of t for three different tB values.
Similar plots for kinj and kdet are shown in Appendix B.

The above results show that it is possible to inject and detect a spin accumulation
in a node using only BCB molecules and non-magnetic (tunnel) barriers, and these
processes can be quantitatively described by the injection and detection coefficients.
We stress that the signs of the injection and detection coefficients depend on the type
(chirality) of the BCB molecule and the position of the molecule with respect to the
contact. Switching the molecule from P-type to AP-type leads to a sign change of
the injection or detection coefficient. The sign change also happens if the contact is
connected to the opposite side of the BCB molecule. For example, in Figure 3.6(a),
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Electrons emitted from these two contacts travel in opposite directions through the
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Figure 3.7: A four-terminal geometry involving two nodes A and B, which are connected to
each other via a BCB molecule. A spin accumulation difference between the two nodes results
in a (charge) chemical potential difference between them, and vice versa.

Figure 3.7 shows a geometry where a BCB molecule is between two nodes A
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and B, and is decoupled from the contacts. The nodes themselves are connected to
contacts in a similar fashion as in the previous geometry. In node A, we consider
a chemical potential vector µA and a spin accumulation µsA, which are fully de-
termined by the current contacts 1 and 2. In node B, we consider weakly coupled
voltage contacts 3 and 4, so that its chemical potential vector µB and its spin accu-
mulation µsB , are fully determined by µA. At steady state, there is no net charge or
spin current in node B, which leads to

µB = (I− RP
L )

−1TP
RµA. (3.16)

Note that here the matrices only refer to the molecule between the two nodes. For
BCB molecules, this expression always gives µsB = 0, but for a more generalized
CISS molecule (as described in Appendix C), this expression can give µsB �= 0. This
shows that a spin accumulation at one side of a CISS molecule can generate a spin
accumulation at the other side of the molecule. Most importantly, for both the BCB
model and the more generalized model, Eqn. 3.16 predicts that a spin accumulation
difference across a CISS molecule creates a charge voltage across the molecule, and
vice versa (spin-charge conversion via a CISS molecule). Mathematically written, the
expression always provides µnA �= µnB when µsA �= µsB , and µsA �= µsB when
µnA �= µnB , where µnA (or µnB) is the average chemical potential of the two spin
components in node A (or in node B). A more detailed description of this geometry
can be found in Appendix C.
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Figure 3.8: Nonlocal device designs with CISS molecules adsorbed on graphene. (a). A device
where electrons travel through CISS molecules. All contacts are non-magnetic and are num-
bered in agreement with Figure 3.6(a). A variation of this device can be achieved by replacing
contact 1 with a ferromagnet, see inset. (b). A device where electrons travel in proximity to
CISS molecules. A ferromagnetic contact 2 is used for spin injection, but one can also use only
non-magnetic contacts, as in Figure 3.7.

Figure 3.8 shows two types of nonlocal devices that resemble the two geometries
introduced above. We realize the node function with graphene, chosen for its long
spin lifetime and long spin diffusion length [41].
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The first type, as shown in Figure 3.8(a), represents the geometry in Figure 3.6(a),
where spin injection and detection are both achieved using CISS molecules. A cur-
rent Iinj is injected from contact 1 through CISS molecules into graphene, then driven
out to a normal metal contact 2. This current induces a spin accumulation in the
graphene layer underneath the current contacts, which then diffuses to the voltage
contacts. The voltage contacts then pick up a charge voltage Vdet in a similar fashion
as explained in Figure 3.6(a). With this, the nonlocal resistance can be determined
Rnl = Vdet/Iinj . Further, we can derive (see Appendix B for details)

Rnl = −kinjkdetRinje
− d

λs , (3.17)

where Rinj is the resistance measured between the current contacts 1 and 2, d is the
distance between contacts 1 and 4, and λs is the spin diffusion length of graphene.
It is assumed here that the spacing between the current contacts (1 and 2) and the
spacing between the voltage contacts (3 and 4) are both much smaller than λs. The
minus sign comes from the fact that the injection and the detection contacts are on the
same side of the graphene channel (both on top), unlike the example in Figure 3.6(a)
(one on the left and the other on the right).

A variation of this device is obtained by replacing contact 1 (together with the
CISS molecules underneath it) with a ferromagnet, as shown in the inset of Fig-
ure 3.8(a). This variation allows one to control the sign of Rnl by controlling the
magnetization direction of the ferromagnet, which should be aligned parallel or anti-
parallel to the helical (chiral) axis of the CISS molecules (out-of-plane, as indicated
by the arrows). The nonlocal resistance is therefore

Rnl(⇑) = −Rnl(⇓) = PFMkdetRλe
− d

λs , (3.18)

where the arrows indicate the magnetization directions, PFM is the polarization of
the ferromagnet, and Rλ is the spin resistance of graphene (see Appendix B for more
details). In this device, the reversal of the magnetization direction of the ferromagnet
leads to a sign change of the nonlocal resistance. Under experimental conditions [42,
43], this nonlocal resistance change ∆Rnl = Rnl(⇑)−Rnl(⇓) can reach tens of Ohms
(Ω) and is easily detectable.

The second type of device is depicted in Panel (b). It is a variation of the ge-
ometry in Figure 3.7, where contact 2 is replaced by a ferromagnet. In this device,
instead of traveling through the CISS molecules, the electrons travel through the
graphene channel underneath the molecules. It is assumed that due to the proxim-
ity of the CISS molecules, the electrons in graphene also experience a (weaker) CISS
effect. Whether this assumption is valid remains to be proven. The nonlocal signals
produced by this device are derived in Appendix B.
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3.3 Conclusion

In summary, we demonstrated that a spin-flip electron reflection process is inherent
to the chiral induced spin selectivity (CISS) effect in linear-regime electron transport.
Furthermore, we developed a set of spin-dependent electron transmission and reflec-
tion matrices and a generalized Barrier-CISS Center-Barrier (BCB) model to quanti-
tatively describe the CISS effect in mesoscopic devices. Based on this formalism, we
demonstrated that more than two terminals are needed in order to probe the CISS ef-
fect in linear-regime transport experiments. Moreover, we also showed several ways
of injecting and detecting spins using CISS molecules and demonstrated that CISS
molecules can give rise to spin-charge conversion. In addition, we proposed two
types of graphene-based nonlocal devices which can be used to directly measure the
CISS effect in the linear regime.

We stress again that the above discussions and proposed devices are all based on
linear-regime electron transport. Therefore, our conclusions cannot exclude the two-
terminal detection of the CISS effect in the non-linear regime. However, the spin sig-
nals in non-linear-regime measurements should approach zero as the two-terminal
bias approaches zero (entering the linear regime), and the mechanism that may con-
tribute to such signals has to be different from spin-dependent electron transmission
and reflection. A recent work shows that the CISS effect in electron photoemission
experiments (three-terminal) can be explained by losses due to spin-dependent elec-
tron absorption in chiral molecules [44], but whether a similar process can lead to
the detection of the CISS effect in non-linear two-terminal measurements remains to
be investigated. In general, our model captures the fundamental role of the CISS ef-
fect in linear-regime mesoscopic devices without assuming any microscopic electron
transport mechanism inside CISS molecules. Recently, a new type of spin-orbit cou-
pling was predicted for one-dimensional screw dislocations in semiconductor crys-
tals, which has a one-dimensional helical effective electric field. This type of spin-
orbit coupling can lead to an enhanced spin lifetime for electrons traveling along the
helical axis [45]. Future theoretical work should study whether similar effects exist
in chiral or helical molecules.

In general, our model helps to analyze and understand device-based CISS experi-
ments without having to understand the CISS effect on a molecular level. It provides
a guideline for future reviewing and designing of CISS-based mesoscopic spintronic
devices.
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by the arrows). The nonlocal resistance is therefore
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where the arrows indicate the magnetization directions, PFM is the polarization of
the ferromagnet, and Rλ is the spin resistance of graphene (see Appendix B for more
details). In this device, the reversal of the magnetization direction of the ferromagnet
leads to a sign change of the nonlocal resistance. Under experimental conditions [42,
43], this nonlocal resistance change ∆Rnl = Rnl(⇑)−Rnl(⇓) can reach tens of Ohms
(Ω) and is easily detectable.

The second type of device is depicted in Panel (b). It is a variation of the ge-
ometry in Figure 3.7, where contact 2 is replaced by a ferromagnet. In this device,
instead of traveling through the CISS molecules, the electrons travel through the
graphene channel underneath the molecules. It is assumed that due to the proxim-
ity of the CISS molecules, the electrons in graphene also experience a (weaker) CISS
effect. Whether this assumption is valid remains to be proven. The nonlocal signals
produced by this device are derived in Appendix B.
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3.3 Conclusion

In summary, we demonstrated that a spin-flip electron reflection process is inherent
to the chiral induced spin selectivity (CISS) effect in linear-regime electron transport.
Furthermore, we developed a set of spin-dependent electron transmission and reflec-
tion matrices and a generalized Barrier-CISS Center-Barrier (BCB) model to quanti-
tatively describe the CISS effect in mesoscopic devices. Based on this formalism, we
demonstrated that more than two terminals are needed in order to probe the CISS ef-
fect in linear-regime transport experiments. Moreover, we also showed several ways
of injecting and detecting spins using CISS molecules and demonstrated that CISS
molecules can give rise to spin-charge conversion. In addition, we proposed two
types of graphene-based nonlocal devices which can be used to directly measure the
CISS effect in the linear regime.

We stress again that the above discussions and proposed devices are all based on
linear-regime electron transport. Therefore, our conclusions cannot exclude the two-
terminal detection of the CISS effect in the non-linear regime. However, the spin sig-
nals in non-linear-regime measurements should approach zero as the two-terminal
bias approaches zero (entering the linear regime), and the mechanism that may con-
tribute to such signals has to be different from spin-dependent electron transmission
and reflection. A recent work shows that the CISS effect in electron photoemission
experiments (three-terminal) can be explained by losses due to spin-dependent elec-
tron absorption in chiral molecules [44], but whether a similar process can lead to
the detection of the CISS effect in non-linear two-terminal measurements remains to
be investigated. In general, our model captures the fundamental role of the CISS ef-
fect in linear-regime mesoscopic devices without assuming any microscopic electron
transport mechanism inside CISS molecules. Recently, a new type of spin-orbit cou-
pling was predicted for one-dimensional screw dislocations in semiconductor crys-
tals, which has a one-dimensional helical effective electric field. This type of spin-
orbit coupling can lead to an enhanced spin lifetime for electrons traveling along the
helical axis [45]. Future theoretical work should study whether similar effects exist
in chiral or helical molecules.

In general, our model helps to analyze and understand device-based CISS experi-
ments without having to understand the CISS effect on a molecular level. It provides
a guideline for future reviewing and designing of CISS-based mesoscopic spintronic
devices.
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3.4 Reply to Comment

In this section, we emphasize once more the distinction between generating CISS
(spin-charge current conversion) in a chiral spin-orbit system and detecting it as
magnetoresistance in two-terminal electronic devices. We also highlight important
differences between electrical measurement results obtained in the linear response
regime and those obtained in the nonlinear regime.

The Comment by R. Naaman and D. H. Waldeck [46] addresses our recent pub-
lication “Spin-dependent electron transmission model for chiral molecules in mesoscopic
devices [47]”. We believe that the Comment is largely based on misunderstandings
of Ref. 47, and it is important to clarify these in detail. Therefore, we provide here
a point-by-point reply to the Comment and emphasize the important distinctions
between the results obtained in the linear response regime and those obtained in
the nonlinear regime, because both are experimentally observed using two-terminal
electrical measurements. Moreover, we emphasize again the importance of differ-
entiating the conditions for generating a spin polarization in a chiral molecule from
those for detecting it as a magnetoresistance signal in a two-terminal electronic de-
vice.

1. Comment: “The paper published by Yang et. al. [47] models spin transmission
through chiral molecules in mesoscopic devices. Based on their model, they claim that
spin selectivity in electron transport through chiral molecules, in the linear regime,
cannot be measured by using a two-terminal device, unless a spin flip process occurs
in the molecule.”

Reply: This summary of Ref. 47 is incorrect. First, the spin-flip reflection is
directly related to the presence of spin-polarized transmission. Second, the
spin-polarized transmission cannot be detected using a two-terminal electrical
measurement in the linear response regime, regardless of the presence of spin-
flip reflection.

2. Comment: “Their simplified, two-terminal model assumes that charge is injected from
a source electrode, transits through a chiral molecule and a ferromagnet, and is collected
at a drain electrode. In this treatment, the ferromagnet transmits a given spin and
reflects the other; but there is no dissipation in the ferromagnet. While the conclusions
drawn by the authors may be consistent with the simplified model, the model itself is
not realistic enough to account for experiments.”

Reply: We indeed consider a two-terminal model but it does not involve sim-
plifications for the linear response regime. Note that the role of the source and
drain electrodes are interchangeable in the linear response regime because of
microscopic reversibility. We have included in the model electron reflections at
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all interfaces, including the ferromagnet and the electrodes. The ferromagnet
is characterized by a spin polarization parameter, which can be tuned from 0

to 1. The conclusions of the model are valid for all polarization values.

3. Comment: “Theoretical models for the CISS effect, in two contact spin measurements,
exist in the literature already, and the conditions for observing spin polarization have
been discussed in detail. As an example, consider the work by Matityahu et. al. which
states: “When the helix is connected to two one-dimensional single-mode leads, time-
reversal symmetry prevents spin polarization of the outgoing electrons. One possible
way to retrieve such a polarization is to allow leakage of electrons from the helix to the
environment, via additional outgoing leads.” ”

Reply: How a spin polarization can be generated by a chiral molecule has in-
deed been discussed in many publications, including Refs.24, 31, 44 mentioned
in the Comment. This is also pointed out in Ref. 47. However, Ref. 47 ad-
dresses a completely different issue, which is how such a spin polarization can
be detected as a charge signal in transport experiments in the linear response
regime. To our best knowledge, this issue is only addressed in one other pub-
lication [48], which appeared after Ref.47.

4. Comment: “In other words, dephasing acts to create asymmetry in the transmission
amplitude for spin up versus spin down, and it breaks Onsager’s reciprocity relation.”

Reply: While dephasing indeed creates transmission asymmetry for opposite
spins, it does not break reciprocity. The Onsager’s relation is a thermodynami-
cal theorem, and it holds in the presence of dephasing, see for example Ref.34.

5. Comment: “For example, Buttiker [49] showed how asymmetry arises for magneto-
conductance in a two terminal device. The combination of interactions with a bath
and the large electric fields at interfaces (typical of CISS experiments) can result in the
observed asymmetry.”

Reply: This is correct, but the asymmetry can only occur outside the linear
response regime, i.e. away from zero bias by at least V = kBT/e [50].

6. Comment: “In addition, we note that spin-selective backscattering, as an explanation
for the spin selectivity, was also discussed previously [24] and even used to analyze for
the extent of spin flipping in experiments [44].”

Reply: This is the same issue as explained in the above Point 3. Refs. 24, 44
discuss how a spin-polarized current can be generated by chiral molecules,
but not how it can be electrically detected in a charge transport experiment.

7. Comment: “To summarize, two-terminal models have been discussed before, and it
was shown that CISS can be observed if dissipation or a combination of non-linearity
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and dissipation are included.”

Reply: See the previous discussions (Points 3-6).

8. Comment: “The origin of the nonlinearity, to which we refer, is important to clarify.
The simplified model used by Yang et al, presents the linear approximation for the
conduction, but it does not relate to the actual parameters characterizing the CISS
measurements and could prove misleading to some readers.”

Reply: The model in Ref. 47 is not simplified in the linear response regime,
and the results are strict. The model does not intend to present descriptions for
the conduction beyond this regime. The model is very relevant for actual CISS
measurements since for several of those, such as the ones shown in Fig. 1 in the
Comment, the linear response regime can be clearly identified.

9. Comment: “For charge moves through a system which is smaller, in dimension, than
the screening length, the transport does not depend linearly on the field applied [51,
52]. Because the chiral molecules studied, in all the works cited in Ref. 47, are on the
scale of few nanometers, upon applying an electric potential the typical field is of the
order of 108 V/m. Consequently, the electronic states in the molecules ‘mix’; and the
electric field has two contributions: mixing of zeroth-order states by the Stark effect
and driving current via the potential drop, conduction. For an example of a model
based treatment, see the recent work by Michaeli [53]. This limit is different from most
conduction studies of mesoscopic structures.”

Reply: This is irrelevant to the linear response regime. Electron transport is
driven by a difference, or a gradient, of the electrochemical potential. In our
case it is the difference in Fermi levels in the two electrodes. What the corre-
sponding electric field (distribution) is depends on the electrostatic screening
properties of the device, and indeed on whether the device length is shorter
or longer than the screening length. In the linear response regime, the calcu-
lations of electron transport do not require the (self-consistent) calculations of
electrostatic potentials and fields. Outside the linear response regime, though,
the effects described in the Comment can indeed play an important role.

10. Comment: “The non-linearity of the conduction is readily apparent in experiments
with two contacts that have already been published. For example, Figure 1A presents
the current versus potential curves, that were measured in a magnetic conducting
probe AFM configuration and Figure 1B shows the corresponding plot of the conduc-
tance versus the applied potential. Figure 1C shows the spin polarization as a function
of the applied potential, which is extracted from the measurements shown in Fig. 1A.
Note that these data are obtained from “two contact experiments” that have been pre-
sented in figures 2 and 3 of a paper [6], referred to as reference 6 by Yang et al. [47].
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The nonlinear response is apparent both in the current dependence on the voltage (Fig
1A), as well as in the other curves.”

Reply: Fig. 1A and Fig. 1B (see in the Comment) greatly help us to clarify our
point: In all the nonlinear curves in these figures, the linear response regime
can be clearly identified, and here it is roughly within ±0.05 V. According to
Ref. 47, the red and blue curves in both Fig. 1A and Fig. 1B should overlap
within this bias range, but they do not. More generally, for any CISS measure-
ment using the magnetic conducting AFM technique, the two (averaged) I-V
curves should have the same slope at zero bias, and the two (averaged) dI/dV
curves should have the same value at zero bias. We emphasize that these re-
quirements originate from the fundamental microscopic reversibility and the
laws of thermodynamics. The departures from these requirements as shown in
Fig. 1A and Fig. 1B, we think, may be related to the statistical approaches used
in these experiments.

11. Comment: “To illustrate the nonlinearity more clearly, Figure 1D shows a plot of
the data from Fig. 1A on a semi-log graph. His plot reveals the exponential growth of
the current at low voltage and the deviation of the currents from each other at higher
voltages.”

Reply: Figure. 1A and Fig. 1D do not represent the same data, because (1) At a
bias of 1 V, the two curves in Fig. 1A reach values of about 0.8 nA and 0.3 nA,
respectively, whereas the two curves in Fig. 1D reach about 1.0 nA and 0.4 nA;
(2) At zero bias, the two curves in Fig. 1A have different slopes, which is also
shown by a difference of dI/dV values of a factor of two to three in Fig. 1B.
This must result in a vertical shift between the curves in Fig. 1D over the entire
range, but it is not present at low bias. Also, the labeling of the two curves,
in the sense that whether it is the HDOWN or the HUP curve that gives higher
current, is not consistent in Fig. 1A and Fig. 1D. We therefore will not comment
on Fig. 1D.

12. Comment: “The spin polarization changes dramatically at low potentials; it is basi-
cally zero at very low fields and increases as the electric field approaches a maximum
of ∼ 5 × 108 V/m. This observation, which is apparent in most current vs. voltage
curves cited in ref. 47, shows that the simplified model developed in ref. 47 is not
relevant to the measurements.”

Reply: This description is not inconsistent with our model. According to Ref.47,
the polarization calculated as in Fig. 1C should be zero in the linear response
regime, and then it may increase with increasing bias. Both curves in Fig. 1C
indeed show zero spin polarization at zero bias, which proves the relevance of
our model to actual measurements.
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and dissipation are included.”

Reply: See the previous discussions (Points 3-6).

8. Comment: “The origin of the nonlinearity, to which we refer, is important to clarify.
The simplified model used by Yang et al, presents the linear approximation for the
conduction, but it does not relate to the actual parameters characterizing the CISS
measurements and could prove misleading to some readers.”

Reply: The model in Ref. 47 is not simplified in the linear response regime,
and the results are strict. The model does not intend to present descriptions for
the conduction beyond this regime. The model is very relevant for actual CISS
measurements since for several of those, such as the ones shown in Fig. 1 in the
Comment, the linear response regime can be clearly identified.

9. Comment: “For charge moves through a system which is smaller, in dimension, than
the screening length, the transport does not depend linearly on the field applied [51,
52]. Because the chiral molecules studied, in all the works cited in Ref. 47, are on the
scale of few nanometers, upon applying an electric potential the typical field is of the
order of 108 V/m. Consequently, the electronic states in the molecules ‘mix’; and the
electric field has two contributions: mixing of zeroth-order states by the Stark effect
and driving current via the potential drop, conduction. For an example of a model
based treatment, see the recent work by Michaeli [53]. This limit is different from most
conduction studies of mesoscopic structures.”

Reply: This is irrelevant to the linear response regime. Electron transport is
driven by a difference, or a gradient, of the electrochemical potential. In our
case it is the difference in Fermi levels in the two electrodes. What the corre-
sponding electric field (distribution) is depends on the electrostatic screening
properties of the device, and indeed on whether the device length is shorter
or longer than the screening length. In the linear response regime, the calcu-
lations of electron transport do not require the (self-consistent) calculations of
electrostatic potentials and fields. Outside the linear response regime, though,
the effects described in the Comment can indeed play an important role.

10. Comment: “The non-linearity of the conduction is readily apparent in experiments
with two contacts that have already been published. For example, Figure 1A presents
the current versus potential curves, that were measured in a magnetic conducting
probe AFM configuration and Figure 1B shows the corresponding plot of the conduc-
tance versus the applied potential. Figure 1C shows the spin polarization as a function
of the applied potential, which is extracted from the measurements shown in Fig. 1A.
Note that these data are obtained from “two contact experiments” that have been pre-
sented in figures 2 and 3 of a paper [6], referred to as reference 6 by Yang et al. [47].
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3.4. Reply to Comment 59

The nonlinear response is apparent both in the current dependence on the voltage (Fig
1A), as well as in the other curves.”

Reply: Fig. 1A and Fig. 1B (see in the Comment) greatly help us to clarify our
point: In all the nonlinear curves in these figures, the linear response regime
can be clearly identified, and here it is roughly within ±0.05 V. According to
Ref. 47, the red and blue curves in both Fig. 1A and Fig. 1B should overlap
within this bias range, but they do not. More generally, for any CISS measure-
ment using the magnetic conducting AFM technique, the two (averaged) I-V
curves should have the same slope at zero bias, and the two (averaged) dI/dV
curves should have the same value at zero bias. We emphasize that these re-
quirements originate from the fundamental microscopic reversibility and the
laws of thermodynamics. The departures from these requirements as shown in
Fig. 1A and Fig. 1B, we think, may be related to the statistical approaches used
in these experiments.

11. Comment: “To illustrate the nonlinearity more clearly, Figure 1D shows a plot of
the data from Fig. 1A on a semi-log graph. His plot reveals the exponential growth of
the current at low voltage and the deviation of the currents from each other at higher
voltages.”

Reply: Figure. 1A and Fig. 1D do not represent the same data, because (1) At a
bias of 1 V, the two curves in Fig. 1A reach values of about 0.8 nA and 0.3 nA,
respectively, whereas the two curves in Fig. 1D reach about 1.0 nA and 0.4 nA;
(2) At zero bias, the two curves in Fig. 1A have different slopes, which is also
shown by a difference of dI/dV values of a factor of two to three in Fig. 1B.
This must result in a vertical shift between the curves in Fig. 1D over the entire
range, but it is not present at low bias. Also, the labeling of the two curves,
in the sense that whether it is the HDOWN or the HUP curve that gives higher
current, is not consistent in Fig. 1A and Fig. 1D. We therefore will not comment
on Fig. 1D.

12. Comment: “The spin polarization changes dramatically at low potentials; it is basi-
cally zero at very low fields and increases as the electric field approaches a maximum
of ∼ 5 × 108 V/m. This observation, which is apparent in most current vs. voltage
curves cited in ref. 47, shows that the simplified model developed in ref. 47 is not
relevant to the measurements.”

Reply: This description is not inconsistent with our model. According to Ref.47,
the polarization calculated as in Fig. 1C should be zero in the linear response
regime, and then it may increase with increasing bias. Both curves in Fig. 1C
indeed show zero spin polarization at zero bias, which proves the relevance of
our model to actual measurements.
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13. Comment: “In summary, the model presented in ref. 47 oversimplifies; it fails to
include the dissipation processes occurring at room temperature and it considers a
linear limit that is not valid for the measurements on the CISS effect.”

Reply: This conclusion is incorrect. Ref. 47 considers only the linear response
regime which is clearly observed in experiments such as the one shown in
Fig. 1 in the Comment, and therefore it is very relevant to actual measurements.
Within the linear response regime the model is not simplified.

We emphasize again that Ref. 47 is intended to raise awareness of the conse-
quences of fundamental symmetries and limitations of certain electrical measure-
ment geometries. It also highlights the differences between linear and nonlinear
regimes. An extension of our model shows that a magnetoresistance signal in the
two-terminal geometries discussed here can indeed be observed in the nonlinear
regime [54].

3.5 Appendices

A. General validity of the spin-flip reflection process
In the main text, we stated that a spin-flip electron reflection process has to exist in order for spin-
dependent transmission through CISS molecules to be allowed by the reciprocity theorem. Mathemati-
cally, this statements means that at least one off-diagonal term in the reflection matrices of CISS molecules
has to be non-zero. Now we prove the general validity of our statement by limiting all off-diagonal terms
of the reflection matrices to zero, and derive violations against the description of the CISS effect. Under
this limit, the general form of the transmission and reflection matrices of a CISS molecule is

TCISS =

(
a c

b d

)
, RCISS =

(
A 0

0 D

)
, (3.19)

where 0 ≤ a, b, c, d, A,D ≤ 1. For electrons traveling towards the CISS molecule, each spin component
can either be transmitted (with or without spin-flip) or reflected, the sum of these probabilities is therefore
unity.

a+ b+A = 1, c+ d+D = 1. (3.20)

Therefore we have

RCISS =

(
1− a− b 0

0 1− c− d

)
(3.21)

In addition, we adopt transmission and reflection matrices of a ferromagnet from Figure 3.2.
Next, we consider that the CISS effect exists in the linear regime. This means that (according to the

description of the CISS effect) with an input of spin non-polarized electrons, the CISS molecule gives
a spin-polarized transmission output (a non-zero spin current Is). Here we do not make assumptions
about the chirality of the molecule or the electron flow direction, so that our conclusions hold for the most
general situations. Therefore, we do not assume the sign of Is, and write

Is =
(
1,−1

)
TCISS

(
1/2

1/2

)
=

(a+ c)− (b+ d)

2
�= 0, (3.22)
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where the column vector indicates the spin non-polarized input current, and the row vector is an operator
that calculates the difference between the two spin components in the output current.

In order to illustrate the discrepancy between the assumption of not having any spin-flip reflection
and the conceptual description of the CISS effect (Eqn. 3.22), we apply the reciprocity theorem to the
circuit segment shown in Figure 3.1. For this circuit segment, we calculate the total transmission matrix
accounting for the contribution from both the CISS molecule and the ferromagnet, and obtain

T21 = TFM ·

(
I− RCISS · RFM

)−1

· TCISS . (3.23)

The transmission probability accounting for both spin species is therefore

T21 =
(
1, 1

)
T21

(
1/2

1/2

)
, (3.24)

where the row vector is an operator that calculates the sum of both spin species. By substituting the
matrices, we can write T21 as a function of PFM

T21(PFM ) =
a(1 + PFM )

1 + a+ b+ PFM (1− a− b)

+
d(1− PFM )

1 + c+ d− PFM (1− c− d)
.

(3.25)

Here the magnetization reversal of the ferromagnet is equivalent to a sign change of PFM . Therefore, the
broader reciprocity theorem requires [36, 37]

T12(PFM ) ≡ T12(−PFM ) (3.26)

for all 0 < |PFM | ≤ 1. This requirement gives

a = d, and b = c,

and therefore,
(a+ c)− (b+ d) = 0,

which violates Eqn. 3.22.
Therefore, we proved that the spin-flip electron reflection process has to exist in order for the CISS

effect to exist in the linear transport regime, and this is a direct requirement from the Reciprocity Theorem.

B. Further discussion about the BCB model

Derivation of the BCB transmission and reflection matrices

In the BCB model, we consider a CISS molecule as two normal barriers sandwiching an ideal CISS center.
The three parts together determine the transmission and reflection matrices of the molecule. We derive
these matrices in two steps. First, we calculate the combined contribution of the left-most barrier and the
ideal CISS center as Part 1 (superscript P1). Then, we add the second barrier to Part 1 and calculate the
total effect.

We adopt the transmission and reflection matrices for a normal barrier and a CISS center from Fig-
ure 3.2. Here we only discuss P-type CISS molecules, as the AP-type can be derived using the relations
given in Figure 3.2. For Part 1 we have

TP1
R = (TP

0,R + TP
0,R · RB · RP

0,R) · TB =

(
t t(1− t)

0 0

)
, (3.27a)

RP1
R = RB + TB · RP

0,R · TB =

(
1− t t2

0 1− t

)
, (3.27b)
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13. Comment: “In summary, the model presented in ref. 47 oversimplifies; it fails to
include the dissipation processes occurring at room temperature and it considers a
linear limit that is not valid for the measurements on the CISS effect.”

Reply: This conclusion is incorrect. Ref. 47 considers only the linear response
regime which is clearly observed in experiments such as the one shown in
Fig. 1 in the Comment, and therefore it is very relevant to actual measurements.
Within the linear response regime the model is not simplified.

We emphasize again that Ref. 47 is intended to raise awareness of the conse-
quences of fundamental symmetries and limitations of certain electrical measure-
ment geometries. It also highlights the differences between linear and nonlinear
regimes. An extension of our model shows that a magnetoresistance signal in the
two-terminal geometries discussed here can indeed be observed in the nonlinear
regime [54].

3.5 Appendices

A. General validity of the spin-flip reflection process
In the main text, we stated that a spin-flip electron reflection process has to exist in order for spin-
dependent transmission through CISS molecules to be allowed by the reciprocity theorem. Mathemati-
cally, this statements means that at least one off-diagonal term in the reflection matrices of CISS molecules
has to be non-zero. Now we prove the general validity of our statement by limiting all off-diagonal terms
of the reflection matrices to zero, and derive violations against the description of the CISS effect. Under
this limit, the general form of the transmission and reflection matrices of a CISS molecule is

TCISS =

(
a c

b d

)
, RCISS =

(
A 0

0 D

)
, (3.19)

where 0 ≤ a, b, c, d, A,D ≤ 1. For electrons traveling towards the CISS molecule, each spin component
can either be transmitted (with or without spin-flip) or reflected, the sum of these probabilities is therefore
unity.

a+ b+A = 1, c+ d+D = 1. (3.20)

Therefore we have

RCISS =

(
1− a− b 0

0 1− c− d

)
(3.21)

In addition, we adopt transmission and reflection matrices of a ferromagnet from Figure 3.2.
Next, we consider that the CISS effect exists in the linear regime. This means that (according to the

description of the CISS effect) with an input of spin non-polarized electrons, the CISS molecule gives
a spin-polarized transmission output (a non-zero spin current Is). Here we do not make assumptions
about the chirality of the molecule or the electron flow direction, so that our conclusions hold for the most
general situations. Therefore, we do not assume the sign of Is, and write

Is =
(
1,−1

)
TCISS

(
1/2

1/2

)
=

(a+ c)− (b+ d)

2
�= 0, (3.22)
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where the column vector indicates the spin non-polarized input current, and the row vector is an operator
that calculates the difference between the two spin components in the output current.

In order to illustrate the discrepancy between the assumption of not having any spin-flip reflection
and the conceptual description of the CISS effect (Eqn. 3.22), we apply the reciprocity theorem to the
circuit segment shown in Figure 3.1. For this circuit segment, we calculate the total transmission matrix
accounting for the contribution from both the CISS molecule and the ferromagnet, and obtain

T21 = TFM ·

(
I− RCISS · RFM

)−1

· TCISS . (3.23)

The transmission probability accounting for both spin species is therefore

T21 =
(
1, 1

)
T21

(
1/2

1/2

)
, (3.24)

where the row vector is an operator that calculates the sum of both spin species. By substituting the
matrices, we can write T21 as a function of PFM

T21(PFM ) =
a(1 + PFM )

1 + a+ b+ PFM (1− a− b)

+
d(1− PFM )

1 + c+ d− PFM (1− c− d)
.

(3.25)

Here the magnetization reversal of the ferromagnet is equivalent to a sign change of PFM . Therefore, the
broader reciprocity theorem requires [36, 37]

T12(PFM ) ≡ T12(−PFM ) (3.26)

for all 0 < |PFM | ≤ 1. This requirement gives

a = d, and b = c,

and therefore,
(a+ c)− (b+ d) = 0,

which violates Eqn. 3.22.
Therefore, we proved that the spin-flip electron reflection process has to exist in order for the CISS

effect to exist in the linear transport regime, and this is a direct requirement from the Reciprocity Theorem.

B. Further discussion about the BCB model

Derivation of the BCB transmission and reflection matrices

In the BCB model, we consider a CISS molecule as two normal barriers sandwiching an ideal CISS center.
The three parts together determine the transmission and reflection matrices of the molecule. We derive
these matrices in two steps. First, we calculate the combined contribution of the left-most barrier and the
ideal CISS center as Part 1 (superscript P1). Then, we add the second barrier to Part 1 and calculate the
total effect.

We adopt the transmission and reflection matrices for a normal barrier and a CISS center from Fig-
ure 3.2. Here we only discuss P-type CISS molecules, as the AP-type can be derived using the relations
given in Figure 3.2. For Part 1 we have

TP1
R = (TP

0,R + TP
0,R · RB · RP

0,R) · TB =

(
t t(1− t)

0 0

)
, (3.27a)

RP1
R = RB + TB · RP

0,R · TB =

(
1− t t2

0 1− t

)
, (3.27b)
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TP1
L = (TB + TB · RP

0,R · RB) · TP
0,L =

(
0 t(1− t)

0 t

)
, (3.27c)

RP1
L = RP

0,L + TP
0,R · RB · RP

0,R · RB · TP
0,L =

(
0 (1− t)2

1 0

)
. (3.27d)

Note that here we have a finite number of reflections between the first barrier and the CISS center because
the CISS center is ideal. Now we consider Part 1 as one unit and combine it with the second normal
barrier

TP
R = TB · (I− RP1

L · RB)−1 · TP1
R

=

(
σ/(1− t) σ

σ σ(1− t)

)
,

(3.28a)

RP
R = RP1

R + TP1
L · (I− RB · RP1

L )−1 · RB · TP1
R

=

(
σ(1− t)2 − t+ 1 σ/(1− t)

σ(1− t) σ(1− t)2 − t+ 1)

)
,

(3.28b)

TP
L = TP1

L · (I− RB · RP1
L )−1 · TB

=

(
σ(1− t) σ

σ σ/(1− t)

)
,

(3.28c)

RP
L = RB + TB · (I− RP1

L · RB)−1 · RP1
L · TB

=

(
σ(1− t)2 − t+ 1 σ(1− t)

σ/(1− t) σ(1− t)2 − t+ 1)

)
,

(3.28d)

where σ =
t2(1− t)

−t4 + 4t3 − 6t2 + 4t
.

These results show that in the BCB model, one parameter t (0 < t ≤ 1) determines the entire set of
transmission and reflection probability matrices. Therefore it is possible to plot various transmission or
reflection analysis results as functions of t, as shown in the supplementary information. With different t
values the BCB model is able to represent a large spectrum of CISS molecules with different ”strengths”
of the CISS effect. While it is sufficient to illustrate the fundamental role of a CISS molecule in a solid-state
device, it is still a simplified picture. We will introduce a more generalized model later in Appendix C.

The FM-BCB geometry

In the main text, we discussed that the two-terminal transmission remains constant under magnetization
reversal in the FM-BCB geometry, here we illustrate the same result under current reversal. (Note that
this is also a restriction from the linear regime.)

The transmission and reflection matrices from contact 2 to contact 1 are

TFM−BCB
12 (⇒) = TFM (⇒) ·

(
I− RP

R · RFM (⇒)

)−1

· TP
L , (3.29a)

RFM−BCB
22 (⇒) = RP

L + TP
R ·

(
I− RFM (⇒) · RP

R

)−1

· RFM (⇒) · TP
L , (3.29b)

and the corresponding transmission and reflection probabilities accounting for both spins are

TFM−BCB
12 (⇒) =

(
1, 1

)
TFM−BCB
12 (⇒)

(
1/2

1/2

)
, (3.30a)
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RFM−BCB
22 (⇒) =

(
1, 1

)
RFM−BCB
22 (⇒)

(
1/2

1/2

)
. (3.30b)

With these expressions, we can calculate the transmission and reflection probabilities as a function of t
(BCB transmission probability) for four situations: two current directions and two magnetization direc-
tions, and the results are plotted in Figure 3.9(a). Note that for all four situations, the transmission curves
(or the reflection curves) completely overlap with each other, this means that neither magnetization re-
versal nor current reversal can lead to a signal change in the two-terminal conductance. Furthermore, we
are able to quantitatively analyze the contribution of each spin component in each of the four situations,
and this will be shown in the supplementary information.

(a) (b) (c)

(a) (b)

Figure 3.9: Normalized total transmission and reflection of (a) an FM-BCB segment, and (b) a spin-
valve segment. Both are plotted as a function of t (BCB barrier transmission). Red and magenta labels
(lower group) are for total transmissions accounting for both spin species for different magnetization
orientations (FM=R or L, for magnetization right or left. For the spin-valve cases there are two FM’s) and
different electron flow directions (I=R or L, for electron flow from left to right or from right to left). Blue
and cyan labels (upper group) are for total reflections. The polarization of the ferromagnet is chosen as
PFM = 0.1, comparable to experimental conditions with Co contacts.

The spin valve geometry

Similar to the FM-BCB geometry, in order to calculate the two-terminal transmission and reflection prob-
ability of the spin valve geometry, we first calculate the transmission and reflection matrices for this ge-
ometry. For this, we treat the spin valve geometry as an FM-BCB module and a ferromagnet connected in
series, and derive

TSV
21 (⇒,⇒)

=TFM (⇒) ·

(
I− RFM−BCB

22 (⇒) · RFM (⇒)

)−1

· TFM−BCB
21 (⇒),

(3.31a)

RSV
11 (⇒,⇒)

=RFM−BCB
11 (⇒)

+TFM−BCB
21 (⇒) ·

(
I− RFM (⇒) · RFM−BCB

22 (⇒)

)−1

· RFM (⇒) · TFM−BCB
12 (⇒),

(3.31b)

TSV
12 (⇒,⇒)

=TFM−BCB
12 (⇒) ·

(
I− RFM (⇒) · RFM−BCB

22 (⇒)

)−1

· TFM (⇒),
(3.31c)
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TP1
L = (TB + TB · RP

0,R · RB) · TP
0,L =

(
0 t(1− t)

0 t

)
, (3.27c)

RP1
L = RP

0,L + TP
0,R · RB · RP

0,R · RB · TP
0,L =

(
0 (1− t)2

1 0

)
. (3.27d)

Note that here we have a finite number of reflections between the first barrier and the CISS center because
the CISS center is ideal. Now we consider Part 1 as one unit and combine it with the second normal
barrier

TP
R = TB · (I− RP1

L · RB)−1 · TP1
R

=

(
σ/(1− t) σ

σ σ(1− t)

)
,

(3.28a)

RP
R = RP1

R + TP1
L · (I− RB · RP1

L )−1 · RB · TP1
R

=

(
σ(1− t)2 − t+ 1 σ/(1− t)

σ(1− t) σ(1− t)2 − t+ 1)

)
,

(3.28b)

TP
L = TP1

L · (I− RB · RP1
L )−1 · TB

=

(
σ(1− t) σ

σ σ/(1− t)

)
,

(3.28c)

RP
L = RB + TB · (I− RP1

L · RB)−1 · RP1
L · TB

=

(
σ(1− t)2 − t+ 1 σ(1− t)

σ/(1− t) σ(1− t)2 − t+ 1)

)
,

(3.28d)

where σ =
t2(1− t)

−t4 + 4t3 − 6t2 + 4t
.

These results show that in the BCB model, one parameter t (0 < t ≤ 1) determines the entire set of
transmission and reflection probability matrices. Therefore it is possible to plot various transmission or
reflection analysis results as functions of t, as shown in the supplementary information. With different t
values the BCB model is able to represent a large spectrum of CISS molecules with different ”strengths”
of the CISS effect. While it is sufficient to illustrate the fundamental role of a CISS molecule in a solid-state
device, it is still a simplified picture. We will introduce a more generalized model later in Appendix C.

The FM-BCB geometry

In the main text, we discussed that the two-terminal transmission remains constant under magnetization
reversal in the FM-BCB geometry, here we illustrate the same result under current reversal. (Note that
this is also a restriction from the linear regime.)

The transmission and reflection matrices from contact 2 to contact 1 are

TFM−BCB
12 (⇒) = TFM (⇒) ·

(
I− RP

R · RFM (⇒)

)−1

· TP
L , (3.29a)

RFM−BCB
22 (⇒) = RP

L + TP
R ·

(
I− RFM (⇒) · RP

R

)−1

· RFM (⇒) · TP
L , (3.29b)

and the corresponding transmission and reflection probabilities accounting for both spins are

TFM−BCB
12 (⇒) =

(
1, 1

)
TFM−BCB
12 (⇒)

(
1/2

1/2

)
, (3.30a)
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RFM−BCB
22 (⇒) =

(
1, 1

)
RFM−BCB
22 (⇒)

(
1/2

1/2

)
. (3.30b)

With these expressions, we can calculate the transmission and reflection probabilities as a function of t
(BCB transmission probability) for four situations: two current directions and two magnetization direc-
tions, and the results are plotted in Figure 3.9(a). Note that for all four situations, the transmission curves
(or the reflection curves) completely overlap with each other, this means that neither magnetization re-
versal nor current reversal can lead to a signal change in the two-terminal conductance. Furthermore, we
are able to quantitatively analyze the contribution of each spin component in each of the four situations,
and this will be shown in the supplementary information.

(a) (b) (c)

(a) (b)

Figure 3.9: Normalized total transmission and reflection of (a) an FM-BCB segment, and (b) a spin-
valve segment. Both are plotted as a function of t (BCB barrier transmission). Red and magenta labels
(lower group) are for total transmissions accounting for both spin species for different magnetization
orientations (FM=R or L, for magnetization right or left. For the spin-valve cases there are two FM’s) and
different electron flow directions (I=R or L, for electron flow from left to right or from right to left). Blue
and cyan labels (upper group) are for total reflections. The polarization of the ferromagnet is chosen as
PFM = 0.1, comparable to experimental conditions with Co contacts.

The spin valve geometry

Similar to the FM-BCB geometry, in order to calculate the two-terminal transmission and reflection prob-
ability of the spin valve geometry, we first calculate the transmission and reflection matrices for this ge-
ometry. For this, we treat the spin valve geometry as an FM-BCB module and a ferromagnet connected in
series, and derive

TSV
21 (⇒,⇒)

=TFM (⇒) ·

(
I− RFM−BCB

22 (⇒) · RFM (⇒)

)−1

· TFM−BCB
21 (⇒),

(3.31a)

RSV
11 (⇒,⇒)

=RFM−BCB
11 (⇒)

+TFM−BCB
21 (⇒) ·

(
I− RFM (⇒) · RFM−BCB

22 (⇒)

)−1

· RFM (⇒) · TFM−BCB
12 (⇒),

(3.31b)

TSV
12 (⇒,⇒)

=TFM−BCB
12 (⇒) ·

(
I− RFM (⇒) · RFM−BCB

22 (⇒)

)−1

· TFM (⇒),
(3.31c)
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RSV
22 (⇒,⇒)

=RFM (⇒)

+TFM (⇒) ·

(
I− RFM−BCB

22 (⇒) · RFM (⇒)

)−1

· RFM−BCB
22 (⇒) · TFM (⇒),

(3.31d)

where the two arrows in the brackets on the left-hand side of the equations indicate the magnetization
direction of the two ferromagnets respectively. For the case where the magnetization of one of the fer-
romagnets is reversed, we can substitute the corresponding magnetization direction with an opposite
arrow.

For the two-terminal transmission and reflection probabilities accounting for both spins, we have

TSV
ij =

(
1, 1

)
· TSV

ij ·
(
1/2

1/2

)
, (3.32a)

RSV
ij =

(
1, 1

)
· RSV

ij ·
(
1/2

1/2

)
, (3.32b)

and we can calculate these probabilities as a function of t (BCB transmission probability) for eight situa-
tions: the two ferromagnets each with two magnetization directions, and two opposite current directions,
as shown in Figure 3.9(b). Note that for all eight situations, the transmission curves (or the reflection
curves) completely overlap with each other, this means that neither magnetization reversal (for either fer-
romagnet) nor current reversal can lead to a signal change in the two-terminal conductance. Furthermore,
we can quantitatively analyze the contribution of each spin component in this geometry, as shown in the
Supplemental Material [55].

Injection and detection coefficients

(a) (b) (c)

Figure 3.10: (a) Injection coefficient kinj , (b) detection coefficient kdet, and (c) ratio between four-
terminal and two-terminal resistances, as a function of t (BCB barrier transmission) for various tB (contact
barrier transmissiion), for the geometry described in Figure 3.6(a) in the main text.

In the main text, we derived the injection and detection coefficients kinj and kdet for the four-terminal
geometry shown in Figure 3.6(a), and we showed that the product of these two geometries represents the
ratio between four-terminal and two-terminal resistances. The injection coefficient depends both on the
BCB barrier transmission t and the transmission probability tB of the barrier at contact 2, whereas the
detection coefficient only depends on the BCB barrier transmission t. This difference is due to our as-
sumption of weakly coupled detection contacts. In Fig. 3.10 we plot the injection coefficient kinj , the
detection coefficient kdet, and the 4T/2T resistance ratio R4T /R2T as a function of t (transmission prob-
ability of the barrier in the BCB molecule). Especially, for kinj and R4T /R2T , we set tB (transmission
probability of the barrier in contact 2) to a few different values and illustrate its influence.
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Spin-charge conversion

In the main text, we illustrated the spin-charge conversion property of CISS molecules. The chemical
potential vectors in the two nodes in Figure 3.7 are related to each other following Eqn. 3.16. We also
introduced the scalers of charge chemical potential µn (the average of two spin chemical potentials) and
spin accumulation µs (the difference between two spin chemical potentials). Here we show how these
scaler chemical potentials relate to each other.

A vector chemical potential of a node can be rewritten as a sum of two column vectors

µ =

(
µ→
µ←

)
=

(
µn + 1

2
µs

µn − 1
2
µs

)

= µn

(
1

1

)
+

1

2
µs

(
1

−1

)
.

(3.33)

By rewriting both µA and µB in this fashion, and substituting them into Eqn. 3.16, we obtain

∆µn

(
1

1

)
+

1

2
∆µs

(
1

−1

)
=

(
I− (I− RP

L )−1TP
R

)
µA, (3.34)

where ∆µn = µnA−µnB is the charge chemical potential difference between the two nodes, and ∆µs =

µsA − µsB is the spin accumulation difference between the two nodes.
For the BCB model,

I− (I− RP
L )−1TP

R =

(
1 + 1

t−2
−1− 1

t−2
1

t−2
− 1

t−2

)
(3.35)

where t is the BCB transmission probability. Substituting this matrix into Eqn. 3.34 gives

∆µn

(
1

1

)
+

1

2
∆µs

(
1

−1

)
= µsA

(
1 + 1

t−2
1

t−2

)
. (3.36)

Note that here the charge chemical potentials in node A (µnA) drops out of the equation. We emphasize
that this is a unique result for the BCB model.

Solving the above vector equation gives

∆µs = µsA, (3.37a)

∆µn = −kconv∆µs, (3.37b)

where kconv = t/(4− 2t) (0 < kconv ≤ 0.5) is the spin-charge conversion coefficient.
Eqn. 3.37a shows that µsB = µsA − ∆µs = 0, meaning that a spin accumulation in node A cannot

generate a spin accumulation in node B. This result is special for the BCB model and does not hold for
a more generalized CISS model (as will be introduced later in Appendix C). Eqn. 3.37b shows that the
charge voltage across a BCB molecule linearly depends on the spin accumulation difference across the
molecule, and vice versa (spin-charge conversion). The conversion coefficient kconv depends on t (BCB
barrier transmission). Notably, for BCB molecules this coefficient has the same value as the detection co-
efficient (kconv = kdet). This is because the result µsB = 0 makes node B equivalent to a contact: it is not
able to distinguish between two spin components. For a more generalized model (as will be introduced
later in Appendix C) the two coefficient take different values. These conclusions were mentioned in the
main text, here we showed the proof.

Nonlocal signals

We first discuss the non-local resistance measured with device geometries shown in Figure 3.8(a). In this
picture the axes of the CISS molecules are vertical rather than horizontal, therefore the spin orientations
are described as spin-up or spin-down. As a result, the spin accumulation is defined as µs = (µ↑ − µ↓).



3

64 Chapter 3.

RSV
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where the two arrows in the brackets on the left-hand side of the equations indicate the magnetization
direction of the two ferromagnets respectively. For the case where the magnetization of one of the fer-
romagnets is reversed, we can substitute the corresponding magnetization direction with an opposite
arrow.

For the two-terminal transmission and reflection probabilities accounting for both spins, we have
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and we can calculate these probabilities as a function of t (BCB transmission probability) for eight situa-
tions: the two ferromagnets each with two magnetization directions, and two opposite current directions,
as shown in Figure 3.9(b). Note that for all eight situations, the transmission curves (or the reflection
curves) completely overlap with each other, this means that neither magnetization reversal (for either fer-
romagnet) nor current reversal can lead to a signal change in the two-terminal conductance. Furthermore,
we can quantitatively analyze the contribution of each spin component in this geometry, as shown in the
Supplemental Material [55].

Injection and detection coefficients
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Figure 3.10: (a) Injection coefficient kinj , (b) detection coefficient kdet, and (c) ratio between four-
terminal and two-terminal resistances, as a function of t (BCB barrier transmission) for various tB (contact
barrier transmissiion), for the geometry described in Figure 3.6(a) in the main text.

In the main text, we derived the injection and detection coefficients kinj and kdet for the four-terminal
geometry shown in Figure 3.6(a), and we showed that the product of these two geometries represents the
ratio between four-terminal and two-terminal resistances. The injection coefficient depends both on the
BCB barrier transmission t and the transmission probability tB of the barrier at contact 2, whereas the
detection coefficient only depends on the BCB barrier transmission t. This difference is due to our as-
sumption of weakly coupled detection contacts. In Fig. 3.10 we plot the injection coefficient kinj , the
detection coefficient kdet, and the 4T/2T resistance ratio R4T /R2T as a function of t (transmission prob-
ability of the barrier in the BCB molecule). Especially, for kinj and R4T /R2T , we set tB (transmission
probability of the barrier in contact 2) to a few different values and illustrate its influence.
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Spin-charge conversion

In the main text, we illustrated the spin-charge conversion property of CISS molecules. The chemical
potential vectors in the two nodes in Figure 3.7 are related to each other following Eqn. 3.16. We also
introduced the scalers of charge chemical potential µn (the average of two spin chemical potentials) and
spin accumulation µs (the difference between two spin chemical potentials). Here we show how these
scaler chemical potentials relate to each other.

A vector chemical potential of a node can be rewritten as a sum of two column vectors

µ =
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µ→
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=
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2
µs

µn − 1
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By rewriting both µA and µB in this fashion, and substituting them into Eqn. 3.16, we obtain
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1
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=

(
I− (I− RP
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µA, (3.34)

where ∆µn = µnA−µnB is the charge chemical potential difference between the two nodes, and ∆µs =

µsA − µsB is the spin accumulation difference between the two nodes.
For the BCB model,
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where t is the BCB transmission probability. Substituting this matrix into Eqn. 3.34 gives
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Note that here the charge chemical potentials in node A (µnA) drops out of the equation. We emphasize
that this is a unique result for the BCB model.

Solving the above vector equation gives

∆µs = µsA, (3.37a)

∆µn = −kconv∆µs, (3.37b)

where kconv = t/(4− 2t) (0 < kconv ≤ 0.5) is the spin-charge conversion coefficient.
Eqn. 3.37a shows that µsB = µsA − ∆µs = 0, meaning that a spin accumulation in node A cannot

generate a spin accumulation in node B. This result is special for the BCB model and does not hold for
a more generalized CISS model (as will be introduced later in Appendix C). Eqn. 3.37b shows that the
charge voltage across a BCB molecule linearly depends on the spin accumulation difference across the
molecule, and vice versa (spin-charge conversion). The conversion coefficient kconv depends on t (BCB
barrier transmission). Notably, for BCB molecules this coefficient has the same value as the detection co-
efficient (kconv = kdet). This is because the result µsB = 0 makes node B equivalent to a contact: it is not
able to distinguish between two spin components. For a more generalized model (as will be introduced
later in Appendix C) the two coefficient take different values. These conclusions were mentioned in the
main text, here we showed the proof.

Nonlocal signals

We first discuss the non-local resistance measured with device geometries shown in Figure 3.8(a). In this
picture the axes of the CISS molecules are vertical rather than horizontal, therefore the spin orientations
are described as spin-up or spin-down. As a result, the spin accumulation is defined as µs = (µ↑ − µ↓).
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First, we discuss the case where the spin injection is done through a BCB molecule. The injected spin
accumulation underneath contact 1 is

µs,inj = −kinjµ1 = −ekinjIinjRinj , (3.38)

where the minus sign is due to the fact that the electrons are traveling downwards through CISS molecules
into graphene, as a result, the injected spin accumulation is negative (mostly spin-down). The resistance

Rinj = R12 =
µ1 − µ2

eIinj
(3.39)

is the resistance measured between the two injection contacts 1 and 2.
Inside graphene, the spin accumulation diffuses to all directions, and therefore the spin accumulation

at the detection contact is
µs,det = µs,inje

− d
λs , (3.40)

where λs is the spin diffusion length in graphene, and d is the distance between the inner injection and
detection contacts (1 and 4) (we have assumed that this distance is much larger than the separation of the
two injection contacts or the separation of the two detection contacts).

Further, the voltage detected by the detection contacts is (following Eqn. 3.13)

Vdet =
1

e
kdetµs,det. (3.41)

With this, we have

Rnl =
Vdet

Iinj
= −kinjkdetRinje

− d
λs , (3.42)

as in Eqn. 3.17.
For the case where the spin injection is obtained through a ferromagnet, the spin injection becomes

µs,inj = ±ePFM IinjRλ, (3.43)

where PFM is the polarization of the ferromagnet (with magnetization direction out-of-plane), and Rλ

is the spin resistance of graphene. This spin resistance is determined by the spin relaxation length in
graphene and the shape of the graphene channel, and is defined as Rλ = Rsqλs/W , where Rsq is
the square resistance of graphene and W is the width of the graphene channel (assuming the channel
width remains the same across the spin diffusion length). The sign of the injected spin accumulation is
determined by the magnetization direction of the ferromagnet, with magnetization-up for positive spin
accumulation and magnetization-down for negative spin accumulation.

The diffusion and detection mechanisms are the same as in the previous case. Therefore, the non-local
resistance for this situation is

Rnl = ±kdetPFMRλe
− d

λs , (3.44)
as in Eqn. 3.18. With the help of the ferromagnet, it is possible to switch the sign of the non-local resistance.

Next, for the device shown in Figure 3.8(b), the CISS molecules are aligned in-plane of the device,
therefore we assume the ferromagnet also has in-plane magnetization, and we describe spin accumulation
again as µs = µ→−µ←. We simplify the discussion by assuming the spin injection is mainly contributed
by the ferromagnet, and the spin detection is achieved through the spin-charge conversion mechanism of
the CISS molecules. The spin accumulation underneath the detection contacts can be generated by two
mechanisms: the spin diffusion in graphene (as in the previous case), and the spin-charge conversion be-
tween the injection node and the detection node. However, in the BCB model, the spin-charge conversion
does not contribute to a spin accumulation underneath the detector contacts. Therefore, we only consider
the spin diffusion mechanism. Similar to the previous case, we can derive the nonlocal signal

Rnl = ±kconvPFMRλe
− d

λs , (3.45)

where kconv is the spin-charge conversion coefficient described before, but here it concerns the proximity-
induced CISS effect in the graphene channel, rather than the CISS molecules themselves. Important to
realize, due to the proximity effect, the diffusion length λs and the spin resistance Rλ of graphene may
differ from the previous case.
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C. Generalized CISS Model
The BCB model is a simplified model where the spin-dependent characteristics of a CISS molecule are ex-
clusively originated from an ideal CISS center. However, the assumption of having an ideal spin-flip core
in a molecule may not be accurate. Therefore, we assume a general form of transmission and reflection
matrices,

TP
R =

(
a, c

b, d

)
, RP

R =

(
A,C

B,D

)
, (3.46)

where
0 ≤ a, b, c, d, A,B,C,D ≤ 1, (3.47a)

a+ b+A+B = c+ d+ C +D = 1, (3.47b)

a+ c > b+ d. (3.47c)

Here the first restriction Eqn. 3.47a comes from the fact that all matrix elements are probabilities. The
second restriction Eqn. 3.47b addresses that for each spin component, the sum of its probabilities of being
transmitted and being reflected equals 1. The third restriction Eqn. 3.47c is the conceptual description of
the CISS effect, which shows that a spin polarization arises after transmission through a CISS molecule.
This restriction is similar to Eqn. 3.22, but here we determine a sign for the polarization because we have
assumed the chirality (P -type) of the molecule and the electron flow direction (R for rightwards).

We still assume that the molecule has C2 symmetry, so that the transmission and reflection matrices
for reversed current can be written as

TP
L =

(
0 1

1 0

)
· TP

R ·
(
0 1

1 0

)
, (3.48a)

RP
L =

(
0 1

1 0

)
· RP

R ·
(
0 1

1 0

)
. (3.48b)

The matrices for AP -type molecules can be derived according to Figure 3.2. Before we proceed with the
mathematical proof, we discuss the validity of these symmetry assumptions.

Since we only consider the electron transport in CISS molecules, the C2 symmetry that we require
only refers to the symmetry in electron transport. Furthermore, this symmetry is also a requirement of
the linear regime. A highly asymmetric molecule can still be treated with our model, but only under the
assumption that it is composed of a symmetric (C2) part which contributes to CISS, and asymmetrically
distributed normal barriers. In terms of the symmetry relations between the two chiralities, it is by defi-
nition that the two chiral enantiomers are exact mirror images of each other, and thereby select opposite
spins with equal probability (when placed in the same circuit environment).

We apply the reciprocity theorem to a geometry similar to Figure 3.4 in the main text, but now the BCB
molecule is replaced by a generalized CISS molecule. The general reciprocity theorem requires that the
two-terminal resistance remains unchanged under magnetization reversal regardless of the polarization
of the ferromagnet. Therefore, we assume the ferromagnet is 100% polarized for convenience. Following
the same steps as in the FM-BCB geometry, the two terminal transmission probabilities considering two
magnetization directions and two current directions become

T21(⇒) = a+ b+ (c+ d)
B

1−D
, (3.49a)

T21(⇐) = c+ d+ (a+ b)
C

1−A
, (3.49b)

T12(⇒) = b+ d+ (a+ c)
C

1−D
, (3.49c)

T12(⇐) = a+ c+ (b+ d)
B

1−A
, (3.49d)
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First, we discuss the case where the spin injection is done through a BCB molecule. The injected spin
accumulation underneath contact 1 is

µs,inj = −kinjµ1 = −ekinjIinjRinj , (3.38)

where the minus sign is due to the fact that the electrons are traveling downwards through CISS molecules
into graphene, as a result, the injected spin accumulation is negative (mostly spin-down). The resistance

Rinj = R12 =
µ1 − µ2

eIinj
(3.39)

is the resistance measured between the two injection contacts 1 and 2.
Inside graphene, the spin accumulation diffuses to all directions, and therefore the spin accumulation

at the detection contact is
µs,det = µs,inje

− d
λs , (3.40)

where λs is the spin diffusion length in graphene, and d is the distance between the inner injection and
detection contacts (1 and 4) (we have assumed that this distance is much larger than the separation of the
two injection contacts or the separation of the two detection contacts).

Further, the voltage detected by the detection contacts is (following Eqn. 3.13)

Vdet =
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With this, we have
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as in Eqn. 3.17.
For the case where the spin injection is obtained through a ferromagnet, the spin injection becomes

µs,inj = ±ePFM IinjRλ, (3.43)

where PFM is the polarization of the ferromagnet (with magnetization direction out-of-plane), and Rλ

is the spin resistance of graphene. This spin resistance is determined by the spin relaxation length in
graphene and the shape of the graphene channel, and is defined as Rλ = Rsqλs/W , where Rsq is
the square resistance of graphene and W is the width of the graphene channel (assuming the channel
width remains the same across the spin diffusion length). The sign of the injected spin accumulation is
determined by the magnetization direction of the ferromagnet, with magnetization-up for positive spin
accumulation and magnetization-down for negative spin accumulation.

The diffusion and detection mechanisms are the same as in the previous case. Therefore, the non-local
resistance for this situation is

Rnl = ±kdetPFMRλe
− d

λs , (3.44)
as in Eqn. 3.18. With the help of the ferromagnet, it is possible to switch the sign of the non-local resistance.

Next, for the device shown in Figure 3.8(b), the CISS molecules are aligned in-plane of the device,
therefore we assume the ferromagnet also has in-plane magnetization, and we describe spin accumulation
again as µs = µ→−µ←. We simplify the discussion by assuming the spin injection is mainly contributed
by the ferromagnet, and the spin detection is achieved through the spin-charge conversion mechanism of
the CISS molecules. The spin accumulation underneath the detection contacts can be generated by two
mechanisms: the spin diffusion in graphene (as in the previous case), and the spin-charge conversion be-
tween the injection node and the detection node. However, in the BCB model, the spin-charge conversion
does not contribute to a spin accumulation underneath the detector contacts. Therefore, we only consider
the spin diffusion mechanism. Similar to the previous case, we can derive the nonlocal signal

Rnl = ±kconvPFMRλe
− d

λs , (3.45)

where kconv is the spin-charge conversion coefficient described before, but here it concerns the proximity-
induced CISS effect in the graphene channel, rather than the CISS molecules themselves. Important to
realize, due to the proximity effect, the diffusion length λs and the spin resistance Rλ of graphene may
differ from the previous case.
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C. Generalized CISS Model
The BCB model is a simplified model where the spin-dependent characteristics of a CISS molecule are ex-
clusively originated from an ideal CISS center. However, the assumption of having an ideal spin-flip core
in a molecule may not be accurate. Therefore, we assume a general form of transmission and reflection
matrices,
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where
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a+ c > b+ d. (3.47c)

Here the first restriction Eqn. 3.47a comes from the fact that all matrix elements are probabilities. The
second restriction Eqn. 3.47b addresses that for each spin component, the sum of its probabilities of being
transmitted and being reflected equals 1. The third restriction Eqn. 3.47c is the conceptual description of
the CISS effect, which shows that a spin polarization arises after transmission through a CISS molecule.
This restriction is similar to Eqn. 3.22, but here we determine a sign for the polarization because we have
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The matrices for AP -type molecules can be derived according to Figure 3.2. Before we proceed with the
mathematical proof, we discuss the validity of these symmetry assumptions.

Since we only consider the electron transport in CISS molecules, the C2 symmetry that we require
only refers to the symmetry in electron transport. Furthermore, this symmetry is also a requirement of
the linear regime. A highly asymmetric molecule can still be treated with our model, but only under the
assumption that it is composed of a symmetric (C2) part which contributes to CISS, and asymmetrically
distributed normal barriers. In terms of the symmetry relations between the two chiralities, it is by defi-
nition that the two chiral enantiomers are exact mirror images of each other, and thereby select opposite
spins with equal probability (when placed in the same circuit environment).

We apply the reciprocity theorem to a geometry similar to Figure 3.4 in the main text, but now the BCB
molecule is replaced by a generalized CISS molecule. The general reciprocity theorem requires that the
two-terminal resistance remains unchanged under magnetization reversal regardless of the polarization
of the ferromagnet. Therefore, we assume the ferromagnet is 100% polarized for convenience. Following
the same steps as in the FM-BCB geometry, the two terminal transmission probabilities considering two
magnetization directions and two current directions become
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where the arrows indicate the magnetization direction of the ferromagnet, and the subscripts indicate the
electron flow direction. The reciprocity theorem requires these four expressions to have the same value

T12(⇒) = T12(⇐) = T21(⇒) = T21(⇐) = T, (3.50)

which can be written as a vector equation



1 1 B
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B
1−D

C
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C
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1 1
C
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1 C

1−D
1

1 B
1−A

1 B
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 ·
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b

c

d


 = T




1

1

1

1


 . (3.51)

In order for this equation to be self-consistent, relation

A = D

is required. Consequently, we can derive
b = c, (3.52a)

a− d = C −B. (3.52b)

Therefore, the generalized form of the transmission and reflection matrices of a CISS molecule is

TP
R =

(
a b

b a(1− s)

)
, RP

R =

(
A B + as

B A

)
, (3.53)

with a + b + A + B = 1, and s (0 ≤ s ≤ 1) being a quantitative description of the strength of the CISS
effect in a molecule.

(a) (b) (c)

(a) (b)

Figure 3.11: Normalized total transmission and reflection of (a) an FM-CISS segment, and (b) a spin-
valve segment. Both are plotted as a function of s (generalized CISS strength). Red and magenta labels
(lower group) are for total transmissions accounting for both spin species for different magnetization
orientations (FM=R or L, for the spin-valve case there are two FM’s) and different electron flow directions
(I=R or L). Blue and cyan labels (upper group) are for total reflections. The polarization of the ferromagnet
is chosen as PFM = 0.7.

Next, we discuss the results given by this generalized model for the geometries discussed in the main
text, and compare it with the BCB model. We arbitrarily choose the following transmission and reflection
matrices for the generalized model

TP
R =

(
0.6 0.15

0.15 0.6(1− s)

)
, RP

R =

(
0.2 0.05 + 0.6s

0.05 0.2

)
, (3.54)

and use parameter s as the variable to tune the CISS strength.
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For the FM-BCB geometry (which now becomes FM-CISS geometry), we plot the two-terminal trans-
mission and reflection probabilities as a function of s for four situations: two magnetization directions and
two current directions. The results show that all four situations give identical results for all CISS strength
s, as shown in Figure 3.11(a). This is consistent with the BCB model, just as required by the reciprocity
theorem.

For the spin valve geometry, we plot the two-terminal transmission and reflection probabilities as
a function of s for eight situations: two ferromagnets each with two magnetization directions, and two
current directions. The results are shown in Figure 3.11(b). Unlike the BCB model, here we find different
transmission and reflection probabilities for cases where the two magnetization directions are parallel vs.
anti-parallel. The transmission probability is in general higher when the two ferromagnets are magne-
tized parallel compared to anti-parallel. Notably, the difference between the two configurations decreases
as the CISS strength s increases. This is because with increasing s, electrons have a higher probability of
encountering spin-flip reflections. This also explains why in a BCB model, where an ideal spin-flip pro-
cess is present, switching the magnetization directions does not lead to any conductance variation. The
direction of the current has no effect on the transmission and reflection probabilities, as is required by the
linear regime.

(a) (b) (c)

Figure 3.12: (a) Injection coefficient kinj , (b) detection coefficient kdet, and (c) ratio between four-
terminal and two-terminal resistances, as a function of s (generalized CISS strength) for various tB (con-
tact barrier transmission), for the geometry described in Figure 3.6(a) in the main text.

For four terminal geometries, we calculate here the spin injection and detection coefficients using the
formulas derived in the main text, and we plot these coefficients as a function of the CISS strength s.
Figure 3.12(a) shows the injection coefficient as a function of s for a few tB values. Figure 3.12(b) shows
the detection coefficient as a function of s, and Figure 3.12(c) shows the ratio between four-terminal and
two-terminal resistances as a function of s.

Last but not least, we discuss the spin-charge conversion property of the generalized CISS molecule.
Substituting the corresponding transmission and reflection matrices into Eqn. 3.34, and solving the vector
equation, we can obtain relations between the conversion coefficient kconv and the chemical potential
vector µA. Unlike the BCB model, here it is not possible to drop out either µnA or µsA from the equation.
The final result gives

kconv = −
∆µn

∆µs
=

(A−B − 1)sµnA + 1
2
(b+B)sµsA

2(A+B − 1)sµnA + (b+B)(−2 + 2A+ 2B + s)µsA
, (3.55)

where a, b, A,B, s are the parameters in the transmission and reflection matrices of the generalized CISS
model. This equation shows that a non-zero charge voltage difference (∆µn) can give rise to a spin ac-
cumulation difference (∆µs) across a generalized CISS molecule, and vice versa (spin-charge conversion).
Interestingly, the conversion coefficient kconv depends not only on the transmission and reflection matri-
ces of the molecule, but also on the spin accumulation in the nodes connected to the molecule. If s = 0,
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where the arrows indicate the magnetization direction of the ferromagnet, and the subscripts indicate the
electron flow direction. The reciprocity theorem requires these four expressions to have the same value

T12(⇒) = T12(⇐) = T21(⇒) = T21(⇐) = T, (3.50)

which can be written as a vector equation
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In order for this equation to be self-consistent, relation

A = D

is required. Consequently, we can derive
b = c, (3.52a)

a− d = C −B. (3.52b)
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with a + b + A + B = 1, and s (0 ≤ s ≤ 1) being a quantitative description of the strength of the CISS
effect in a molecule.
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valve segment. Both are plotted as a function of s (generalized CISS strength). Red and magenta labels
(lower group) are for total transmissions accounting for both spin species for different magnetization
orientations (FM=R or L, for the spin-valve case there are two FM’s) and different electron flow directions
(I=R or L). Blue and cyan labels (upper group) are for total reflections. The polarization of the ferromagnet
is chosen as PFM = 0.7.

Next, we discuss the results given by this generalized model for the geometries discussed in the main
text, and compare it with the BCB model. We arbitrarily choose the following transmission and reflection
matrices for the generalized model

TP
R =
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0.6 0.15

0.15 0.6(1− s)

)
, RP

R =

(
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and use parameter s as the variable to tune the CISS strength.
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mission and reflection probabilities as a function of s for four situations: two magnetization directions and
two current directions. The results show that all four situations give identical results for all CISS strength
s, as shown in Figure 3.11(a). This is consistent with the BCB model, just as required by the reciprocity
theorem.

For the spin valve geometry, we plot the two-terminal transmission and reflection probabilities as
a function of s for eight situations: two ferromagnets each with two magnetization directions, and two
current directions. The results are shown in Figure 3.11(b). Unlike the BCB model, here we find different
transmission and reflection probabilities for cases where the two magnetization directions are parallel vs.
anti-parallel. The transmission probability is in general higher when the two ferromagnets are magne-
tized parallel compared to anti-parallel. Notably, the difference between the two configurations decreases
as the CISS strength s increases. This is because with increasing s, electrons have a higher probability of
encountering spin-flip reflections. This also explains why in a BCB model, where an ideal spin-flip pro-
cess is present, switching the magnetization directions does not lead to any conductance variation. The
direction of the current has no effect on the transmission and reflection probabilities, as is required by the
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tact barrier transmission), for the geometry described in Figure 3.6(a) in the main text.

For four terminal geometries, we calculate here the spin injection and detection coefficients using the
formulas derived in the main text, and we plot these coefficients as a function of the CISS strength s.
Figure 3.12(a) shows the injection coefficient as a function of s for a few tB values. Figure 3.12(b) shows
the detection coefficient as a function of s, and Figure 3.12(c) shows the ratio between four-terminal and
two-terminal resistances as a function of s.

Last but not least, we discuss the spin-charge conversion property of the generalized CISS molecule.
Substituting the corresponding transmission and reflection matrices into Eqn. 3.34, and solving the vector
equation, we can obtain relations between the conversion coefficient kconv and the chemical potential
vector µA. Unlike the BCB model, here it is not possible to drop out either µnA or µsA from the equation.
The final result gives

kconv = −
∆µn

∆µs
=

(A−B − 1)sµnA + 1
2
(b+B)sµsA

2(A+B − 1)sµnA + (b+B)(−2 + 2A+ 2B + s)µsA
, (3.55)

where a, b, A,B, s are the parameters in the transmission and reflection matrices of the generalized CISS
model. This equation shows that a non-zero charge voltage difference (∆µn) can give rise to a spin ac-
cumulation difference (∆µs) across a generalized CISS molecule, and vice versa (spin-charge conversion).
Interestingly, the conversion coefficient kconv depends not only on the transmission and reflection matri-
ces of the molecule, but also on the spin accumulation in the nodes connected to the molecule. If s = 0,
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i.e. the molecule does not exhibit any CISS effect, the spin-charge conversion property also diminishes
(kconv = 0).

With these discussions, we demonstrated that a generalized CISS molecule shows differences from
the simplified BCB model. Nonetheless, these differences are rather quantitative than qualitative, and are
not easily measurable in experiments. Furthermore, the generalized model also introduces extra degrees-
of-freedom to calculations as it uses four variables to describe a CISS molecule, compared to one in the
BCB model. Having taken the above into consideration, in the main text we only showed the results of
the BCB model.
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i.e. the molecule does not exhibit any CISS effect, the spin-charge conversion property also diminishes
(kconv = 0).

With these discussions, we demonstrated that a generalized CISS molecule shows differences from
the simplified BCB model. Nonetheless, these differences are rather quantitative than qualitative, and are
not easily measurable in experiments. Furthermore, the generalized model also introduces extra degrees-
of-freedom to calculations as it uses four variables to describe a CISS molecule, compared to one in the
BCB model. Having taken the above into consideration, in the main text we only showed the results of
the BCB model.
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nanodevices

C
entral to spintronics is the interconversion between electronic charge and spin currents,
and this can arise from the chirality-induced spin selectivity (CISS) effect. CISS is often
studied as magnetoresistance (MR) in two-terminal (2T) electronic devices containing a
chiral (molecular) component and a ferromagnet. However, fundamental understanding
of when and how this MR can occur is lacking. Here, we uncover an elementary mech-
anism that generates such an MR for nonlinear response. It requires energy-dependent
transport and energy relaxation within the device. The sign of the MR depends on chi-
rality, charge carrier type, and bias direction. Additionally, we reveal how CISS can
be detected in the linear response regime in magnet-free 2T devices, either by forming a
chirality-based spin-valve using two or more chiral components, or by Hanle spin preces-
sion in devices with a single chiral component. Our results provide operation principles
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Recognizing and separating chiral enantiomers using electronic/spintronic tech-
nologies addresses fundamental questions of electronic charge and spin transport [1].
It can open up new avenues for chiral chemistry, and can bring chiral (molecu-
lar) structures into electronic and spintronic applications. This is enabled by the
chirality-induced spin selectivity (CISS) effect [2–4], which describes the generation
of a collinear spin current by a charge current through a chiral component (single
molecule, assembly of molecules, or solid-state system). In two-terminal (2T) elec-
tronic devices that contain a chiral component and a single ferromagnet (FM), CISS is
reported as a change of (charge) resistance upon magnetization reversal [5–12]. This
magnetoresistance (MR) has been interpreted in analogy to that of a conventional
spin valve, based on the understanding that both the FM and the chiral compo-
nent act as spin–charge converters [13–18]. However, this interpretation overlooks
the fundamental distinction between their underlying mechanisms — magnetism
breaks time reversal symmetry, while CISS, as a spin-orbit effect, does not. In fact,
Onsager reciprocity prohibits the detection of spin-orbit effects as 2T charge signals
using a single FM in the linear response regime [19–22]. Therefore, it requires the-
ories beyond linear response for possible explanations of the MR observed in CISS
experiments [22–25].

Here we show that such a 2T MR can indeed arise from the breaking of Onsager
reciprocity in the nonlinear regime. When the conditions for generating CISS in a
chiral component are fulfilled, the emergence of the 2T MR requires two key in-
gredients: (a) energy-dependent electron transport due to, for instance, tunneling or
thermally activated conduction through molecular orbitals; and (b) energy relaxation
due to inelastic processes. Note that there exists an interesting parallel in chemistry,
where absolute asymmetric synthesis is enabled by the lone influence of a magnetic
field or magnetization in the nonlinear regime (details see Appendix A) [1, 26, 27].

Below, before demonstrating the emergence of 2T MR in the nonlinear regime
and identifying key factors that determine its sign, we will first introduce a transport-
matrix formalism unifying the description of coupled charge and spin transport in
spin–charge converters such as a chiral component and an FM tunnel junction /
interface (FMTJ). Afterwards, we will explore new device designs that make 2T elec-
trical detection of CISS possible in the linear response regime, and reveal a chiral
spin valve built without magnetic materials.

4.1 Transport matrix formalism beyond Landauer for-
mula

The (spin-resolved) Landauer formula considers charge voltages as the driving forces
for electronic charge and spin transport [28]. However, in a circuit with multi-
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ple spin–charge converters, we must also consider the build-up of spin accumu-
lations, which also drive the coupled charge and spin transport (details see Ap-
pendix B) [29, 30]. Here we include this (thermodynamic) spin degree-of-freedom
by extending the Landauer formula using a Büttiker-type multi-terminal transmis-
sion analysis [31]. Building on this, we introduce a transport matrix formalism that
describes the (thermodynamic) responses of generic spin–charge converters. The
symmetry/asymmetry of these transport matrices in the linear/nonlinear response
regime is fundamentally related to the (breaking of) Onsager reciprocity. It does not
depend on specific microscopic mechanisms and is not restricted to the transmission
analysis that we use (see Appendix B).

4.1.1 Spin–charge conversion in a chiral component

CISS arises from spin-orbit interaction and the absence of space-inversion symmetry.
Further symmetry considerations require that the sign of the CISS-induced collinear
spin currents must depend on the direction of the charge current and the (sign of)
chirality. Note that the generation of CISS requires a nonunitary transport mecha-
nism within the chiral component [32, 33], which we assume to be present (details
see Appendix C). In an ideal case, as illustrated in Fig. 4.1, this directional, spin-
dependent electron transport effectively allows only one spin orientation, say, paral-
lel to the electron momentum, to transmit through the chiral component, and reflects
and spin-flips the other [22]. The spin-flip reflection prevents a net spin current in
and out of electrodes at thermodynamic equilibrium [34].

𝜇𝜇𝐿𝐿→

𝜇𝜇𝐿𝐿←

𝜇𝜇𝑅𝑅→
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Figure 4.1: Illustration of CISS (ideal case). The directional electron transmission is spin-
selective, and the unfavored spin is flipped and reflected. The chiral component is indicated
by the blue helix, and is assumed to favor the transmission of electrons with spin parallel
to momentum. The electrons on both sides (L and R) of the chiral component are labeled
with their spin-specific (→ or ←) electrochemical potentials µL(R)→(←). At thermodynamic
equilibrium, any net charge or spin current in and out of electrodes is forbidden, but when bi-
ased, the chiral structure supports a charge current I and collinear spin currents on both sides
IsL and IsR. The positive currents are defined as right-to-left, i.e. when the (spin-polarized)
electrons flow from left to right.
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Figure 4.1: Illustration of CISS (ideal case). The directional electron transmission is spin-
selective, and the unfavored spin is flipped and reflected. The chiral component is indicated
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to momentum. The electrons on both sides (L and R) of the chiral component are labeled
with their spin-specific (→ or ←) electrochemical potentials µL(R)→(←). At thermodynamic
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ased, the chiral structure supports a charge current I and collinear spin currents on both sides
IsL and IsR. The positive currents are defined as right-to-left, i.e. when the (spin-polarized)
electrons flow from left to right.
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We first describe the directional electron transmission (T) and reflection (R) in a
generalized chiral component using spin-space matrices introduced in Ref. 22. For
right-moving (subscript �) electrons coming from the left-hand side of the compo-
nent

T� =

(
t→→ t←→
t→← t←←

)
, R� =

(
r→→ r←→
r→← r←←

)
, (4.1)

where the matrix elements are probabilities of an electron being transmitted (t) or
reflected (r) from an initial spin state (first subscript) to a final spin state (second sub-
script). For left-moving electrons, the corresponding matrices are the time-reversed
forms of the above (details see Appendix D).

We extend the above coupled charge and spin transport by converting the spin-
space matrices to transport matrices that link the thermodynamic drives and re-
sponses in terms of charge and spin. We define (charge) electrochemical potential
µ = (µ→ + µ←)/2 and spin accumulation µs = (µ→ − µ←)/2, as well as charge
current I = I→ + I← and spin current Is = I→ − I←. A subscript R or L is added
when describing the quantities on a specific side of the component. With these, for a
generalized case of Fig. 4.1, we derive (details see Appendix D)




I

−IsL
IsR


 = −Ne

h




t s s

Prr γr γt
Ptt γt γr






µL − µR

µsL

µsR


 , (4.2)

where N is the number of (spin-degenerate) channels, e is elemental charge (posi-
tive value), and h is the Planck’s constant. An electrochemical potential difference
µL−µR = −eV is provided by a bias voltage V . We name the 3×3 matrix the charge–
spin transport matrix T . All its elements are linear combinations of the spin-space
T and R matrix elements, and represent key transport properties of the chiral com-
ponent. For example, t is the (averaged) transmission probability, r is the reflection
probability (note that t+ r = 2 because we have treated the two spins separately), Pt

and Pr are the CISS-induced spin polarizations of the transmitted and reflected elec-
trons, respectively, γt and γr describe spin relaxation and spin transport generated
by spin accumulations, and s is the charge current generated by the spin accumula-
tions due to the spin–charge conversion via CISS.

We are particularly interested in the symmetry of T . Equation 4.2 fully describes
the coupled charge and collinear spin transport through a (nonmagnetic) chiral com-
ponent, which is subject to Onsager reciprocity in the linear response regime. This
requires Tij(H,M) = Tji(−H,−M), where H is the magnetic field and M is the
magnetization [35]. This then gives Ptt = Prr = s. In later discussions we will con-
nect the R-side of the chiral component to an electrode (reservoir), where µsR = 0

and IsR is irrelevant. The T matrix then reduces to a 2 × 2 form (details see Ap-
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pendix D) (
I

−IsL

)
= −Ne

h

(
t Ptt

Ptt γr

)(
µL − µR

µsL

)
. (4.3)

Note that t and γr do not depend on the (sign of) chirality, while Pt changes sign
when the chirality is reversed.

4.1.2 Spin–charge conversion in a magnetic tunnel junction

To calculate the coupled charge and spin transport in a generic 2T circuit where an
(achiral) ferromagnet is also present, we need to derive a similar T matrix for an
FMTJ. An FM breaks time-reversal symmetry and provides a spin-polarization PFM

to any outflowing charge current. Based on this, we obtain for the R-side of the FMTJ
(details see Appendix E)

(
I

IsR

)
= −N ′e

h

(
T −PFMT

PFMT −T

)(
µL − µR

µsR

)
, (4.4)

where N ′ is the number of (spin-degenerate) channels, and T is the electron trans-
mission probability accounting for both spins.

The matrix T here also satisfies the requirement Tij(H,M) = Tji(−H,−M),
where a reversal of M corresponds to a sign change of PFM .

4.2 Origin of MR – energy-dependent transport and en-
ergy relaxation

We model a generic 2T MR measurement geometry using Fig. 4.2(a). A FM and a chi-
ral component are connected in series between two spin-unpolarized electrodes (L
and R), and the difference between their electrochemical potentials µL − µR = −eV

drives charge and spin transport. We introduce a node between the FM and the chi-
ral component, which is characterized by an electrochemical potential µ and a spin
accumulation µs. It preserves the spin but relaxes the energy of electrons to a Fermi-
Dirac distribution due to inelastic processes (e.g. electron-phonon interaction).

4.2.1 No MR in the linear response regime

The 2T conductance of this geometry in the linear response regime can be derived
by applying continuity condition in the node for both the charge and spin currents,
which gives (details see Appendix F)

G2T = G2T

(
P 2
FM , P 2

t

)
, no PFMPt term. (4.5)
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ponent. For example, t is the (averaged) transmission probability, r is the reflection
probability (note that t+ r = 2 because we have treated the two spins separately), Pt

and Pr are the CISS-induced spin polarizations of the transmitted and reflected elec-
trons, respectively, γt and γr describe spin relaxation and spin transport generated
by spin accumulations, and s is the charge current generated by the spin accumula-
tions due to the spin–charge conversion via CISS.

We are particularly interested in the symmetry of T . Equation 4.2 fully describes
the coupled charge and collinear spin transport through a (nonmagnetic) chiral com-
ponent, which is subject to Onsager reciprocity in the linear response regime. This
requires Tij(H,M) = Tji(−H,−M), where H is the magnetic field and M is the
magnetization [35]. This then gives Ptt = Prr = s. In later discussions we will con-
nect the R-side of the chiral component to an electrode (reservoir), where µsR = 0

and IsR is irrelevant. The T matrix then reduces to a 2 × 2 form (details see Ap-
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pendix D) (
I

−IsL

)
= −Ne

h

(
t Ptt

Ptt γr

)(
µL − µR

µsL

)
. (4.3)

Note that t and γr do not depend on the (sign of) chirality, while Pt changes sign
when the chirality is reversed.

4.1.2 Spin–charge conversion in a magnetic tunnel junction

To calculate the coupled charge and spin transport in a generic 2T circuit where an
(achiral) ferromagnet is also present, we need to derive a similar T matrix for an
FMTJ. An FM breaks time-reversal symmetry and provides a spin-polarization PFM

to any outflowing charge current. Based on this, we obtain for the R-side of the FMTJ
(details see Appendix E)

(
I

IsR

)
= −N ′e

h

(
T −PFMT

PFMT −T

)(
µL − µR

µsR

)
, (4.4)

where N ′ is the number of (spin-degenerate) channels, and T is the electron trans-
mission probability accounting for both spins.

The matrix T here also satisfies the requirement Tij(H,M) = Tji(−H,−M),
where a reversal of M corresponds to a sign change of PFM .

4.2 Origin of MR – energy-dependent transport and en-
ergy relaxation

We model a generic 2T MR measurement geometry using Fig. 4.2(a). A FM and a chi-
ral component are connected in series between two spin-unpolarized electrodes (L
and R), and the difference between their electrochemical potentials µL − µR = −eV

drives charge and spin transport. We introduce a node between the FM and the chi-
ral component, which is characterized by an electrochemical potential µ and a spin
accumulation µs. It preserves the spin but relaxes the energy of electrons to a Fermi-
Dirac distribution due to inelastic processes (e.g. electron-phonon interaction).

4.2.1 No MR in the linear response regime

The 2T conductance of this geometry in the linear response regime can be derived
by applying continuity condition in the node for both the charge and spin currents,
which gives (details see Appendix F)

G2T = G2T

(
P 2
FM , P 2

t

)
, no PFMPt term. (4.5)
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Figure 4.2: Origin of MR in a generic 2T circuit. (a). A 2T circuit containing an FM and a chiral
component, connected by a node. The chiral component is assumed to favor the transmission
of electrons with spin parallel to momentum. (b),(c). Schematic energy diagrams of tunneling
at the FMTJ under forward [(b)] and reverse [(c)] biases. The energy-dependent tunnel trans-
mission T (ε) is sketched in blue, and the tunnel current affected by the spin accumulation µs

is illustrated by the color-shaded areas (cyan and orange). (d). Example I-V curves consid-
ering the nonlinear mechanism of (b)-(c), while keeping the transmission through the chiral
component constant (details see Appendix G). Note that positive bias voltage corresponds to
the reverse bias scenario depicted in panel (c). The MR ratio, defined as (I+ − I−)/(I+ + I−),
is plotted in inset. Here the subscript + or − denotes the corresponding sign of PFM , with
PFM > 0 corresponding to a spin-right polarization for the injected electrons. The dashed
line marks zero MR.

It depends on the polarizations PFM and Pt only to second order, and does not de-
pend on their product PFMPt. Therefore, the 2T conductance remains unchanged
when the sign of either PFM or Pt is reversed by the reversal of either the FM mag-
netization direction or the chirality. This result again confirms the vanishing MR in
the linear response regime, as strictly required by Onsager reciprocity [22].

This vanishing MR can be understood as a result of two simultaneous processes.
First, by the conventional description, the charge current through the chiral com-
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ponent drives a collinear spin current and creates a spin accumulation in the node
(spin injection by CISS), which is then detected as a charge voltage by the FM (spin
detection by FM). This charge voltage indeed changes upon the FM magnetization
reversal. However, this is always accompanied by the second process, where it is
the FM that injects a spin current, and the Onsager reciprocal of CISS detects it as a
charge voltage. This voltage also changes upon the FM magnetization reversal. In
the linear regime, the two processes compensate each other, and the net result is a
zero MR.

4.2.2 Emergence of MR in nonlinear regime

The key to inducing MR is to break the balance between the two processes, which
can be done by using electrons at different energies for spin injection and spin de-
tection. This requires the presence of energy relaxation inside the device, and it
also needs the transport to be energy-dependent in at least one of the spin–charge
converters. Note that the energy relaxation is crucial for generating MR, because On-
sager reciprocity, which holds at each energy level, would otherwise prevent an MR
even in the nonlinear regime despite the energy-dependent transport. We illustrate
the emergence of MR using two types of energy dependence, (a) quantum tunnel-
ing through the FMTJ, and (b) thermally activated conduction through molecular
orbitals. These two elementary examples reveal key factors that determine the sign
of the nonlinear MR.

Example (a)

The asymmetric spin injection and spin detection in an FMTJ was previously dis-
cussed by Jansen et al. for an FM coupled to a semiconductor [36], and here we
generalize it for our system. The energy diagrams for this tunneling process are
sketched in Fig. 4.2(b)-(c) for opposite biases. The bias opens up an energy window
∆µ = µL − µ, and the electrons within this energy window contribute to the total
charge current I . The energy distribution of the tunneling electrons follows the en-
ergy dependence of the tunnel transmission probability T (ε) (blue curve). Therefore,
the electrons that contribute the most to the tunnel current I are those at the high-
est available energy, which are at µL (in the FM) under forward bias, and are at the
spin-split electrochemical potentials µ± µs (in the node) under reverse bias.

The spin injection process concerns the spin current Is induced by the total charge
current I through the FMTJ with spin polarization PFM (assuming no energy depen-
dence for PFM ). It is determined by the energy integral of T (ε) over the entire bias-
induced window ∆µ, and is symmetric for opposite biases (assuming µs � ∆µ).
In contrast, the spin detection process, which concerns the spin accumulation µs in
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Figure 4.2: Origin of MR in a generic 2T circuit. (a). A 2T circuit containing an FM and a chiral
component, connected by a node. The chiral component is assumed to favor the transmission
of electrons with spin parallel to momentum. (b),(c). Schematic energy diagrams of tunneling
at the FMTJ under forward [(b)] and reverse [(c)] biases. The energy-dependent tunnel trans-
mission T (ε) is sketched in blue, and the tunnel current affected by the spin accumulation µs

is illustrated by the color-shaded areas (cyan and orange). (d). Example I-V curves consid-
ering the nonlinear mechanism of (b)-(c), while keeping the transmission through the chiral
component constant (details see Appendix G). Note that positive bias voltage corresponds to
the reverse bias scenario depicted in panel (c). The MR ratio, defined as (I+ − I−)/(I+ + I−),
is plotted in inset. Here the subscript + or − denotes the corresponding sign of PFM , with
PFM > 0 corresponding to a spin-right polarization for the injected electrons. The dashed
line marks zero MR.

It depends on the polarizations PFM and Pt only to second order, and does not de-
pend on their product PFMPt. Therefore, the 2T conductance remains unchanged
when the sign of either PFM or Pt is reversed by the reversal of either the FM mag-
netization direction or the chirality. This result again confirms the vanishing MR in
the linear response regime, as strictly required by Onsager reciprocity [22].

This vanishing MR can be understood as a result of two simultaneous processes.
First, by the conventional description, the charge current through the chiral com-
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ponent drives a collinear spin current and creates a spin accumulation in the node
(spin injection by CISS), which is then detected as a charge voltage by the FM (spin
detection by FM). This charge voltage indeed changes upon the FM magnetization
reversal. However, this is always accompanied by the second process, where it is
the FM that injects a spin current, and the Onsager reciprocal of CISS detects it as a
charge voltage. This voltage also changes upon the FM magnetization reversal. In
the linear regime, the two processes compensate each other, and the net result is a
zero MR.

4.2.2 Emergence of MR in nonlinear regime

The key to inducing MR is to break the balance between the two processes, which
can be done by using electrons at different energies for spin injection and spin de-
tection. This requires the presence of energy relaxation inside the device, and it
also needs the transport to be energy-dependent in at least one of the spin–charge
converters. Note that the energy relaxation is crucial for generating MR, because On-
sager reciprocity, which holds at each energy level, would otherwise prevent an MR
even in the nonlinear regime despite the energy-dependent transport. We illustrate
the emergence of MR using two types of energy dependence, (a) quantum tunnel-
ing through the FMTJ, and (b) thermally activated conduction through molecular
orbitals. These two elementary examples reveal key factors that determine the sign
of the nonlinear MR.

Example (a)

The asymmetric spin injection and spin detection in an FMTJ was previously dis-
cussed by Jansen et al. for an FM coupled to a semiconductor [36], and here we
generalize it for our system. The energy diagrams for this tunneling process are
sketched in Fig. 4.2(b)-(c) for opposite biases. The bias opens up an energy window
∆µ = µL − µ, and the electrons within this energy window contribute to the total
charge current I . The energy distribution of the tunneling electrons follows the en-
ergy dependence of the tunnel transmission probability T (ε) (blue curve). Therefore,
the electrons that contribute the most to the tunnel current I are those at the high-
est available energy, which are at µL (in the FM) under forward bias, and are at the
spin-split electrochemical potentials µ± µs (in the node) under reverse bias.

The spin injection process concerns the spin current Is induced by the total charge
current I through the FMTJ with spin polarization PFM (assuming no energy depen-
dence for PFM ). It is determined by the energy integral of T (ε) over the entire bias-
induced window ∆µ, and is symmetric for opposite biases (assuming µs � ∆µ).
In contrast, the spin detection process, which concerns the spin accumulation µs in
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the node at its highest energy µ (Fermi level), is not symmetric for opposite biases.
Effectively, the spin accumulation describes the deficit of one spin and the surplus of
the other, as illustrated by the orange- and blue-shaded regions under the T (ε) curve
in Fig. 4.2(b)-(c), and therefore drives an (additional) charge current proportional to
the area difference between the two regions. This detected charge current depends
on the transmission probability at energy µ, and increases monotonically as the bias
becomes more reverse.

(c)
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Figure 4.3: Generating MR by thermally activated conduction through molecular orbitals.
(a). Schematic energy diagram of resonant transmission through molecular orbitals in a chiral
component (molecule). The LUMO and HOMO levels and the bias-dependent electrochemical
potentials are labeled, and the energy- and bias-dependent Fermi-Dirac function F (ε, µ) is
sketched in blue. (b)-(c). Example I-V curves and MR (inset) due to the resonant transmission
through the LUMO [(b)] and the HOMO [(c)], for the same device geometry as in Fig. 4.2(a)
but with the transmission of the FMTJ set constant. The chiral molecule is assumed to favor
the transmission of electrons with spin parallel to momentum.

The different bias dependences for spin injection and detection break Onsager
reciprocity for nonlinear response. This is also shown by the different off-diagonal
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terms in the nonlinear transport equation (details see Appendix G)
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where T |µL
µ = [1/(µL − µ)]

∫ µL

µ
T (ε)dε is the averaged transmission over the energy

window ∆µ = µL − µ, and T |ε=µ is the transmission evaluated at the Fermi level of
the node ε = µ. In the linear response regime, when µL ≈ µ, this equation returns to
Eqn. 4.4.

The tunnel I-V and the MR due to this mechanism are illustrated in Fig. 4.2(d) us-
ing realistic circuit parameters (details see Appendix I). The MR ratio reaches nearly
10 % at large biases, but strictly vanishes at zero bias. Notably, the MR is positive un-
der positive bias voltage (corresponds to reverse bias as in Fig. 4.2(c)), and it reverses
sign as the bias changes sign.

Example (b)

The non-reciprocal spin injection and detection can also arise from the nonlinear
transport through the chiral component. In principle, this could also be due to tun-
neling, but we focus here on another aspect, the Fermi-Dirac distribution of elec-
trons. This is negligible when the transmission function T (ε) is smooth, as for the
case of tunneling (thus we have assumed zero temperature for deriving Eqn. 4.6),
but it becomes dominant when electron (or hole) transmission is only allowed at cer-
tain discrete energy levels or energy bands that are away from Fermi level, as for
the case of conduction through molecular orbitals or through energy bands in semi-
conductors. We illustrate this in Fig. 4.3(a) considering the resonant transmission
through the LUMO (lowest unoccupied molecular orbital) and the HOMO (high-
est occupied molecular orbital) of a chiral molecule (details see Appendix H). For
spin injection, the generated spin current is proportional to the total charge current,
which depends on the (bias-induced) electrochemical potential difference between
the node and the right electrode, and is symmetric for opposite biases. In compar-
ison, for spin detection, the spin-split electrochemical potentials in the node µ ± µs

induce unequal occupations of opposite spins at each MO (depending on the MO
position with respect to the node Fermi level µ), and it is not symmetric for oppo-
site biases. This different bias dependence breaks Onsager reciprocity for nonlinear
response, and gives rise to MR.

We consider the transmission through either only the LUMO or only the HOMO,
and their example I-V curves and MR ratios are plotted in Fig. 4.3(b)-(c), respectively
(details see Appendix I). The MR is able to reach tens of percent even at relatively
small biases, and changes sign as the bias reverses. Remarkably, the bias dependence
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the node at its highest energy µ (Fermi level), is not symmetric for opposite biases.
Effectively, the spin accumulation describes the deficit of one spin and the surplus of
the other, as illustrated by the orange- and blue-shaded regions under the T (ε) curve
in Fig. 4.2(b)-(c), and therefore drives an (additional) charge current proportional to
the area difference between the two regions. This detected charge current depends
on the transmission probability at energy µ, and increases monotonically as the bias
becomes more reverse.
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Figure 4.3: Generating MR by thermally activated conduction through molecular orbitals.
(a). Schematic energy diagram of resonant transmission through molecular orbitals in a chiral
component (molecule). The LUMO and HOMO levels and the bias-dependent electrochemical
potentials are labeled, and the energy- and bias-dependent Fermi-Dirac function F (ε, µ) is
sketched in blue. (b)-(c). Example I-V curves and MR (inset) due to the resonant transmission
through the LUMO [(b)] and the HOMO [(c)], for the same device geometry as in Fig. 4.2(a)
but with the transmission of the FMTJ set constant. The chiral molecule is assumed to favor
the transmission of electrons with spin parallel to momentum.

The different bias dependences for spin injection and detection break Onsager
reciprocity for nonlinear response. This is also shown by the different off-diagonal

4

4.2. Origin of MR – energy-dependent transport and energy relaxation 81

terms in the nonlinear transport equation (details see Appendix G)
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where T |µL
µ = [1/(µL − µ)]
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T (ε)dε is the averaged transmission over the energy

window ∆µ = µL − µ, and T |ε=µ is the transmission evaluated at the Fermi level of
the node ε = µ. In the linear response regime, when µL ≈ µ, this equation returns to
Eqn. 4.4.

The tunnel I-V and the MR due to this mechanism are illustrated in Fig. 4.2(d) us-
ing realistic circuit parameters (details see Appendix I). The MR ratio reaches nearly
10 % at large biases, but strictly vanishes at zero bias. Notably, the MR is positive un-
der positive bias voltage (corresponds to reverse bias as in Fig. 4.2(c)), and it reverses
sign as the bias changes sign.

Example (b)

The non-reciprocal spin injection and detection can also arise from the nonlinear
transport through the chiral component. In principle, this could also be due to tun-
neling, but we focus here on another aspect, the Fermi-Dirac distribution of elec-
trons. This is negligible when the transmission function T (ε) is smooth, as for the
case of tunneling (thus we have assumed zero temperature for deriving Eqn. 4.6),
but it becomes dominant when electron (or hole) transmission is only allowed at cer-
tain discrete energy levels or energy bands that are away from Fermi level, as for
the case of conduction through molecular orbitals or through energy bands in semi-
conductors. We illustrate this in Fig. 4.3(a) considering the resonant transmission
through the LUMO (lowest unoccupied molecular orbital) and the HOMO (high-
est occupied molecular orbital) of a chiral molecule (details see Appendix H). For
spin injection, the generated spin current is proportional to the total charge current,
which depends on the (bias-induced) electrochemical potential difference between
the node and the right electrode, and is symmetric for opposite biases. In compar-
ison, for spin detection, the spin-split electrochemical potentials in the node µ ± µs

induce unequal occupations of opposite spins at each MO (depending on the MO
position with respect to the node Fermi level µ), and it is not symmetric for oppo-
site biases. This different bias dependence breaks Onsager reciprocity for nonlinear
response, and gives rise to MR.

We consider the transmission through either only the LUMO or only the HOMO,
and their example I-V curves and MR ratios are plotted in Fig. 4.3(b)-(c), respectively
(details see Appendix I). The MR is able to reach tens of percent even at relatively
small biases, and changes sign as the bias reverses. Remarkably, the bias dependence
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of the MR is opposite for LUMO and HOMO, implying that the charge carrier type,
i.e. electrons or holes, co-determines the sign of the MR. Again, the MR strictly
vanishes as the bias returns to zero (linear response regime). An overview of the
signs of MR is given in Appendix J.

4.3 Chiral spin valve

In the linear response regime, our formalism uses an antisymmetric transport ma-
trix (opposite off-diagonal terms) to describe the coupled charge and spin trans-
port through the FMTJ, and uses a symmetric one for the chiral component. The
symmetries of these transport matrices are directly required by Onsager reciprocity,
and have consequences when considering 2T circuits containing two generic spin–
charge converting components, as illustrated in Fig. 4.4. If the two components are
described by transport matrices with opposite symmetries, a 2T MR signal is for-
bidden in the linear response regime (Fig. 4.4(a)). This restriction is lifted if both
components are described by matrices with the same symmetry. For example, in a
conventional spin valve (Fig. 4.4(b)), the two FMs are both described by antisymmet-
ric transport matrices, and the magnetization reversal of one FM indeed changes the
2T conductance even in the linear response regime.

A less obvious outcome of this symmetry consideration is that a combination of
two chiral components (both described by symmetric matrices) can also form a spin
valve, provided that at least one of them can switch chirality, such as a molecular
rotor [37]. This is illustrated in Fig. 4.4(c)-(d), with example I-V curves in Fig. 4.4(f).
In the linear response regime, this geometry already produces a nonzero chirality-
reversal resistance (CRR, see figure caption for definition) ratio, which is further en-
hanced to tens of percent as the bias increases.

Finally, we introduce a 2T geometry that can detect the spin–charge conversion
due to a single chiral component, as shown in Fig. 4.4(e). Here, a charge current
through the chiral component can create a spin accumulation in the node (even in the
linear response regime), which can then be suppressed using a perpendicular mag-
netic field due to Hanle spin precession. This results in a magnetic-field-dependent
2T conductance, and Fig. 4.4(g) shows the I-V curves for zero magnetic field (blue
solid curve) and for when the field fully suppresses the spin accumulation (black
dashed curve). The corresponding MR (inset) is nonzero even in the linear response
regime, and can be enhanced by increasing bias.
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Figure 4.4: Generic 2T spin-valve device geometries with the symmetry of the charge–spin
transport matrix labeled for each component. (a). The aforementioned FM–chiral geometry
where MR signals are strictly forbidden in the linear response regime. (b). A FM–FM ge-
ometry, as in a conventional spin valve, where MR signals are allowed in the linear regime.
(c),(d). A chiral–chiral geometry for using the same [(c)] and opposite [(d)] chiralities, as
marked by color and labeled with D or L (here we assume the D-chiral component favors the
transmission of electrons with spin parallel to momentum, and the L-chiral component fa-
vors the anti-parallel ones). The spin-valve effect can be achieved, even in the linear regime,
by reversing the chirality of one component. (e). A geometry for directly probing the spin
accumulation generated by a single chiral component. The perpendicular magnetic field B

suppresses spin accumulation in the node via Hanle spin precession. (f). Example I-V curves
for a chiral–chiral spin valve, with the two curves representing the geometries in panel (c)
and (d) respectively. The corresponding chirality-reversal resistance (CRR) ratio, as defined
by CRR = (IDD − ILD)/(IDD + ILD) (the two subscripts refer to the chiralities of the two chiral
components), is plotted in the inset. (g). Example I-V for the geometry in panel (e), calculated
for cases with µs either fully or not-at-all suppressed by Hanle precession. The corresponding
MR is shown in inset, which is defined as the difference of the two curves divided by their
sum.
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of the MR is opposite for LUMO and HOMO, implying that the charge carrier type,
i.e. electrons or holes, co-determines the sign of the MR. Again, the MR strictly
vanishes as the bias returns to zero (linear response regime). An overview of the
signs of MR is given in Appendix J.

4.3 Chiral spin valve

In the linear response regime, our formalism uses an antisymmetric transport ma-
trix (opposite off-diagonal terms) to describe the coupled charge and spin trans-
port through the FMTJ, and uses a symmetric one for the chiral component. The
symmetries of these transport matrices are directly required by Onsager reciprocity,
and have consequences when considering 2T circuits containing two generic spin–
charge converting components, as illustrated in Fig. 4.4. If the two components are
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Figure 4.4: Generic 2T spin-valve device geometries with the symmetry of the charge–spin
transport matrix labeled for each component. (a). The aforementioned FM–chiral geometry
where MR signals are strictly forbidden in the linear response regime. (b). A FM–FM ge-
ometry, as in a conventional spin valve, where MR signals are allowed in the linear regime.
(c),(d). A chiral–chiral geometry for using the same [(c)] and opposite [(d)] chiralities, as
marked by color and labeled with D or L (here we assume the D-chiral component favors the
transmission of electrons with spin parallel to momentum, and the L-chiral component fa-
vors the anti-parallel ones). The spin-valve effect can be achieved, even in the linear regime,
by reversing the chirality of one component. (e). A geometry for directly probing the spin
accumulation generated by a single chiral component. The perpendicular magnetic field B

suppresses spin accumulation in the node via Hanle spin precession. (f). Example I-V curves
for a chiral–chiral spin valve, with the two curves representing the geometries in panel (c)
and (d) respectively. The corresponding chirality-reversal resistance (CRR) ratio, as defined
by CRR = (IDD − ILD)/(IDD + ILD) (the two subscripts refer to the chiralities of the two chiral
components), is plotted in the inset. (g). Example I-V for the geometry in panel (e), calculated
for cases with µs either fully or not-at-all suppressed by Hanle precession. The corresponding
MR is shown in inset, which is defined as the difference of the two curves divided by their
sum.
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4.4 Discussion

We explained that energy-dependent transport combined with energy relaxation can
give rise to MR signals in 2T electronic devices containing an FM and a chiral com-
ponent. We analyzed the (sign of) MR using two elementary examples: energy-
dependent tunneling through FMTJ (plus a chiral component at linear response) and
energy-dependent Fermi-Dirac distribution for thermally activated resonant trans-
mission through the chiral component (plus an FMTJ at linear response). Here we
note that other mechanisms such as electron-electron interaction may also play a role
in electron transport through chiral molecules [38, 39]. This however does not affect
our (qualitative) conclusions regarding the onset and the sign of MR, and can be
quantitatively accounted for by deriving the transport matrix of the chiral compo-
nent accordingly [40, 41] (see Appendix K).

We also assumed that the overall conduction through the circuit components is
(phase) incoherent. In practice, coherent conduction mechanisms, such as direct tun-
neling from the FM into an MO of the chiral molecule, may also be present. For
fully incoherent conduction, the chirality-based spin valve (Fig. 4.4(c-d)) resembles
a conventional CPP GMR device [42], while if coherent tunneling dominates, it is
comparable to a TMR device [43].

Finally, we draw attention to the sign of the nonlinear MR, which depends on
the dominating nonlinear element, the bias direction, the charge carrier type, and
the (sign of) chirality, as summarized in Appendix J. We have plotted the MR as a
function of bias while assuming the chirality and the charge carrier type remain un-
changed. However, in experimental conditions, it is possible that the charge carrier
type switches when the bias is reversed, and consequently the MR can have the same
sign for opposite biases. Such a bias-even MR is indeed in agreement with most ex-
perimental observations [5, 6, 8–12]. The experimental conditions concerning the
vanishing MR in the linear regime are however not clear, since sometimes the cur-
rents are too low to be measured [5, 6, 9]. For experiments where a linear regime can
be identified, some do show a strongly suppressed or vanishing MR [8, 12], while
some do not [10, 11]. This inconsistency thus requires further investigation.

4.5 Appendices

A. Comparison to absolute asymmetric (chemical) synthesis
Absolute asymmetric synthesis refers to chemical reactions starting from achiral or racemic reactants but
yield chiral products with a net enantiomeric excess. Generally, it requires the presence of a truly chiral
external influence, which, according to Barron [1], is a physical quantity that can appear in two degenerate
forms (e.g. opposite signs of one physical quantity, or parallel and anti-parallel alignments of two vectors),
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which are interconverted by space-inversion but not time-reversal. Following this, the lone influence of
a magnetic field, which reverses sign under time-reversal but not space-inversion, is not truly chiral, and
therefore should not induce absolute asymmetric synthesis.

Just like Onsager reciprocity, this true-chirality consideration is based on microscopic reversibility,
and therefore is only strict in the linear response regime (in the vicinity of thermodynamic equilibrium).
Barron later pointed out that [44], in a chemical reaction that would yield a racemic mixture (of enan-
tiomers), the presence of a magnetic field allows different reaction rates toward opposite enantiomers.
This creates an enantiomeric excess away from equilibrium, which should eventually disappear as the
system returns to equilibrium. However, if the nonequilibrium enantiomeric excess is amplified, for ex-
ample by self-assembly or crystallization, absolute asymmetric synthesis is induced, and this was later
demonstrated experimentally [26, 27].

This shows that a time-reversal-breaking influence (the magnetic field), albeit not being truly chiral,
can distinguish and separate enantiomers away from thermodynamic equilibrium. By the same token,
in the 2T circuit we discuss, the FM breaks time reversal symmetry and can therefore indeed distinguish
enantiomers away from equilibrium, i.e. in the nonlinear regime. Therefore, the nonlinear conductance of
the 2T circuit may depend on the chirality of the circuit component, as well as the magnetization direction
of the FM.

B. Beyond the Landauer formula
The Landauer formula describes the electrical conductance of a conductor using its scattering proper-
ties [45]. Particularly, it expresses conductance in terms of transmission probabilities between electrodes,
but does not require the use of reflection probabilities. Moreover, it considers that the charge (and spin)
transport are solely driven by a charge bias, and neglects possible spin accumulations in the circuit [28].
For a 2T device, it allows two independent parameters (charge and spin transmission probability) for the
description of coupled charge and spin transport.

We point out here that, a full description of the coupled charge and spin transport must extend be-
yond the conventional spin-resolved Landauer formula, and include also the (spin-flip) reflection terms
and the build-up of spin accumulations, which also act as driving forces of the transport. This point
was also earlier raised for a FM–normal metal system [29]. Following this, we need to characterize the
(twofold rotationally symmetric) chiral component using four independent parameters, see the matrix in
Eqn. 4.19, contrasting to the two parameters mentioned earlier.

Using this extended Landauer formula that is similar to a Büttiker multi-terminal analysis, we can
fully (in terms of charge and spin) account for how a generic spin–charge converter responds to charge
and spin driving forces. This response can be described using the transport matrices that our main text
focused on. Note that although in this work we derive these transport matrices using the extended Lan-
dauer formula, the general validity of the transport matrix formalism is not limited by this extended
Landauer formula. The transport matrices can be alternatively derived using other methods, and can be
extended to the nonlinear regime by including energy or bias dependences. The symmetry/asymmetry
of the transport matrix in the linear/nonlinear response regime is fundamentally related to the (breaking
of) Onsager reciprocity, and does not depend on how the transport matrix itself is derived.

C. Nonunitarity for generating CISS and energy relaxation for gen-
erating MR
The generation of CISS requires the presence of nonunitary effects inside the chiral component, because
the Kramers degeneracy would otherwise require equal transmission probabilities for opposite spin ori-
entations [32, 33]. These nonunitary effects break the phase information of a transmitting electron, but
does not necessarily alter its energy.
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sign for opposite biases. Such a bias-even MR is indeed in agreement with most ex-
perimental observations [5, 6, 8–12]. The experimental conditions concerning the
vanishing MR in the linear regime are however not clear, since sometimes the cur-
rents are too low to be measured [5, 6, 9]. For experiments where a linear regime can
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some do not [10, 11]. This inconsistency thus requires further investigation.
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The presence of these nonunitary effects only allows the generation of CISS, but does not guarantee
the generation of a 2T MR. These nonunitary effects do not (necessarily) break the Onsager reciprocity,
and therefore a 2T MR is still forbidden in the linear response regime. Even when considering energy-
dependent transport in the nonlinear regime (|eV | > kBT ), since at each energy level the Onsager reci-
procity still holds, a 2T MR cannot arise.

The emergence of MR, as we discussed, requires energy relaxation in the device. These relaxation
processes not only break the phase information, but also alter the energy of the electrons, and rearrange
them according to Fermi-Dirac distribution. We have assumed that they do not change the spin orienta-
tion of the electrons. In principle, we can also include spin relaxation in the node, which we expect to
reduce the MR without changing its sign.

D. Spin and charge transport in a nonmagnetic chiral component
In the main text we introduced the spin-space transmission and reflection matrices for the right-moving
electrons in a (nonmagnetic) chiral component (Eqn. 1)

T� =

(
t→→ t←→
t→← t←←

)
, R� =

(
r→→ r←→
r→← r←←

)
. (4.7)

For the left-moving electrons, the matrices are the time-reversed form of the above

T� =

(
t←← t→←
t←→ t→→

)
, R� =

(
r←← r→←
r←→ r→→

)
. (4.8)

Note that these matrices are not suitable for describing magnetic components where time-reversal sym-
metry is not preserved, and we have assumed the chiral component is symmetric (i.e. a twofold rotational
symmetry with axis perpendicular to the electron pathway, this ensures that for oppositely moving elec-
trons, the spin polarization only changes sign).

We use spin-space column vector to describe electrochemical potentials and currents on both sides of
the molecule, and following Ref.22 we have

(
IL→
IL←

)
= −

Ne

h

[
(I− R�)

(
µL→
µL←

)
− T�

(
µR→
µR←

)]
, (4.9a)

−
(
IR→
IR←

)
= −

Ne

h

[
(I− R�)

(
µR→
µR←

)
− T�

(
µL→
µL←

)]
, (4.9b)

where N is the number of spin-degenerate channels.
We define charge electrochemical potential µ = (µ→ + µ←)/2 and spin accumulation µs = (µ→ −

µ←)/2, as well as charge current I = I→ + I← and spin current Is = I→ − I←. We will describe both
charge and spin in electrical units.

Following these definitions, we have

I = IL→ + IL← = IR→ + IR←, (4.10a)

IsL = IL→ − IL←, (4.10b)

IsR = IR→ − IR←, (4.10c)

µL = (µL→ + µL←)/2, (4.10d)

µR = (µR→ + µR←)/2, (4.10e)

µsL = (µL→ − µL←)/2, (4.10f)

µsR = (µR→ − µR←)/2. (4.10g)

Combining Eqn. 4.9 and Eqn. 4.10, we can derive
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which is Eqn. 2 in the main text, and µL−µR = −eV is induced by a bias voltage V . The matrix elements
are

t = t→→ + t→← + t←→ + t←←, (4.12a)

r = r→→ + r→← + r←→ + r←← = 2− t, (4.12b)

γt = t→→ − t→← − t←→ + t←←, (4.12c)

γr = r→→ − r→← − r←→ + r←← − 2, (4.12d)

Pt = (t→→ − t→← + t←→ − t←←)/t, (4.12e)

Pr = (r→→ − r→← + r←→ − r←←)/r, (4.12f)

s = t→→ + t→← − t←→ − t←← (4.12g)

= −r→→ − r→← + r←→ + r←←. (4.12h)

For r = 2− t and the two expressions of s, we have used the condition of charge conservation

t→→ + t→← + r→→ + r→← = 1, (4.13a)

t←→ + t←← + r←→ + r←← = 1. (4.13b)

Among the above matrix elements, Pt, Pr , and s change sign when the chirality is reversed. For
achiral components where there is no spin selective transport, we have Pt = Pr = s = 0, and the
transport matrix is symmetric.

Note that in Eqn. 2 we have defined the vector of currents (thermodynamic response) using −IsL
and IsR, so that the transport matrix is symmetric in the linear response regime. Following this, as shown
in Fig. 1, the chiral component acts as a source (or sink) of spin currents when biased.

We can rewrite γt and γr as transmission-dependent quantities

γr = r − (Prr + s)/ηr − 2 = −t− (Prr + s)/ηr, (4.14a)

γt = −t+ (Ptt+ s)/ηt, (4.14b)

where

ηr =
r←→ − r→←

r←→ + r→←
, (4.15a)

ηt =
t→→ − t←←

t→→ + t←←
, (4.15b)

are quantities between ±1 and change sign under chirality reversal.
Next, for chiral components where Pt, Pr , and s are nonzero, the Onsager reciprocity requires the

3× 3 matrix to be symmetric [35], which gives

Ptt = Prr = s, (4.16)

and therefore

t→← = t←→, (4.17a)

r→→ = r←←, (4.17b)

t→→ − t←← = r←→ − r→←. (4.17c)

These expressions show that, for any finite Pt (spin polarization of transmitted electrons), Pr (spin polar-
ization of reflected electrons) must also be nonzero, which then requires the presence of spin-flip reflec-
tions [22]. This is again in agreement with the fundamental considerations based on zero charge and spin
currents in electrodes at equilibrium.

Further, we obtain

γr = −(1 + 2Pt/ηr)t, (4.18a)

γt = −(1− 2Pt/ηt)t. (4.18b)
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These expressions show that, for any finite Pt (spin polarization of transmitted electrons), Pr (spin polar-
ization of reflected electrons) must also be nonzero, which then requires the presence of spin-flip reflec-
tions [22]. This is again in agreement with the fundamental considerations based on zero charge and spin
currents in electrodes at equilibrium.

Further, we obtain

γr = −(1 + 2Pt/ηr)t, (4.18a)

γt = −(1− 2Pt/ηt)t. (4.18b)
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which allows us to rewrite the transport matrix equation in terms of t



I

−IsL
IsR


 = −

Ne

h




t Ptt Ptt

Ptt −(1 + 2Pt/ηr)t −(1− 2Pt/ηt)t

Ptt −(1− 2Pt/ηt)t −(1 + 2Pt/ηr)t






µL − µR

µsL

µsR


 . (4.19)

Note that Pt, ηt, and ηr all change sign when the chirality is reversed, and t, Pt/ηt, and Pt/ηr are always
positive.

In later discussions we connect the right-hand side of the nonmagnetic component to an electrode (see
Fig. 2(a)) where the spin accumulation µsR is zero and the spin current IsR is irrelevant. This reduces the
matrix equation to (

I

−IsL

)
= −

Ne

h

(
t Ptt

Ptt −(1 + 2Pt/ηr)t

)(
µL − µR

µsL

)
, (4.20)

which is equivalent to Eqn. 3 in the main text.

E. Spin and charge transport at an achiral ferromagnetic tunnel junc-
tion/interface
In a FM, time-reversal symmetry is broken and the Kramers degeneracy is lifted. The FMTJ provides a
spin polarization to any current that flows through, and reciprocally, it generates a charge voltage upon
a spin accumulation at its interface. In terms of spin and charge transport, the FMTJ allows different
conductances for electrons with opposite spins, and the difference depends on the spin polarization PFM .
Inside the FM spin relaxation is strong and the spin accumulation is considered zero. For our discussions,
the FM is always connected to the left of the node, we thus only consider the R interface of the FM with
a spin accumulation µsR. Following the discussion provided in Ref. 36, the spin-specific currents on the
R-side are therefore

I→ = −
1

e
G→[µL − (µR + µsR)], (4.21a)

I← = −
1

e
G←[µL − (µR − µsR)], (4.21b)

where G→(←) is the spin-specific tunnel conductance. We define the total conductance GFM = G→ +

G← and FM spin-polarization PFM = (G→ − G←)/(G→ + G←). We also introduce a transmission
coefficient T (0 � T � 2) to distinguish GFM from ideal transmission. The charge and spin currents on
the R interface of the FM can thus be written as(

I

IsR

)
= −

N ′e

h

(
T −PFMT

PFMT −T

)(
µL − µR

µsR

)
, (4.22)

where N ′ is the number of spin-degenerate channels in the FMTJ.
This matrix gives the spin and charge response of the FMTJ, and unlike for a chiral molecule, this ma-

trix fulfills the Onsager reciprocity by being antisymmetric (opposite off-diagonal terms), because upon
magnetic field and magnetization reversal, the FM spin polarization PFM changes sign [35].

F. Spin and charge transport in a generic 2T circuit
We consider a generic 2T circuit like the one shown in Fig. 2(a). Our goal here is to derive the quantities I ,
µ, and µs as a function of 2T bias µL − µR. We rewrite the transport matrices into conductance matrices,
and obtain for the left and right side of the node(

I

Is

)
= −

1

e

(
G1 G2

G3 G4

)(
µL − µ

µs

)
, (4.23a)

(
I

−Is

)
= −

1

e

(
g1 g2
g3 g4

)(
µ− µR

µs

)
. (4.23b)
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At steady state the continuity condition requires the currents I and Is are equal for both equations.
This condition allows us to derive

µ = µR +
G3(G2 − g2)−G1(G4 + g4)

f
(µL − µR)

= µL −
g3(g2 −G2)− g1(G4 + g4)

f
(µL − µR) ,

(4.24a)

µs =
(G3/G1 + g3/g1)G1g1

f
(µL − µR) , (4.24b)

I =
G1g2g3 + g1G2G3 −G1g1(G4 + g4)

f
(µL − µR) , (4.24c)

where the coefficient f is

f = (G3 − g3)(G2 − g2)− (G1 + g1)(G4 + g4). (4.25)

Notably, f depends on (G3−g3)(G2−g2), and for our linear-regime example using an FM with G2 =

−G3 and a chiral component with g2 = g3, f only depends on g23 − G2
3, which does not change when

either the FM magnetization or the chirality is reversed. Moreover, the charge current I only depends
on g23 and G2

3, and therefore remains unchanged under magnetization or chirality reversal. In contrast,
the spin accumulation µs depends on G3 and g3, and the charge distribution indicated by µ depends on
G3g2 or g3G2. Both µs and µ therefore indeed change upon magnetization or chirality reversal, and can
be detected using three-terminal or four-terminal measurements.

If the two circuit components would both be FM (antisymmetric G and g matrices) or both be chiral
(symmetric G and g matrices), then the coefficient f contains the cross products G3g2 and G2g3, and
therefore gives rise to a 2T current that does change upon magnetization or chirality reversal.

G. Reciprocity breaking by energy-dependent tunneling
Here we derive the energy dependence of the charge and spin tunneling through the FM interface fol-
lowing the discussion by Jansen et al. [36], and derive the subsequent nonlinear coupled charge and spin
transport equations.

We consider a biased symmetric rectangular tunnel barrier with height Φ and width w between the
FM and the node, as shown in Fig. 4.5(a). The reference energy ε = 0 is chosen as the average of µL and
µ, so that the average barrier height does not change with bias. The bias voltage V = −∆µ/e is applied,
so that µL = ∆µ/2, µ = −∆µ/2, µ→ = −∆µ/2 + µs, and µ← = −∆µ/2 − µs. For simplicity, we
assume the barrier height (evaluated at the center of the tunnel barrier) is constant, the tunneling is one
dimensional, and the electrostatic potential drop across the tunnel barrier is exactly −eV .

The energy-dependent electron transmission function is

T (ε) = 2 exp
(
−β (Φ− ε)1/2

)
, (4.26)

where β = 2w
√

2m/�2, with m being the (effective) electron mass and � the reduced Planck’s constant.
The total transmitted current is an energy-integral of two energy-dependent functions: (1). the trans-

mission function T (ε), and (2) the voltage-dependent Fermi-Dirac distribution functions in both elec-
trodes. The two parts dominate at different bias regimes with respect to the thermal activation energy
kBT , where kB is the Boltzmann constant and T is temperature. For tunneling, typically we have
|eV | � kBT , and therefore we assume zero temperature for convenience. The Fermi-Dirac distribu-
tion functions then become Heaviside step functions with the step at µL for the left electrode and at µ→
and µ← for the two spin species in the node.
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which is equivalent to Eqn. 3 in the main text.
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tion/interface
In a FM, time-reversal symmetry is broken and the Kramers degeneracy is lifted. The FMTJ provides a
spin polarization to any current that flows through, and reciprocally, it generates a charge voltage upon
a spin accumulation at its interface. In terms of spin and charge transport, the FMTJ allows different
conductances for electrons with opposite spins, and the difference depends on the spin polarization PFM .
Inside the FM spin relaxation is strong and the spin accumulation is considered zero. For our discussions,
the FM is always connected to the left of the node, we thus only consider the R interface of the FM with
a spin accumulation µsR. Following the discussion provided in Ref. 36, the spin-specific currents on the
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where N ′ is the number of spin-degenerate channels in the FMTJ.
This matrix gives the spin and charge response of the FMTJ, and unlike for a chiral molecule, this ma-

trix fulfills the Onsager reciprocity by being antisymmetric (opposite off-diagonal terms), because upon
magnetic field and magnetization reversal, the FM spin polarization PFM changes sign [35].

F. Spin and charge transport in a generic 2T circuit
We consider a generic 2T circuit like the one shown in Fig. 2(a). Our goal here is to derive the quantities I ,
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where the coefficient f is
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Notably, f depends on (G3−g3)(G2−g2), and for our linear-regime example using an FM with G2 =

−G3 and a chiral component with g2 = g3, f only depends on g23 − G2
3, which does not change when

either the FM magnetization or the chirality is reversed. Moreover, the charge current I only depends
on g23 and G2

3, and therefore remains unchanged under magnetization or chirality reversal. In contrast,
the spin accumulation µs depends on G3 and g3, and the charge distribution indicated by µ depends on
G3g2 or g3G2. Both µs and µ therefore indeed change upon magnetization or chirality reversal, and can
be detected using three-terminal or four-terminal measurements.

If the two circuit components would both be FM (antisymmetric G and g matrices) or both be chiral
(symmetric G and g matrices), then the coefficient f contains the cross products G3g2 and G2g3, and
therefore gives rise to a 2T current that does change upon magnetization or chirality reversal.

G. Reciprocity breaking by energy-dependent tunneling
Here we derive the energy dependence of the charge and spin tunneling through the FM interface fol-
lowing the discussion by Jansen et al. [36], and derive the subsequent nonlinear coupled charge and spin
transport equations.

We consider a biased symmetric rectangular tunnel barrier with height Φ and width w between the
FM and the node, as shown in Fig. 4.5(a). The reference energy ε = 0 is chosen as the average of µL and
µ, so that the average barrier height does not change with bias. The bias voltage V = −∆µ/e is applied,
so that µL = ∆µ/2, µ = −∆µ/2, µ→ = −∆µ/2 + µs, and µ← = −∆µ/2 − µs. For simplicity, we
assume the barrier height (evaluated at the center of the tunnel barrier) is constant, the tunneling is one
dimensional, and the electrostatic potential drop across the tunnel barrier is exactly −eV .

The energy-dependent electron transmission function is

T (ε) = 2 exp
(
−β (Φ− ε)1/2

)
, (4.26)

where β = 2w
√

2m/�2, with m being the (effective) electron mass and � the reduced Planck’s constant.
The total transmitted current is an energy-integral of two energy-dependent functions: (1). the trans-

mission function T (ε), and (2) the voltage-dependent Fermi-Dirac distribution functions in both elec-
trodes. The two parts dominate at different bias regimes with respect to the thermal activation energy
kBT , where kB is the Boltzmann constant and T is temperature. For tunneling, typically we have
|eV | � kBT , and therefore we assume zero temperature for convenience. The Fermi-Dirac distribu-
tion functions then become Heaviside step functions with the step at µL for the left electrode and at µ→
and µ← for the two spin species in the node.
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Figure 4.5: (a). Energy diagram of the tunnel barrier at the ferromagnet interface. Details see text.
(b). Bias dependence of the off-diagonal elements of the conductance matrix describing tunneling through
the FMTJ.

Assuming PFM does not depend on energy, the energy-integrated tunnel current for each spin
species through the FMTJ is

I→(∆µ, µs) = −
N ′e

h

1 + PFM

2

∫ µL

µ→
T (ε) dε, (4.27a)

I←(∆µ, µs) = −
N ′e

h

1− PFM

2

∫ µL

µ←
T (ε) dε. (4.27b)

The range of the integrals can be rewritten as

for I→ :

∫ µL

µ→
dε =

∫ µL

µ
dε−

∫ µ→

µ
dε, (4.28a)

for I← :

∫ µL

µ←
dε =

∫ µL

µ
dε+

∫ µ

µ←
dε. (4.28b)

We denote the two integrals on the right-hand side of the expressions I
(1)
→(←)

and I
(2)
→(←)

respectively,

so that we have I→ = I
(1)
→ + I

(2)
→ and I← = I

(1)
← + I

(2)
← . The first integral I(1)→(←)

depends on the
electrochemical potential difference across the barrier, ∆µ, and thus describes the bias-induced transport.
In contrast, the second integral I(2)→(←)

depends on µ and µs in the node, and it vanishes when µs = 0,
and therefore it describes the spin-accumulation-induced correction to the first integral. We will treat the
two integrals separately.

The bias-induced charge and spin currents are

I(1) = I(1)→ + I(1)←

= −
N ′e

h

∫ µL

µ
T (ε) dε

= −
N ′e

h

(
T |µL

µ

)
∆µ,

(4.29a)

4

4.5. Appendices 91

I
(1)
s = I(1)→ − I(1)←

= −
N ′e

h
PFM

∫ µL

µ
T (ε) dε

= −
N ′e

h

(
PFM T |µL

µ

)
∆µ,

(4.29b)

where the averaged transmission within the bias window is defined as

T |µL
µ =

1

∆µ

∫ µL

µ
T (ε) dε. (4.30)

Note that when ∆µ changes sign, the integral changes sign too, and therefore T |µL
µ is an even function of

∆µ.
For the spin-accumulation-induced currents, we have

I(2) = I(2)→ + I(2)←

= −
N ′e

h

[
−
1 + PFM

2

∫ µ→

µ
T (ε)dε+

1− PFM

2

∫ µ

µ←
T (ε)dε

]

≈ −
N ′e

h
(−PFMT |ε=µ) · µs,

(4.31a)

I
(2)
s = I(2)→ − I(2)←

= −
N ′e

h

[
−
1 + PFM

2

∫ µ→

µ
T (ε)dε−

1− PFM

2

∫ µ

µ←
T (ε)dε

]

≈ −
N ′e

h
(−T |ε=µ) · µs,

(4.31b)

where the approximation is taken under the assumption that µs � ∆µ, so that T (ε) is approximately a
constant within the energy range from µ← to µ→, and thus they are evaluated at ε = µ = −∆µ/2. The
energy dependence of I(2) and I

(2)
s follows that of T (ε) (Eqn. 4.26).

We can now rewrite Eqn. 4.29 and Eqn. 4.31 into matrix form




I

Is


 = −

N ′e

h




T |µL
µ −PFMT |ε=µ

PFMT |µL
µ −T |ε=µ






µL − µ

µs


 , (4.32)

which is Eqn. 6 in the main text. The different off-diagonal terms demonstrate the breaking of Onsager
reciprocity in the nonlinear regime, since one of them depends on the integral of the transmission function,
while the other depends on the transmission function itself. In the linear response regime (µL ≈ µ), the
two terms differ only by sign.

We write (
I

Is

)
= −

1

e

(
G1 G2

G3 G4

)(
µL − µ

µs

)
, (4.33)

so that the matrix elements represent conductance, where G2 = (N ′e2/h) · (−PFMT |ε=µ) and G3 =

(N ′e2/h)·(PFMT |µL
µ ). In Fig. 4.5(b), we plot G2 and G3 as a function of bias across the FMTJ ((µL−µ)/e)

for PFM = −0.5 and N ′ = 1000, values that are used to calculate the I-V curves in Fig. 2(d) (for other
parameters see later in Appendix I).

Note that G2 = −G3 at zero bias, as required by Onsager reciprocity in the linear response regime.
The breaking of reciprocity in the nonlinear regime is exhibited by the unequal absolute values of G2 and
G3 away from zero bias. Here G2 is increases monotonically with decreasing bias, while G3 is symmetric
in bias and is minimum at zero bias.
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Figure 4.5: (a). Energy diagram of the tunnel barrier at the ferromagnet interface. Details see text.
(b). Bias dependence of the off-diagonal elements of the conductance matrix describing tunneling through
the FMTJ.
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where the averaged transmission within the bias window is defined as

T |µL
µ =
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Note that when ∆µ changes sign, the integral changes sign too, and therefore T |µL
µ is an even function of
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where the approximation is taken under the assumption that µs � ∆µ, so that T (ε) is approximately a
constant within the energy range from µ← to µ→, and thus they are evaluated at ε = µ = −∆µ/2. The
energy dependence of I(2) and I

(2)
s follows that of T (ε) (Eqn. 4.26).

We can now rewrite Eqn. 4.29 and Eqn. 4.31 into matrix form
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 , (4.32)

which is Eqn. 6 in the main text. The different off-diagonal terms demonstrate the breaking of Onsager
reciprocity in the nonlinear regime, since one of them depends on the integral of the transmission function,
while the other depends on the transmission function itself. In the linear response regime (µL ≈ µ), the
two terms differ only by sign.

We write (
I
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)
= −

1

e

(
G1 G2

G3 G4

)(
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)
, (4.33)

so that the matrix elements represent conductance, where G2 = (N ′e2/h) · (−PFMT |ε=µ) and G3 =

(N ′e2/h)·(PFMT |µL
µ ). In Fig. 4.5(b), we plot G2 and G3 as a function of bias across the FMTJ ((µL−µ)/e)

for PFM = −0.5 and N ′ = 1000, values that are used to calculate the I-V curves in Fig. 2(d) (for other
parameters see later in Appendix I).

Note that G2 = −G3 at zero bias, as required by Onsager reciprocity in the linear response regime.
The breaking of reciprocity in the nonlinear regime is exhibited by the unequal absolute values of G2 and
G3 away from zero bias. Here G2 is increases monotonically with decreasing bias, while G3 is symmetric
in bias and is minimum at zero bias.
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H. Reciprocity breaking by thermally activated resonant transmis-
sion through molecular orbitals
We discuss here the effect of the Fermi-Dirac distribution of electrons using resonant transmission through
discrete molecular orbitals (levels), specifically the lowest-unoccupied molecular orbital (LUMO) and the
highest-occupied molecular orbital (HOMO). This is illustrated in Fig. 4.6(a). We assume here the LUMO
and HOMO levels are fixed at energies εLU and −εHO respectively (εLU , εHO > 0), with ε = 0 defined as
the average of the two (charge) electrochemical potentials on both sides of the molecule. The nonlinearity
is now assumed to be fully due to the Fermi-Dirac distribution F (ε, µ), which is different for the node
and the electrode, and is also different for the two spin species in the node when a spin accumulation is
considered.
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Figure 4.6: (a). Energy diagram of electron transmission through molecular levels. (b). Bias dependence
of the off-diagonal elements of the conductance matrix describing thermally activated conduction through
the LUMO.

Consider the geometry in Fig. 4.6(a), at a given bias ∆µ and a spin accumulation µs in the node, the
spin-specific Fermi-Dirac functions for the two spin species in the node are

FL→(ε,∆µ, µs) =
1

exp
(
ε−∆µ/2−µs

kBT

)
+ 1

, (4.34a)

FL←(ε,∆µ, µs) =
1

exp
(
ε−∆µ/2+µs

kBT

)
+ 1

, (4.34b)

where we used subscript L to denote the node because its located on the left side of the molecule.
The Fermi-Dirac function in the node (neglecting the spin accumulation) and in the right electrode

are

FL(ε,∆µ) =
1

exp
(
ε−∆µ/2
kBT

)
+ 1

, (4.35a)

FR(ε,∆µ) =
1

exp
(
ε+∆µ/2
kBT

)
+ 1

. (4.35b)

We model the resonant transmission through the molecular orbitals as energy-dependent transmis-
sion probability t(ε) that is only nonzero at the LUMO and the HOMO levels, which it is described by

t(ε) = tLU δ(ε− εLU ) + tHOδ(ε+ εHO), (4.36)
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where tLU and tHO are the transmission probabilities through the LUMO and the HOMO, respectively,
and δ(ε) is a Dirac delta function.

An exact calculation should separately address the two spin orientations separately, but for our as-
sumption of µs � ∆µ, we will directly start from the linear-regime equation of coupled charge and spin
transport (Eqn. 4.20)

(
I

−IsL

)
= −

Ne

h

(
t Ptt

Ptt −(1 + 2Pt/ηr)t

)(
µ− µR

µs

)
. (4.37)

This gives the charge current I

I = −
Ne

h
[t(µL − µR) + Ptt(µL→ − µL←)/2] , (4.38)

where we used µL→ = µ+ µs and µL← = µ− µs.
At finite temperature, the two terms in the square bracket on the right-hand side of the equation

should each be replaced by an energy-integral of the electron transmission function modified by the
voltage- and temperature-dependent Fermi-Dirac distributions in both electrodes. We denote the two
terms I(1) and I(2), and the first term is

I(1) =

∫ ∞

−∞
t(ε) [FL(ε,∆µ)− FR(ε,∆µ)] dε

= tLU [FL(εLU ,∆µ)− FR(εLU ,∆µ)]

+ tHO [FL(−εHO,∆µ)− FR(−εHO,∆µ)] .

(4.39)

We denote
Fε(∆µ) =

1

∆µ
[FL(ε,∆µ)− FR(ε,∆µ)] , (4.40)

to highlight the transmission at energy ε and under bias ∆µ. In this manner, we can write

I(1) = [tLU FεLU (∆µ) + tHO F−εHO (∆µ)] ∆µ. (4.41)

Similarly, at finite temperature, the second term I(2) becomes

I(2)

=
Pt

2
(tLU [FL→(εLU ,∆µ, µs)− FL←(εLU ,∆µ, µs)]

+ tHO [FL→(−εHO,∆µ, µs)− FL←(−εHO,∆µ, µs)]).

(4.42)

We define

F ′
L,ε(∆µ)

=
1

2µs
[FL→(ε,∆µ, µs)− FL←(ε,∆µ, µs)]

≈
∂[FL(ε,∆µ)]

∂∆µ
,

(4.43)

where the approximation is taken under the assumption of µs � ∆µ.
With this, we have

I(2) = Pt

[
tLU F ′

L,εLU
(∆µ) + tHO F ′

L,−εHO
(∆µ)

]
µs. (4.44)

Similarly, the expression of −IsL at finite temperature can also be derived from the linear regime
expression. The nonlinear coupled spin and charge transport equation, due to the thermally activated
resonant transmission via the LUMO and the HOMO levels, is therefore

(
I

−IsL

)
= −

Ne

h
T

(
µ− µR

µs

)
, (4.45a)
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Figure 4.6: (a). Energy diagram of electron transmission through molecular levels. (b). Bias dependence
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where tLU and tHO are the transmission probabilities through the LUMO and the HOMO, respectively,
and δ(ε) is a Dirac delta function.
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where T is
(

tLU FεLU (∆µ) + tHO F−εHO (∆µ) Pt[tLU F ′
L,εLU

(∆µ) + tHO F ′
L,−εHO

(∆µ)]

Pt[tLU FεLU (∆µ) + tHO F−εHO (∆µ)] −(1 + 2Pt/ηr) [tLU F ′
L,εLU

(∆µ) + tHO F ′
L,−εHO

(∆µ)]

)
,

(4.45b)
where we have assumed Pt, ηr do not depend on energy.
The breaking of reciprocity arises from the different forms of the off-diagonal terms of the transport

matrix. While the bottom-left term scales with the electron occupation function, the top-right terms scales
with its derivative. In the linear response regime, the two terms are equal and Onsager reciprocity is
present.

If required, this nonlinear form can be easily extended to the 3× 3 matrix for a generalized situation
considering also a spin accumulation µsR on the right-hand side of the molecule. Then the third column
will be modified similarly to the second column using the derivative of the electron occupation function
in the right electrode FR(ε,∆µ).

Similar to the FMTJ, we can write the above equation into
(

I

−Is

)
= −

1

e

(
g1 g2
g3 g4

)(
µ− µR

µs

)
, (4.46)

where the matrix elements represent conductance. We plot the off-diagonal terms as a function of bias
((µ − µR)/e) for transmission only through the LUMO level (tLU = 1, tHO = 0, εLU = 0.6 eV) for
Pt = 0.85 and N = 1000, as shown in Fig. 4.6(b).

Note that g2 = g3 at zero bias, as required by Onsager reciprocity in the linear response regime. The
reciprocity is broken as bias shifts away from zero, and the two conductance values are no longer equal.
Here g2 increases monotonically with bias, while g3 is bias-symmetric and reaches minimum at zero bias.

I. Parameters for example I-V curves
(1) For calculating the I-V curves in Fig. 2(d) we have used the following parameters: Energy dependent
FM tunnel transmission T (ε) for a tunnel barrier with height Φ = 2.1 eV, and width w = 1.0 nm. The
number of channels are set as N ′ = 1000 and N = 5000, the values are chosen taking into account the
device length scale. For example, if using Ni as FM, when assuming each atom provides one channel,
N ′ = 1000 corresponds to roughly an area of 100 nm2. The transmission through the chiral component
is set linear and uses the same transmission value as the FM tunnel barrier at zero bias. The polarization
values are PFM = ±0.5, Pt = 0.85, and the quantity ηr is set as ηr = 0.9. The same parameters are used
to obtain the conductances in Fig. 4.5(b).

(2) For calculating the I-V curves in Fig. 3(b-c) we have used the following parameters: Temperature
at 300 K, the LUMO level at εLU = 0.6 eV, and the HOMO level at −εHO = −0.6 eV. For Fig. 3(b), the
LUMO transmission tLU = 1 and the HOMO transmission tHO = 0, while for Fig. 3(c) the two values are
interchanged. The number of channels are set as N ′ = 1000 and N = 200. The transmission through the
FM tunnel barrier is set linear and uses the same transmission value as the FM tunnel barrier in case (1)
at zero bias. The polarization values are PFM = ±0.5, Pt = 0.85, and the quantity ηr is set as ηr = 0.9.
The same parameters are used to obtain the conductances in Fig. 4.6(b).

(3) For the chiral spin valve in Fig. 4(f), we use the same tunnel transmission function and the same
barrier parameters as in case (1) for both chiral components (both nonlinear), and do not consider the
thermally activated molecular level transmission. The number of channels are set as N ′ = 1000 and N =

20000. The first chiral component has polarization ±0.5, and the second one 0.85, both have ηr = 0.9.
(d) For the example in Fig. 4(g), the tunnel barrier uses the same parameters as the FMTJ in case (1),

but has zero spin polarization. The chiral component transmission is set linear and uses the same set of
parameters as in case (1). The dashed curve is obtained by forcing µs = 0 for all bias values.
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J. Sign of the nonlinear 2T MR
We summarize here, separately for the two nonlinear mechanisms, how the sign of the MR depends on
the chirality, the charge carrier type, and the bias direction. First of all, we define the MR for the device in
Fig. 2(a) following

MR =
I+ − I−

I+ + I−
× 100%, (4.47)

where I+ represents the charge current measured with the FM polarization PFM > 0, which corresponds
to a spin-right polarization of the injected electrons, and I− corresponds to the current measured when
the FM generates a spin-left polarization.

Table 4.1: Summary of the sign of MR for nonlinear tunneling through FMTJ

chirality electron direction carrier type MR
D CC to FMTJ electron +
L CC to FMTJ electron -
D FMTJ to CC electron -
L FMTJ to CC electron +

Table 4.2: Summary of the sign of MR for nonlinear transmission through molecular orbitals

chirality electron direction carrier type MR
D CC to FMTJ electron +
L CC to FMTJ electron -
D FMTJ to CC electron -
L FMTJ to CC electron +
D CC to FMTJ hole -
L CC to FMTJ hole +
D FMTJ to CC hole +
L FMTJ to CC hole -

For the bias direction, we describe it in terms of electron movement direction (opposite to charge
current) with respect to the circuit components. For example, in Fig. 2(a), the positive bias voltage corre-
sponds to an electron movement from the chiral component (CC) to the FMTJ.

For the (sign of) chirality, we label it as D and L. Here we (arbitrarily) assume that a D-chiral compo-
nent favors the transmission of electrons with spins parallel to the electron momentum, while a L-chiral
component favors the anti-parallel. The exact correspondence between the chirality and the favored spin
orientation depends on the microscopic details of the spin orbit interaction.

According to these definitions, the sign of the MR is summarized in the above tables.

K. Beyond noninteracting-electron picture
In the main text, we analyzed two elementary sources of energy dependence to illustrate the onset of MR
in nonlinear regime: (a) energy-dependent tunnelling through the ferromagnetic tunnel junction (Fig. 4.2),
and (b) energy-dependent Fermi-Dirac distribution for molecular resonant transmission (Fig. 4.3). For
convenience, both examples concentrated the role of electron-electron or electron-phonon interactions
in the node for inducing energy relaxation, and considered a noninteracting-electron picture for trans-
port through each individual circuit component. In practice, however, electron transport through chiral
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molecules could also involve other many-body effects such as Coulomb blockade, Kondo effects, molec-
ular deformation, and transport-induced chemical reactions [38, 39].

We emphasize here, in three aspects, that our qualitative conclusions are not restricted by the non-
interacting-electron picture that we use. Moreover, our quantitative results can in principle be improved
by including the many-body effects when deriving the transport matrices.

First, the transport matrix formalism we introduced is generally valid. It describes the coupled charge
and spin transport in generic spintronic devices, which is (thermodynamically) driven by charge and spin
chemical potentials. The symmetry/asymmetry of the transport matrices in the linear/nonlinear response
regime is fundamentally related to the (breaking of) Onsager reciprocity. It does not depend on specific
microscopic mechanisms. Based on this, we derived our main conclusion that MR signals can only arise in
the nonlinear regime, and it requires energy-dependent transport and energy relaxation. This conclusion
is therefore also fundamental and does not depend on detailed transport mechanisms.

Second, we identified how key factors such as bias direction, electron/hole transport, and chirality,
determine the sign of the MR. These factors are also related to fundamental symmetry and the nature of
electron transport, and do not depend on microscopic mechanisms.

Third, considering our two examples, the first one is unaffected by electron-electron or electron-
phonon interactions in the chiral component because it operates in the linear response regime. In the
second example where we consider energy-dependent transport through the chiral component, potential
many-body effects may indeed change the energy and bias dependence of the nonlinear transport, and
thereby quantitatively affect the MR in the nonlinear regime.

We point out here that our formalism can be extended to include the role of many-body effects or
other nonlinear mechanisms by deriving the transport matrices accordingly [40, 41]. We encourage future
studies to address these mechanisms to help identify their signatures in experimental results of the elec-
trical detection of CISS.
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[14] E. Medina, L. A. González-Arraga, D. Finkelstein-Shapiro, B. Berche, and V. Mujica, “Continuum model for chiral
induced spin selectivity in helical molecules,” The Journal of Chemical Physics 142(19), p. 194308, 2015.

[15] A.-M. Guo and Q.-F. Sun, “Spin-selective transport of electrons in DNA double helix,” Physical Review Let-
ters 108(21), p. 218102, 2012.
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molecules could also involve other many-body effects such as Coulomb blockade, Kondo effects, molec-
ular deformation, and transport-induced chemical reactions [38, 39].

We emphasize here, in three aspects, that our qualitative conclusions are not restricted by the non-
interacting-electron picture that we use. Moreover, our quantitative results can in principle be improved
by including the many-body effects when deriving the transport matrices.

First, the transport matrix formalism we introduced is generally valid. It describes the coupled charge
and spin transport in generic spintronic devices, which is (thermodynamically) driven by charge and spin
chemical potentials. The symmetry/asymmetry of the transport matrices in the linear/nonlinear response
regime is fundamentally related to the (breaking of) Onsager reciprocity. It does not depend on specific
microscopic mechanisms. Based on this, we derived our main conclusion that MR signals can only arise in
the nonlinear regime, and it requires energy-dependent transport and energy relaxation. This conclusion
is therefore also fundamental and does not depend on detailed transport mechanisms.

Second, we identified how key factors such as bias direction, electron/hole transport, and chirality,
determine the sign of the MR. These factors are also related to fundamental symmetry and the nature of
electron transport, and do not depend on microscopic mechanisms.

Third, considering our two examples, the first one is unaffected by electron-electron or electron-
phonon interactions in the chiral component because it operates in the linear response regime. In the
second example where we consider energy-dependent transport through the chiral component, potential
many-body effects may indeed change the energy and bias dependence of the nonlinear transport, and
thereby quantitatively affect the MR in the nonlinear regime.

We point out here that our formalism can be extended to include the role of many-body effects or
other nonlinear mechanisms by deriving the transport matrices accordingly [40, 41]. We encourage future
studies to address these mechanisms to help identify their signatures in experimental results of the elec-
trical detection of CISS.
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[3] B. Göhler, V. Hamelbeck, T. Z. Markus, M. Kettner, G. F. Hanne, Z. Vager, R. Naaman, and H. Zacharias, “Spin se-

lectivity in electron transmission through self-assembled monolayers of double-stranded DNA,” Science 331(6019),
pp. 894–897, 2011.

[4] A. Inui, R. Aoki, Y. Nishiue, K. Shiota, Y. Kousaka, H. Shishido, D. Hirobe, M. Suda, J.-i. Ohe, J.-i. Kishine, et al.,
“Chirality-induced spin-polarized state of a chiral crystal CrNb3S6,” Physical Review Letters 124(16), p. 166602, 2020.

[5] M. Suda, Y. Thathong, V. Promarak, H. Kojima, M. Nakamura, T. Shiraogawa, M. Ehara, and H. M. Yamamoto,
“Light-driven molecular switch for reconfigurable spin filters,” Nature Communications 10(1), p. 2455, 2019.

[6] H. Lu, J. Wang, C. Xiao, X. Pan, X. Chen, R. Brunecky, J. J. Berry, K. Zhu, M. C. Beard, and Z. V. Vardeny, “Spin-
dependent charge transport through 2D chiral hybrid lead-iodide perovskites,” Science Advances 5(12), p. eaay0571,
2019.

[7] A. C. Aragonès, E. Medina, M. Ferrer-Huerta, N. Gimeno, M. Teixidó, J. L. Palma, N. Tao, J. M. Ugalde, E. Giralt,
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5

Chapter 5

Circuit-model analysis for spintronic devices
with chiral molecules as spin injectors

R
ecent research discovered that charge transfer processes in chiral molecules can be spin
selective and named the effect chiral-induced spin selectivity (CISS). Follow-up work
studied hybrid spintronic devices with conventional electronic materials and chiral (bio-)
molecules. However, a theoretical foundation for the CISS effect is still in development
and the spintronic signals were not evaluated quantitatively. We present a circuit-model
approach that can provide quantitative evaluations. Our analysis assumes the scheme
of a recent experiment that used photosystem I (PSI) as spin injectors, for which we
find that the experimentally observed signals are, under any reasonable assumptions on
relevant PSI time scales, too high to be fully due to the CISS effect. We also show that
the CISS effect can in principle be detected using the same type of solid-state device, and
by replacing silver with graphene, the signals due to spin generation can be enlarged four
orders of magnitude. Our approach thus provides a generic framework for analyzing this
type of experiments and advancing the understanding of the CISS effect.

This chapter is published as:
X. Yang, T. Bosma, B. J. van Wees & C. H. van der Wal, ” Circuit-model analysis for
spintronic devices with chiral molecules as spin injectors,” Phys. Rev. B 99, 214428
(2019)
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Electronic spin lies at the heart of spintronics due to its capability to convey digi-
tal information. In contrast, this quantum mechanical concept has found few appli-
cations in chemistry and biology as the energy states associated with opposite spin
orientations are often degenerate. Molecular chirality, on the other hand, is thor-
oughly discussed in chemistry and biology but rarely concerned in spintronics. In
the past decade, the two concepts have been increasingly linked together thanks to
the discovery of the chiral-induced spin selectivity (CISS) effect, which describes that
the electron transfer in chiral molecules is spin dependent [1–11]. This discovery not
only provides new approaches to controlling chiral molecules [12] and understand-
ing their interactions [13], but also opens up the possibility of small, flexible, and
fully organic spintronic devices. Previously, organic materials were incorporated in
spintronic devices as spin transport channels and spin-charge converters, but the
conversion efficiency remained low [14–22]. Building on CISS, hybrid devices with
efficient molecular spin injectors and detectors were realized [23–32]. However, a full
understanding of the signals produced by these devices is still lacking, and thereby
the understanding of CISS largely hindered.

We present here a circuit-model approach to quantitatively evaluating the spin
signals measured from hybrid solid-state devices designed for studying the CISS
effect. Similar approaches have been used for the analyses of spintronic devices
with metallic and semiconducting materials [33–35]. They provided accurate de-
scriptions of experimental results and have been extended to a wide range of device
geometries. We apply here such modeling to devices with adsorbed molecular ac-
tive layers instead of metal contacts. While generally applicable, we take the device
reported in Ref. 26 as a case study for demonstrating our approach. In comparison
to our recent analysis using electron-transmission modeling [36], the circuit-model
approach is more suited for including a role for optically driven chiral molecules,
and for electron transport outside the linear-response regime.

5.1 Circuit-model analysis

In the work of Ref. 26, cyanobacterial photosystem I (PSI) protein complexes were
self-assembled on a silver-AlOx-nickel junction and the orientation of PSI (up or
down) was controlled by mutations and linker molecules. Figure 5.1 shows a device
with PSI in the up orientation. Here, P700, the reaction center of PSI, was located ad-
jacent to the silver layer. In P700, charge separation took place upon the illumination
of a 660-nm laser during the experiments. It was described that the excited electron
got transferred to the Fe4S4 clusters at the other end of PSI, and the hole left behind
in P700 was refilled by an electron from silver. This process causes a net upward
electron transfer from silver to PSI, which, before relaxation, results in a steady-state

5

5.1. Circuit-model analysis 101

increase of the silver surface potential, as was observed using a Kelvin probe [26].
In contrast, a device with PSI in the down orientation gave a decrease of silver sur-
face potential upon light illumination, indicating a net downward electron transfer
from PSI into silver. Both devices were then placed under laser illumination in the
presence of an out-of-plane magnetic field which was used to set the magnetization
of nickel in either the up or down direction. The charge voltage between silver and
the nickel layer was monitored. The absolute value of this voltage was found to be
always lower when the electron transfer direction and the magnetic field direction
were parallel (both up or both down), and higher when they were anti-parallel (one
up and one down). This magnetic field dependence suggested that the electron trans-
fer process in PSI was spin selective, and the preferred spin orientation was parallel
to the electron momentum. As PSI is one of Nature’s two major light-harvesting
centers, this intriguing result indicated that electron spins may also play a role in
photosynthesis.
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Figure 5.1: Electron transfer chain of PSI and the geometry of the solid-state device used in
Ref. 26. The device was a stack of 150 nm of nickel, 0.5 nm of AlOx, and 50 nm of silver.
PSI was immobilized on top of the silver layer, and the voltage difference between the silver
and the nickel was measured. PSI is represented by the green area, on which the structure of
a part that contains the PSI electron transfer chain is overlaid. The structure highlights key
cofactors such as Fe4S4 clusters (FB, FA and FX), primary electron acceptors (A1 and A0), the
reaction center (P700), and the chiral (helical) structural surroundings. Here PSI is in the up
orientation, with P700 close to silver, and the Fe4S4 clusters at the far end. Red labellings mark
the light induced electron transfer process, including the photon (hν) and the electron (e),
the photo-excitation pathway (solid arrows) and the unknown relaxation pathway (dashed
arrow). The protein structure is taken from the RCSB Protein Data Bank (PDB ID 1JB0 [37]).
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Electronic spin lies at the heart of spintronics due to its capability to convey digi-
tal information. In contrast, this quantum mechanical concept has found few appli-
cations in chemistry and biology as the energy states associated with opposite spin
orientations are often degenerate. Molecular chirality, on the other hand, is thor-
oughly discussed in chemistry and biology but rarely concerned in spintronics. In
the past decade, the two concepts have been increasingly linked together thanks to
the discovery of the chiral-induced spin selectivity (CISS) effect, which describes that
the electron transfer in chiral molecules is spin dependent [1–11]. This discovery not
only provides new approaches to controlling chiral molecules [12] and understand-
ing their interactions [13], but also opens up the possibility of small, flexible, and
fully organic spintronic devices. Previously, organic materials were incorporated in
spintronic devices as spin transport channels and spin-charge converters, but the
conversion efficiency remained low [14–22]. Building on CISS, hybrid devices with
efficient molecular spin injectors and detectors were realized [23–32]. However, a full
understanding of the signals produced by these devices is still lacking, and thereby
the understanding of CISS largely hindered.

We present here a circuit-model approach to quantitatively evaluating the spin
signals measured from hybrid solid-state devices designed for studying the CISS
effect. Similar approaches have been used for the analyses of spintronic devices
with metallic and semiconducting materials [33–35]. They provided accurate de-
scriptions of experimental results and have been extended to a wide range of device
geometries. We apply here such modeling to devices with adsorbed molecular ac-
tive layers instead of metal contacts. While generally applicable, we take the device
reported in Ref. 26 as a case study for demonstrating our approach. In comparison
to our recent analysis using electron-transmission modeling [36], the circuit-model
approach is more suited for including a role for optically driven chiral molecules,
and for electron transport outside the linear-response regime.

5.1 Circuit-model analysis

In the work of Ref. 26, cyanobacterial photosystem I (PSI) protein complexes were
self-assembled on a silver-AlOx-nickel junction and the orientation of PSI (up or
down) was controlled by mutations and linker molecules. Figure 5.1 shows a device
with PSI in the up orientation. Here, P700, the reaction center of PSI, was located ad-
jacent to the silver layer. In P700, charge separation took place upon the illumination
of a 660-nm laser during the experiments. It was described that the excited electron
got transferred to the Fe4S4 clusters at the other end of PSI, and the hole left behind
in P700 was refilled by an electron from silver. This process causes a net upward
electron transfer from silver to PSI, which, before relaxation, results in a steady-state
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increase of the silver surface potential, as was observed using a Kelvin probe [26].
In contrast, a device with PSI in the down orientation gave a decrease of silver sur-
face potential upon light illumination, indicating a net downward electron transfer
from PSI into silver. Both devices were then placed under laser illumination in the
presence of an out-of-plane magnetic field which was used to set the magnetization
of nickel in either the up or down direction. The charge voltage between silver and
the nickel layer was monitored. The absolute value of this voltage was found to be
always lower when the electron transfer direction and the magnetic field direction
were parallel (both up or both down), and higher when they were anti-parallel (one
up and one down). This magnetic field dependence suggested that the electron trans-
fer process in PSI was spin selective, and the preferred spin orientation was parallel
to the electron momentum. As PSI is one of Nature’s two major light-harvesting
centers, this intriguing result indicated that electron spins may also play a role in
photosynthesis.
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Figure 5.1: Electron transfer chain of PSI and the geometry of the solid-state device used in
Ref. 26. The device was a stack of 150 nm of nickel, 0.5 nm of AlOx, and 50 nm of silver.
PSI was immobilized on top of the silver layer, and the voltage difference between the silver
and the nickel was measured. PSI is represented by the green area, on which the structure of
a part that contains the PSI electron transfer chain is overlaid. The structure highlights key
cofactors such as Fe4S4 clusters (FB, FA and FX), primary electron acceptors (A1 and A0), the
reaction center (P700), and the chiral (helical) structural surroundings. Here PSI is in the up
orientation, with P700 close to silver, and the Fe4S4 clusters at the far end. Red labellings mark
the light induced electron transfer process, including the photon (hν) and the electron (e),
the photo-excitation pathway (solid arrows) and the unknown relaxation pathway (dashed
arrow). The protein structure is taken from the RCSB Protein Data Bank (PDB ID 1JB0 [37]).

However, an important question to address while considering this conclusion
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is: How much of the observed magnetic-field-dependent signal was from CISS?
To answer this question we need to understand the origin of the measured steady-
state magnetic-field-dependent voltage. Upon photo-excitation charge carriers were
transferred from silver to PSI. These carriers must relax back to silver via pathways
inside PSI because there was no top electrode providing alternative pathways. Both
the excitation and relaxation pathways might exhibit spin selectivity. Qualitatively,
as long as the CISS effects in the two pathways do not cancel each other, a net spin in-
jection into silver can be generated. This spin injection then competes with the spin
relaxation process in silver, and results in a steady-state spin accumulation which
can indeed be detected as a charge voltage between silver and the nickel layer [38].

To quantitatively evaluate this voltage signal, we adopt a two-current circuit
model where spin transport is described by two parallel channels (spin-up and spin-
down channels) [39, 40]. The two channels are connected via a spin-flip resistance
Rsf , which characterizes the spin relaxation process in a nonmagnetic material. A
derivation of Rsf and a more detailed introduction of the two-current model concept
can be found in Appendix A. For a thin-film nonmagnetic material, we find

Rsf = 2 ·
λ2
sf

d Arel σ
(5.1)

(assuming d < λsf and Arel � λ2
sf ), where λsf is the spin-relaxation length of the

material, σ is the conductivity of the material, d is the thickness of the film, and Arel

is the relevant area of the film where spin injection occurs. Notably, Rsf is entirely
determined by the properties of the material and the geometry of the device.

The role of PSI in the device can be characterized by two features. Firstly, due to
the lack of a top electrode, there was (as a steady-state average) no net charge current
flowing through PSI. Secondly, facilitated by CISS, PSI gave a net spin injection into
silver. These two features resemble a pure spin-current source. Therefore, we model
PSI as a pure spin-current source between the fully polarized spin-up (red) and spin-
down (blue) channels, as shown in Figure 5.2A). Upon photo-excitation PSI sources
an internal spin current IPSI . The pathway with spin-flip resistance Rsf−PSI ac-
counts for the spin relaxation inside PSI. At the PSI-silver interface the two channels
encounter possibly spin-dependent contact resistances RcPSI↑ and RcPSI↓. The net
spin current injected from PSI into silver is Is = η · IPSI , (−1 � η � 1), with η being
the fraction of the photo-induced spin current that actually contributes to the spin
accumulation in silver. Generically, we regard PSI as a black box: a two-terminal
unit that drives a spin current Is, as shown in Figure 5.2B). This will later be linked
and compared to known timescales for charge transfer processes inside PSI.

A circuit model for the entire device is shown in Figure 5.3. RAg is the spin-
independent resistance (in the out-of-plane direction) of the silver layer. Inside the
silver layer the spins can relax, as represented by a spin-flip pathway with resistance
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Figure 5.2: PSI modeled as a spin-current source. A) PSI compared to a pure spin-current
source with a spin relaxation pathway. It creates spin accumulation in the silver layer upon
light illumination. Spin-up electrons (red) are transferred from silver to PSI, while spin-down
electrons (blue) are transferred back to silver. No charge current flows through PSI but a
spin-down accumulation is created in silver. B) The model of panel A), reduced to its net
spin-injection effect. The contribution from each component in the dashed box in A) cannot
be clearly distinguished, therefore we treat them together as an ideal spin-current source Is
with a parallel resistance R. Since the total impedance in PSI is much larger than that of silver,
we consider R → ∞. The net effect of this reduced model is to inject a spin current Is into
the silver layer. Here we show the drawing for one PSI unit, but the spin currents (IPSI , Is)
concern the values for the entire PSI ensemble on the device.

Rsf−Ag . RcAg is the contact resistance between silver and the voltage meter. In prin-
ciple these contacts could provide an extra pathway for electron spins to relax, but
in reality these contacts are located millimeters away from where spins are injected.
This distance is much larger than the spin-relaxation length in silver (about 150 nm
at room temperature) [41]. Therefore, the spin relaxation through these contacts is
negligible and we can assume RcAg → ∞.

Underneath the silver layer is the the AlOx tunnel barrier and the ferromag-
netic nickel layer. In these layers electrons experience spin-dependent resistances:
the tunnel resistance Rtun↑(↓) and the contact resistance RcNi↑(↓) (which includes
the out-of-plane resistance of the nickel layer). Note that here the subscript ↑(↓)
refers to the corresponding spin-current channel, not to be confused with the mag-
netization direction of nickel which determines the values of Rtun↑(↓) and RcNi↑(↓).
These resistances can be combined using shorter notations R↑ = Rtun↑ + RcNi↑ and
R↓ = Rtun↓ + RcNi↓. An interchange of the R↑ and R↓ values thus accounts for the
reversal of the magnetization direction of nickel.

The magnetization direction of nickel can be described as being parallel (p) or
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as long as the CISS effects in the two pathways do not cancel each other, a net spin in-
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relaxation process in silver, and results in a steady-state spin accumulation which
can indeed be detected as a charge voltage between silver and the nickel layer [38].

To quantitatively evaluate this voltage signal, we adopt a two-current circuit
model where spin transport is described by two parallel channels (spin-up and spin-
down channels) [39, 40]. The two channels are connected via a spin-flip resistance
Rsf , which characterizes the spin relaxation process in a nonmagnetic material. A
derivation of Rsf and a more detailed introduction of the two-current model concept
can be found in Appendix A. For a thin-film nonmagnetic material, we find
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material, σ is the conductivity of the material, d is the thickness of the film, and Arel

is the relevant area of the film where spin injection occurs. Notably, Rsf is entirely
determined by the properties of the material and the geometry of the device.

The role of PSI in the device can be characterized by two features. Firstly, due to
the lack of a top electrode, there was (as a steady-state average) no net charge current
flowing through PSI. Secondly, facilitated by CISS, PSI gave a net spin injection into
silver. These two features resemble a pure spin-current source. Therefore, we model
PSI as a pure spin-current source between the fully polarized spin-up (red) and spin-
down (blue) channels, as shown in Figure 5.2A). Upon photo-excitation PSI sources
an internal spin current IPSI . The pathway with spin-flip resistance Rsf−PSI ac-
counts for the spin relaxation inside PSI. At the PSI-silver interface the two channels
encounter possibly spin-dependent contact resistances RcPSI↑ and RcPSI↓. The net
spin current injected from PSI into silver is Is = η · IPSI , (−1 � η � 1), with η being
the fraction of the photo-induced spin current that actually contributes to the spin
accumulation in silver. Generically, we regard PSI as a black box: a two-terminal
unit that drives a spin current Is, as shown in Figure 5.2B). This will later be linked
and compared to known timescales for charge transfer processes inside PSI.

A circuit model for the entire device is shown in Figure 5.3. RAg is the spin-
independent resistance (in the out-of-plane direction) of the silver layer. Inside the
silver layer the spins can relax, as represented by a spin-flip pathway with resistance

5

5.1. Circuit-model analysis 103

V 

Ni 

Ag 

AlOx 

𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃  

𝑒𝑒 

𝑒𝑒 𝑒𝑒 𝑒𝑒 𝑒𝑒 𝑒𝑒 

𝑒𝑒 

PSI A) 

Ni 

Ag 

AlOx 

𝐼𝐼𝑃𝑃 

B) 

𝑅𝑅 → ∞ 

𝑅𝑅𝑠𝑠𝑠𝑠−𝑃𝑃𝑃𝑃𝑃𝑃  

𝑅𝑅𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃↓ 𝑅𝑅𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃↑ 

V 

Figure 5.2: PSI modeled as a spin-current source. A) PSI compared to a pure spin-current
source with a spin relaxation pathway. It creates spin accumulation in the silver layer upon
light illumination. Spin-up electrons (red) are transferred from silver to PSI, while spin-down
electrons (blue) are transferred back to silver. No charge current flows through PSI but a
spin-down accumulation is created in silver. B) The model of panel A), reduced to its net
spin-injection effect. The contribution from each component in the dashed box in A) cannot
be clearly distinguished, therefore we treat them together as an ideal spin-current source Is
with a parallel resistance R. Since the total impedance in PSI is much larger than that of silver,
we consider R → ∞. The net effect of this reduced model is to inject a spin current Is into
the silver layer. Here we show the drawing for one PSI unit, but the spin currents (IPSI , Is)
concern the values for the entire PSI ensemble on the device.

Rsf−Ag . RcAg is the contact resistance between silver and the voltage meter. In prin-
ciple these contacts could provide an extra pathway for electron spins to relax, but
in reality these contacts are located millimeters away from where spins are injected.
This distance is much larger than the spin-relaxation length in silver (about 150 nm
at room temperature) [41]. Therefore, the spin relaxation through these contacts is
negligible and we can assume RcAg → ∞.

Underneath the silver layer is the the AlOx tunnel barrier and the ferromag-
netic nickel layer. In these layers electrons experience spin-dependent resistances:
the tunnel resistance Rtun↑(↓) and the contact resistance RcNi↑(↓) (which includes
the out-of-plane resistance of the nickel layer). Note that here the subscript ↑(↓)
refers to the corresponding spin-current channel, not to be confused with the mag-
netization direction of nickel which determines the values of Rtun↑(↓) and RcNi↑(↓).
These resistances can be combined using shorter notations R↑ = Rtun↑ + RcNi↑ and
R↓ = Rtun↓ + RcNi↓. An interchange of the R↑ and R↓ values thus accounts for the
reversal of the magnetization direction of nickel.

The magnetization direction of nickel can be described as being parallel (p) or
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Figure 5.3: Two-current circuit model for the spintronic device of Ref.26 (symbols introduced
in the main text). Different parts of the device are separated by dashed lines. Spin-up and
spin-down current channels are distinguished by color. PSI is represented by a pure spin-
current source as introduced in Figure 5.2B). The spin relaxation in silver is modeled as a
pathway with spin-flip resistance Rsf−Ag connecting the two spin-current channels.

anti-parallel (ap) to the spin-up channel. For each case the reading of the voltage
meter Vmeas is

V (p)
meas =

1

2
Is(R↑ −R↓)

Rsf−Ag

R↑ +R↓ +Rsf−Ag
, (5.2a)

V (ap)
meas =

1

2
Is(R↓ −R↑)

Rsf−Ag

R↑ +R↓ +Rsf−Ag
. (5.2b)

The change in the measured voltage upon the reversal of the nickel magnetization is
therefore

Vdiff = V (ap)
meas − V (p)

meas

= Is(R↓ −R↑)
Rsf−Ag

R↑ +R↓ +Rsf−Ag

= IsReff ,

(5.3)

where Reff = Vdiff/Is is an effective spinvalve resistance.
For the envisioned spintronic behavior in Ref. 26, this model captures all rele-

vant aspects for spintronic signals in the linear transport regime, without making
assumptions that restrict its validity. It is thus suited for describing the observed
spin signals in a quantitative manner when the values of the circuit parameters are
available. For the device described in Ref.26 we derive (see Appendix B)

Reff ≈ 15 mΩ . (5.4)
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Note that Reff is fully determined by the properties of the Ag-AlOx-Ni multilayer,
and deriving its value does not use any estimates or assumptions concerning PSI.
Furthermore, by carefully choosing material parameters, the estimate of Reff is of
great accuracy. This is also discussed in Appendix B.

The result for Reff directly yields values for the injected spin current that was
flowing in the experiment of Ref. 26. For the up orientation of PSI, the measured
voltage difference Vdiff was about 50 nV. Thus, the net spin current injected into
silver must have been Is = Vdiff/Reff ≈ 3 µA. For the opposite PSI orientation, the
measured Vdiff was about 10 nV, and accordingly, Is ≈ 0.6 µA.

5.2 Discussion

Next, we turn these spin-current values into values for the timescale τ that must
then hold for the charge excitation-relaxation process for illuminated PSI. Here τ

can be understood as the time interval between two consecutive photo-excitation
processes from the same PSI unit. By assuming that the intensity of the illumination
is strong enough to drive all the PSI units in continuous excitation-relaxation cycles
(saturated), we can write i = −e/τ , where e is the elementary charge and i the photo-
induced charge current in a PSI unit. The sum of all contributions i (sum over all PSI
units) should then be high enough to provide the above Is values. In order to check
this, we will assume the highest number for PSI units that can contribute, and that
they all maximally contribute. Therefore, we first assume that over the relevant area
of the device the PSI units form a densely packed, fully oriented monolayer, and
that all PSI units function identically. Secondly, we assume that photo-induced spin
current from each PSI unit is fully injected into the silver layer, i.e. η = 1. Further,
we assume that the polarization of the CISS effect in PSI is 50%, on par with the
reported CISS polarization in other chiral systems [3, 8, 26]. For these assumptions
we find (details in Appendix C) that for the up orientation of PSI, τ should not be
larger than 100 ps. For the down orientation this limit is τ � 500 ps. Note that the
boundaries here correspond to the most ideal scenario, and in practice the required
τ values could be much smaller than these boundaries.

We now compare these requirements for τ with the well-studied timescales of the
electron transfer process in PSI. During photosynthesis, the photo-induced charge
separation in PSI takes place at the primary donor P700. Electrons are then trans-
ferred through a series of accepters along the electron transfer chain: A0, A1, and the
Fe4S4 clusters FX, FA and FB (see Figure 5.4) [37, 42, 43]. The initial electron transfer
from P700 to A1 is ultrafast (∼30 ps), and further transfer to FX happens in 20-200 ns.
Then, the electron transfer from FX through FA to FB typically takes 500 ns to 1 µs [43].

The requirements for τ values that we found are–regardless the PSI orientation–
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Figure 5.3: Two-current circuit model for the spintronic device of Ref.26 (symbols introduced
in the main text). Different parts of the device are separated by dashed lines. Spin-up and
spin-down current channels are distinguished by color. PSI is represented by a pure spin-
current source as introduced in Figure 5.2B). The spin relaxation in silver is modeled as a
pathway with spin-flip resistance Rsf−Ag connecting the two spin-current channels.
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where Reff = Vdiff/Is is an effective spinvalve resistance.
For the envisioned spintronic behavior in Ref. 26, this model captures all rele-

vant aspects for spintronic signals in the linear transport regime, without making
assumptions that restrict its validity. It is thus suited for describing the observed
spin signals in a quantitative manner when the values of the circuit parameters are
available. For the device described in Ref.26 we derive (see Appendix B)
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Note that Reff is fully determined by the properties of the Ag-AlOx-Ni multilayer,
and deriving its value does not use any estimates or assumptions concerning PSI.
Furthermore, by carefully choosing material parameters, the estimate of Reff is of
great accuracy. This is also discussed in Appendix B.

The result for Reff directly yields values for the injected spin current that was
flowing in the experiment of Ref. 26. For the up orientation of PSI, the measured
voltage difference Vdiff was about 50 nV. Thus, the net spin current injected into
silver must have been Is = Vdiff/Reff ≈ 3 µA. For the opposite PSI orientation, the
measured Vdiff was about 10 nV, and accordingly, Is ≈ 0.6 µA.
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Next, we turn these spin-current values into values for the timescale τ that must
then hold for the charge excitation-relaxation process for illuminated PSI. Here τ

can be understood as the time interval between two consecutive photo-excitation
processes from the same PSI unit. By assuming that the intensity of the illumination
is strong enough to drive all the PSI units in continuous excitation-relaxation cycles
(saturated), we can write i = −e/τ , where e is the elementary charge and i the photo-
induced charge current in a PSI unit. The sum of all contributions i (sum over all PSI
units) should then be high enough to provide the above Is values. In order to check
this, we will assume the highest number for PSI units that can contribute, and that
they all maximally contribute. Therefore, we first assume that over the relevant area
of the device the PSI units form a densely packed, fully oriented monolayer, and
that all PSI units function identically. Secondly, we assume that photo-induced spin
current from each PSI unit is fully injected into the silver layer, i.e. η = 1. Further,
we assume that the polarization of the CISS effect in PSI is 50%, on par with the
reported CISS polarization in other chiral systems [3, 8, 26]. For these assumptions
we find (details in Appendix C) that for the up orientation of PSI, τ should not be
larger than 100 ps. For the down orientation this limit is τ � 500 ps. Note that the
boundaries here correspond to the most ideal scenario, and in practice the required
τ values could be much smaller than these boundaries.

We now compare these requirements for τ with the well-studied timescales of the
electron transfer process in PSI. During photosynthesis, the photo-induced charge
separation in PSI takes place at the primary donor P700. Electrons are then trans-
ferred through a series of accepters along the electron transfer chain: A0, A1, and the
Fe4S4 clusters FX, FA and FB (see Figure 5.4) [37, 42, 43]. The initial electron transfer
from P700 to A1 is ultrafast (∼30 ps), and further transfer to FX happens in 20-200 ns.
Then, the electron transfer from FX through FA to FB typically takes 500 ns to 1 µs [43].

The requirements for τ values that we found are–regardless the PSI orientation–
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Figure 5.4: Electron transfer process and corresponding time scales in PSI, here depicted in a
manner where the vertical placements of states reflect their energy levels. Here the PSI unit is
in the up orientation. The excitation process is labeled by the black arrows with corresponding
time scales marked. However, the relaxation process is unknown (dashed arrow). The blue
scale shows the spatial distance between different parts of the electron transfer chain.

only compatible with the initial ultrafast electron transfer from P700 to A1. The sub-
sequent steps are at least two orders of magnitude too slow. Thus, concluding that
the observed signals fully result from the CISS effect requires the existence of an ul-
trafast relaxation process where electrons immediately return to P700 after their ini-
tial transfer from P700 to A1. This process does not exist in Nature, because it would
stop the trans-membrane electron transfer in photosynthesis. We should, neverthe-
less, consider whether it can occur in the device, since PSI is there located in a very
different environment.

In the solid-state environment, faster relaxation than in Nature could be due to,
for instance, the use of linker molecules, the mutations of PSI, or the presence of
silver (thanks to its high density of states). The linker molecules are unlikely to
be the reason, because their size is significantly smaller than PSI, and the electron
transfer chain is positioned deeply in the center of PSI (Figure 5.4). Moreover, it was
stated in Ref.26 that the observed signals do not depend on the linker molecules.

The mutations and the metal substrate, on the other hand, could indeed affect
the electron transfer. To assess the effects, we can draw direct comparisons between
Ref.26 and Ref.44. In both works the same mutations of PSI were performed in order
to covalently bind PSI to metal substrates (Ag and Au respectively). Ref. 44 found,
for the bound PSI, the fastest excitation-relaxation cycle of around 15 ns. For Ref. 26
the value should be on the same order of magnitude due to the large similarities
between the two experiments. However, this value is still two orders of magnitude
slower than the most ideal scenario that we have assumed. Therefore, the CISS-
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related spin signals in Ref. 26 was at least two orders of magnitude lower than the
measured value. In fact, if we consider a realistic situation where PSI units do not
form a fully-oriented and densely-packed layer on silver and |η| < 1, the actual CISS
signals should be even smaller.

Although other mechanisms may still be at play [45, 46], they are not able to make
up for the orders of magnitude of deviation. We thus conclude that the observed
signals in Ref. 26 cannot be fully due to the light-induced spin injection from PSI,
unless the very similar PSI conditions in Ref. 26 and Ref. 44 could lead to orders
of magnitude of difference in PSI charge transfer time scales. This suggests that the
magnetic-field dependence of the signals in Ref. 26 may predominantly originate
from other effects. Some possible sources are discussed in Appendix D.

Nevertheless, our analysis shows that an experimental approach as in Ref.26 is in
principle suited for confirming spin signals with CISS origin. It also provides insight
in how one can optimize this type of experiments towards a system that would yield
CISS spin signals with a higher magnitude. The most direct improvement can be
obtained via a system that has higher values for Rsf and Reff in Eqs. (5.1)-(5.4). A
good example to consider is to use graphene as replacement for the silver layer. This
should boost the spin signals by four orders of magnitude, since it would increase
the value of Reff from ∼15 mΩ to a value of ∼0.5 kΩ (see Appendix B for details).

5.3 Conclusion

In summary, we introduced a two-current circuit-model approach to quantitatively
assessing spintronic signals in hybrid devices which combine conventional elec-
tronic materials with (bio)organic molecules that are spin-active due to the CISS
effect. As an example, we applied it to a case where the active layer has electrical
contact only on one side, and we showed how the quantitative analysis can link the
observed spin signals to charge excitation and relaxation times in the molecules. Our
analysis showed that such devices can readily give spintronic signals that are strong
enough for detection with current technologies. However, it also revealed that in the
experiment of our case study (Ref. 26), the observed signals must have had strong
contributions from other effects. Future experimental work should aim at separating
other signals from signals given by CISS, and our circuit-model approach assists in
designing these experiments. We also recommend using devices with nonlocal ge-
ometries in order to separate charge and spin signals [36, 38]. In these geometries, the
spin signals can also be quantitatively assessed using our circuit-model approach.
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related spin signals in Ref. 26 was at least two orders of magnitude lower than the
measured value. In fact, if we consider a realistic situation where PSI units do not
form a fully-oriented and densely-packed layer on silver and |η| < 1, the actual CISS
signals should be even smaller.

Although other mechanisms may still be at play [45, 46], they are not able to make
up for the orders of magnitude of deviation. We thus conclude that the observed
signals in Ref. 26 cannot be fully due to the light-induced spin injection from PSI,
unless the very similar PSI conditions in Ref. 26 and Ref. 44 could lead to orders
of magnitude of difference in PSI charge transfer time scales. This suggests that the
magnetic-field dependence of the signals in Ref. 26 may predominantly originate
from other effects. Some possible sources are discussed in Appendix D.

Nevertheless, our analysis shows that an experimental approach as in Ref.26 is in
principle suited for confirming spin signals with CISS origin. It also provides insight
in how one can optimize this type of experiments towards a system that would yield
CISS spin signals with a higher magnitude. The most direct improvement can be
obtained via a system that has higher values for Rsf and Reff in Eqs. (5.1)-(5.4). A
good example to consider is to use graphene as replacement for the silver layer. This
should boost the spin signals by four orders of magnitude, since it would increase
the value of Reff from ∼15 mΩ to a value of ∼0.5 kΩ (see Appendix B for details).

5.3 Conclusion

In summary, we introduced a two-current circuit-model approach to quantitatively
assessing spintronic signals in hybrid devices which combine conventional elec-
tronic materials with (bio)organic molecules that are spin-active due to the CISS
effect. As an example, we applied it to a case where the active layer has electrical
contact only on one side, and we showed how the quantitative analysis can link the
observed spin signals to charge excitation and relaxation times in the molecules. Our
analysis showed that such devices can readily give spintronic signals that are strong
enough for detection with current technologies. However, it also revealed that in the
experiment of our case study (Ref. 26), the observed signals must have had strong
contributions from other effects. Future experimental work should aim at separating
other signals from signals given by CISS, and our circuit-model approach assists in
designing these experiments. We also recommend using devices with nonlocal ge-
ometries in order to separate charge and spin signals [36, 38]. In these geometries, the
spin signals can also be quantitatively assessed using our circuit-model approach.
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5.4 Appendices

A. Two-current model and derivation of Rsf

In this section we use a simple example to introduce the concept of two-current circuit models [39, 40]
and to illustrate what can be experimentally detected. Along the way we derive Rsf (Equation 5.1).

For describing spintronic signals, we use modeling where spin transport in conductors is described
as two parallel channels each allowing only one type of spin (spin-up and spin-down channels, colored
in red and blue respectively in Figure 5.5) [39, 40]. This allows us to separate the total electrical current
I into spin-up and spin-down components: I = I↑ + I↓. The difference between the two components is
referred to as a spin current I↑↓, with I↑↓ = I↑ − I↓. A spin current injected into a non-magnetic material
will result in a spin accumulation (chemical potential difference between the spin-up and spin-down
channels) µ↑↓ = µ↑ − µ↓. Within the material spin accumulation decays exponentially over time due to
spin relaxation mechanisms [47]. As an introduction to this type of modeling, we first show a simple case
with a pure spin current in a nonmagnetic material, as shown in Figure 5.5. A pure spin current means
that the net charge current I = I↑ + I↓ = 0. The spin relaxation is modeled as a pathway connecting
the two channels, with a spin-flip resistance Rsf . The voltage difference between the two channels, as
measured with fully spin-selective contacts, is therefore V↑↓ = I↑↓ ·Rsf .

Within the nonmagnetic material the steady-state spin accumulation is a balance between the spin
injection due to I↑↓ and the spin relaxation in the material. This is described as

0 =
dµ↑↓

dt
= −

µ↑↓

τsf
+ 2 ·

I↑↓

e
·

1

ν3D · Vrel
, (5.5)

where τsf is the spin-relaxation time in the material, ν3D is the three-dimensional (3D) density of states
(units of eV−1m−3), and Vrel is the relevant volume for the spin injection-relaxation balance in the ma-
terial. The factor 2 arises from the fact that when one electron is transferred from the spin-down channel
to the spin-up channel, the difference between the spin-up and spin-down population increases by two.
The steady state solution for the measured voltage is

V↑↓ =
µ↑↓

e
= I↑↓ ·

1

Vrel
·

1

ν3D
·
2τsf

e2
. (5.6)

For further analysis we also consider the role of the spin relaxation length of the material, λsf =√
D τsf , where D is the diffusion coefficient for electrons in the material. The Einstein relation gives
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Figure 5.5: A circuit model considering the spin injection in a nonmagnetic conducting material. Spin-
up and spin-down components are separated into red and blue channels. A pure spin current I↑↓ is
sourced between the two channels. Spin relaxation is modeled as a spin-flip resistance Rsf . The spin
accumulation is measured as the signal V↑↓ from a voltage meter that has fully spin-selective contacts.
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σ = e2ν3DD, where σ is the conductivity of the material [38]. Consequently, Equation (5.6) becomes

V↑↓ = 2 I↑↓
λ2
sf

Vrel σ
, (5.7)

and therefore:

Rsf =
V↑↓

I↑↓
= 2

λ2
sf

Vrel σ
. (5.8)

We can see that the spin-flip resistance is completely determined by the properties of the material and the
relevant volume concerned for each specific device.

Now we determine the relevant volume Vrel for a particular device geometry: a thin layer of a non-
magnetic conducting material. The spin accumulation spreads out in a volume that is limited by either
the spin relaxation length λsf , or the boundaries of the device, whichever is smaller. For the thin layer,
we assume that the spin current is homogeneously injected from its top surface over a limited area, which
is referred to as the relevant area Arel. Spin accumulation then occurs in the thin layer within the area
Arel, as well as directly outside the boundaries of Arel, up to a distance of ∼λsf . However, we consider
here the situation where Arel � λ2

sf , and we can therefore neglect the spin accumulation outside Arel.
In the perpendicular direction we consider the case that the thickness of the layer d < λsf , which means
that the spin-transport length is limited by the thickness of the layer rather than the spin relaxation length
of the material. As a consequence, we have Vrel = d Arel. Substituting this into Equation (5.8) gives

Rsf = 2
λ2
sf

d Arel σ
. (5.9)

When the thin layer (three-dimensional) is replaced by a truly two-dimensional material, such as
graphene, the thickness of the material can no longer be defined. The material then has a two-dimensional
density of states ν2D (units of eV−1m−2), and one should use the Einstein relation for the 2D conductivity
σ2D = e2ν2DD. When assuming again Arel � λ2

sf , the spin-flip resistance for a 2D system is given as

Rsf−2D = 2
λ2
sf

Arel σ2D
. (5.10)

B. Estimate for the value of Reff

In this section we estimate a value for the effective spinvalve resistance Reff . We first focus on a value
for the experimental work of Ref. 26, and then on a similar system that has the silver layer replaced by
graphene.

The tunneling resistance between silver and nickel was measured to be about 1 kΩ in Ref. 23,
which used a device identical to that in Ref. 26. The change of this resistance under magnetization
reversal, as characterized by its tunneling magnetoresistance (TMR = (R↓ − R↑)/R↑), depends on
the spin polarization of nickel PNi, and does not depend on the magnetization axis. [48–50] It follows
TMR = 2PNi/(1 − PNi), and takes a value of TMR ≈ 100% for the PNi ≈ 33% value used in Ref. 26.
The actual TMR value may be lower than 100% because of temperature and bias voltage, but should be on
the same order of magnitude. [50, 51] Moreover, taking the upper limit of TMR is consistent with us deriv-
ing the lower limit of Is and the upper limit of τ . Therefore, we may assume R↓ = 1 kΩ and R↑ = 0.5 kΩ.
While this is an estimate, the value must be of the correct order of magnitude. Furthermore, later analysis
will show that it is the spin-flip resistance of silver that governs the magnitude of the effective resistance
Reff .

To determine the spin-flip resistance of silver, we use the previously derived Equation (5.9). For the
device we discuss, the thickness of the silver layer d = 50 nm, the area of the junction Arel = 1 µm×1 µm.
For spin relaxation parameters we take reported values for a mesoscopic silver strip at room temperature
λsf−Ag ≈ 150 nm, and ρAg = 1/σAg ≈ 50 nΩ · m. [41] We point out that these parameters are not only
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For further analysis we also consider the role of the spin relaxation length of the material, λsf =√
D τsf , where D is the diffusion coefficient for electrons in the material. The Einstein relation gives
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We can see that the spin-flip resistance is completely determined by the properties of the material and the
relevant volume concerned for each specific device.

Now we determine the relevant volume Vrel for a particular device geometry: a thin layer of a non-
magnetic conducting material. The spin accumulation spreads out in a volume that is limited by either
the spin relaxation length λsf , or the boundaries of the device, whichever is smaller. For the thin layer,
we assume that the spin current is homogeneously injected from its top surface over a limited area, which
is referred to as the relevant area Arel. Spin accumulation then occurs in the thin layer within the area
Arel, as well as directly outside the boundaries of Arel, up to a distance of ∼λsf . However, we consider
here the situation where Arel � λ2

sf , and we can therefore neglect the spin accumulation outside Arel.
In the perpendicular direction we consider the case that the thickness of the layer d < λsf , which means
that the spin-transport length is limited by the thickness of the layer rather than the spin relaxation length
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In this section we estimate a value for the effective spinvalve resistance Reff . We first focus on a value
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the spin polarization of nickel PNi, and does not depend on the magnetization axis. [48–50] It follows
TMR = 2PNi/(1 − PNi), and takes a value of TMR ≈ 100% for the PNi ≈ 33% value used in Ref. 26.
The actual TMR value may be lower than 100% because of temperature and bias voltage, but should be on
the same order of magnitude. [50, 51] Moreover, taking the upper limit of TMR is consistent with us deriv-
ing the lower limit of Is and the upper limit of τ . Therefore, we may assume R↓ = 1 kΩ and R↑ = 0.5 kΩ.
While this is an estimate, the value must be of the correct order of magnitude. Furthermore, later analysis
will show that it is the spin-flip resistance of silver that governs the magnitude of the effective resistance
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To determine the spin-flip resistance of silver, we use the previously derived Equation (5.9). For the
device we discuss, the thickness of the silver layer d = 50 nm, the area of the junction Arel = 1 µm×1 µm.
For spin relaxation parameters we take reported values for a mesoscopic silver strip at room temperature
λsf−Ag ≈ 150 nm, and ρAg = 1/σAg ≈ 50 nΩ · m. [41] We point out that these parameters are not only
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affected by the material choice, but also by factors such as device geometry, fabrication techniques, and
temperature [52]. The values we chose were reported for a device that had geometries very close to that
used in Ref.26, was fabricated with the same technique, and was measured at the same temperature. With
these, we get the spin-flip resistance in our model Rsf−Ag = 45 mΩ.

Substituting Rsf−Ag , together with the assumed R↑, R↓ values in Equation 5.3 gives an effective
resistance

Reff ≈ 15 mΩ. (5.11)

Note that Reff is fully determined by the properties of the Ag-AlOx-Ni multilayer device, and estimating
its value did not use any estimates or assumptions concerning PSI.

For the scenario where the silver layer is replaced by a graphene layer, we apply a similar analysis,
while using Equation (5.10) instead of Equation (5.9). For graphene, typical material parameters are a
square resistance of the order of 1 kΩ [53, 54], and a spin relaxation length of λsf ≈ 10 µm [54, 55]. This
gives Rsf−2D ≈ 1 MΩ, and Reff ≈ 0.5 kΩ for a device that is for other aspects identical to the device of
Ref.26.

C. Analysis of compatible PSI excitation and relaxation times
In the main text we derived the Is values without using any information about PSI. Here we analyze
what the values mean in terms of photo-excitation and relaxation times of individual PSI units. We first
assume that Is is fully induced by the spin-selective electron transfer during photo-excitation and relax-
ation cycles in PSI. Then we examine the validity of this assumption by deriving (from Is) the values
of photo-excitation and relaxation times of individual PSI units. In the following discussion a few more
assumptions are made. We carefully assume scenarios which consistently lead to the upper boundary of
the photo-excitation-relaxation times. In the main text we showed that even this upper boundary is still
too low to be realistic.

We write Is as a sum of the contributions from individual PSI units,

Is =
N∑

n=1

is,n (5.12)

where is is the spin current injected from each PSI unit into silver, the index n runs over all individual PSI
units, and N is the number of PSI units within the relevant area (area of the junction) Arel. We assume
that all PSI units are oriented in the same direction, so that each of them contribute equally to the total
current Is. Therefore, we have is,n ≡ is, hence

Is = is ·N = is · ρ ·Arel (5.13)

where ρ is the number density, or coverage, of PSI. To estimate the coverage we need to take into consid-
eration the size of PSI units. Isolated cyanobacterial PSI systems usually appear in trimers with typical
diameters of around 30 nm. This means three PSI units reside in an area of about 700 nm2, or for conve-
nience, approximately a coverage of ρ = 0.004 nm−2. Note that this is the highest possible coverage for a
monolayer of PSI, since it corresponds to the entire silver surface being covered with a uniform, densely-
packed PSI layer. We assume this maximum coverage for the entire junction area. We further assume that
the total injected spin current Is is equally contributed by all the PSI units. This gives us an estimate of
the lower boundary of is, the spin-current injection per PSI unit. For the up orientation of PSI, we have
is � 750 pA. For the down orientation this lower limit is 150 pA.

Next, we analyze the magnitude of the charge current needed to produce this spin current via CISS
effect. In our model, each PSI unit injects a spin current is into silver, which is a fraction of the total spin
current iPSI inside PSI. We have is = η · iPSI , with −1 � η � 1 being the fraction parameter. The
value of η depends on the spin-relaxation process inside PSI. In order to obtain a lower estimate of iPSI ,
we assume η = 1 (all the photo-induced spin current in PSI can be injected to the silver layer), hence
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iPSI = is. This spin current, iPSI , is again a fraction of the charge current i induced by the continuous
electron transfer during photo-excitation and relaxation cycles in a PSI unit. The conversion from a charge
current into a spin current is due to the CISS effect and its efficiency is characterized by its polarization
PPSI = iPSI/i. The CISS polarization of other chiral systems is reported to be about 50% [3, 8, 26], so
here we adopt the same value. Taking the above into account, we can derive the lower boundary of the
charge current driven by photo-excitation and relaxation processes in a PSI unit: i � 1.5 nA for the up
orientation, and 300 pA for the down orientation.

Finally, we translate this current into a value for the excitation-relaxation time τ . Here, τ can be
understood as the turn-over time, or the time interval between two consecutive photo-excitation processes
from the same PSI unit. By assuming the intensity of the illumination is strong enough to drive all the PSI
units in continuous excitation-relaxation cycles (saturated), we can write i = −e/τ . A lower boundary
of i corresponds to an upper boundary of τ . For the up orientation of PSI, i � 1.5 nA corresponds to
τ � 100 ps. For the down orientation the limit is τ � 500 ps.

D. Possible origins of magnetic-field dependent signals in hybrid
CISS devices
There are other effects that can give rise to the magnetic-field-dependent signals in devices as used in
Ref. 26. One of these effects is the photo-response of silver. Any modification of the silver surface can
change its work function. A work function as low as 1.8 eV was reported for modified silver surfaces [56,
57]. It is therefore possible that the adsorbed PSI units and binder molecules modified the silver surface in
a way that photoemission was allowed at the photon energies used in the experiment. This photoemission
can be spin polarized due to the spin-orbit effect in silver and possible spin-dependent scattering at the
surface [58].

Alternatively, the signals could also arise from a pure charge effect. Even without photoemission, the
change of silver work function can lead to a voltage signal in the Ni-AlOx-Ag capacitor. This voltage sig-
nal may depend on illumination and magnetic field, because the adsorbed PSI (which modifies the silver
surface and thus the voltage signal) is highly photo-sensitive and contains large iron clusters that may
respond to magnetic field. In such a scenario (where spin transport does not play a role), the orientation
of PSI can only affect the magnitude but not the sign of the magnetic-field dependence. In fact, this is in-
deed the case if one considers the full signals reported in Figure 2A(ii) and Figure 2B(ii) of Ref.26 instead
of only their absolute values. In both figures, the measured signals can be separated into two parts: a
nonzero background and a magnetic-field-dependent component that shows a step upon magnetic-field
reversal. Figure 2B(ii) differs from Figure 2A(ii) by having an opposite sign for the background and a
smaller step size upon magnetic-field reversal. The directions of the steps (i.e. the signs of the magnetic-
field dependence) in both figures are the same: Both signals shift tens of nanovolts to less positive (more
negative) values when reversing the magnetic field from down to up direction. The opposite signs for the
background can be explained by the opposite orientations of PSI (just as how the PSI orientation affected
the silver surface potential measured with a Kelvin probe), whereas the change of step size may be given
by the change of position of the iron clusters with respect to the silver surface.
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affected by the material choice, but also by factors such as device geometry, fabrication techniques, and
temperature [52]. The values we chose were reported for a device that had geometries very close to that
used in Ref.26, was fabricated with the same technique, and was measured at the same temperature. With
these, we get the spin-flip resistance in our model Rsf−Ag = 45 mΩ.

Substituting Rsf−Ag , together with the assumed R↑, R↓ values in Equation 5.3 gives an effective
resistance

Reff ≈ 15 mΩ. (5.11)

Note that Reff is fully determined by the properties of the Ag-AlOx-Ni multilayer device, and estimating
its value did not use any estimates or assumptions concerning PSI.

For the scenario where the silver layer is replaced by a graphene layer, we apply a similar analysis,
while using Equation (5.10) instead of Equation (5.9). For graphene, typical material parameters are a
square resistance of the order of 1 kΩ [53, 54], and a spin relaxation length of λsf ≈ 10 µm [54, 55]. This
gives Rsf−2D ≈ 1 MΩ, and Reff ≈ 0.5 kΩ for a device that is for other aspects identical to the device of
Ref.26.

C. Analysis of compatible PSI excitation and relaxation times
In the main text we derived the Is values without using any information about PSI. Here we analyze
what the values mean in terms of photo-excitation and relaxation times of individual PSI units. We first
assume that Is is fully induced by the spin-selective electron transfer during photo-excitation and relax-
ation cycles in PSI. Then we examine the validity of this assumption by deriving (from Is) the values
of photo-excitation and relaxation times of individual PSI units. In the following discussion a few more
assumptions are made. We carefully assume scenarios which consistently lead to the upper boundary of
the photo-excitation-relaxation times. In the main text we showed that even this upper boundary is still
too low to be realistic.

We write Is as a sum of the contributions from individual PSI units,

Is =
N∑

n=1

is,n (5.12)

where is is the spin current injected from each PSI unit into silver, the index n runs over all individual PSI
units, and N is the number of PSI units within the relevant area (area of the junction) Arel. We assume
that all PSI units are oriented in the same direction, so that each of them contribute equally to the total
current Is. Therefore, we have is,n ≡ is, hence

Is = is ·N = is · ρ ·Arel (5.13)

where ρ is the number density, or coverage, of PSI. To estimate the coverage we need to take into consid-
eration the size of PSI units. Isolated cyanobacterial PSI systems usually appear in trimers with typical
diameters of around 30 nm. This means three PSI units reside in an area of about 700 nm2, or for conve-
nience, approximately a coverage of ρ = 0.004 nm−2. Note that this is the highest possible coverage for a
monolayer of PSI, since it corresponds to the entire silver surface being covered with a uniform, densely-
packed PSI layer. We assume this maximum coverage for the entire junction area. We further assume that
the total injected spin current Is is equally contributed by all the PSI units. This gives us an estimate of
the lower boundary of is, the spin-current injection per PSI unit. For the up orientation of PSI, we have
is � 750 pA. For the down orientation this lower limit is 150 pA.

Next, we analyze the magnitude of the charge current needed to produce this spin current via CISS
effect. In our model, each PSI unit injects a spin current is into silver, which is a fraction of the total spin
current iPSI inside PSI. We have is = η · iPSI , with −1 � η � 1 being the fraction parameter. The
value of η depends on the spin-relaxation process inside PSI. In order to obtain a lower estimate of iPSI ,
we assume η = 1 (all the photo-induced spin current in PSI can be injected to the silver layer), hence
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iPSI = is. This spin current, iPSI , is again a fraction of the charge current i induced by the continuous
electron transfer during photo-excitation and relaxation cycles in a PSI unit. The conversion from a charge
current into a spin current is due to the CISS effect and its efficiency is characterized by its polarization
PPSI = iPSI/i. The CISS polarization of other chiral systems is reported to be about 50% [3, 8, 26], so
here we adopt the same value. Taking the above into account, we can derive the lower boundary of the
charge current driven by photo-excitation and relaxation processes in a PSI unit: i � 1.5 nA for the up
orientation, and 300 pA for the down orientation.

Finally, we translate this current into a value for the excitation-relaxation time τ . Here, τ can be
understood as the turn-over time, or the time interval between two consecutive photo-excitation processes
from the same PSI unit. By assuming the intensity of the illumination is strong enough to drive all the PSI
units in continuous excitation-relaxation cycles (saturated), we can write i = −e/τ . A lower boundary
of i corresponds to an upper boundary of τ . For the up orientation of PSI, i � 1.5 nA corresponds to
τ � 100 ps. For the down orientation the limit is τ � 500 ps.

D. Possible origins of magnetic-field dependent signals in hybrid
CISS devices
There are other effects that can give rise to the magnetic-field-dependent signals in devices as used in
Ref. 26. One of these effects is the photo-response of silver. Any modification of the silver surface can
change its work function. A work function as low as 1.8 eV was reported for modified silver surfaces [56,
57]. It is therefore possible that the adsorbed PSI units and binder molecules modified the silver surface in
a way that photoemission was allowed at the photon energies used in the experiment. This photoemission
can be spin polarized due to the spin-orbit effect in silver and possible spin-dependent scattering at the
surface [58].

Alternatively, the signals could also arise from a pure charge effect. Even without photoemission, the
change of silver work function can lead to a voltage signal in the Ni-AlOx-Ag capacitor. This voltage sig-
nal may depend on illumination and magnetic field, because the adsorbed PSI (which modifies the silver
surface and thus the voltage signal) is highly photo-sensitive and contains large iron clusters that may
respond to magnetic field. In such a scenario (where spin transport does not play a role), the orientation
of PSI can only affect the magnitude but not the sign of the magnetic-field dependence. In fact, this is in-
deed the case if one considers the full signals reported in Figure 2A(ii) and Figure 2B(ii) of Ref.26 instead
of only their absolute values. In both figures, the measured signals can be separated into two parts: a
nonzero background and a magnetic-field-dependent component that shows a step upon magnetic-field
reversal. Figure 2B(ii) differs from Figure 2A(ii) by having an opposite sign for the background and a
smaller step size upon magnetic-field reversal. The directions of the steps (i.e. the signs of the magnetic-
field dependence) in both figures are the same: Both signals shift tens of nanovolts to less positive (more
negative) values when reversing the magnetic field from down to up direction. The opposite signs for the
background can be explained by the opposite orientations of PSI (just as how the PSI orientation affected
the silver surface potential measured with a Kelvin probe), whereas the change of step size may be given
by the change of position of the iron clusters with respect to the silver surface.
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Chapter 6

Highly anisotropic and nonreciprocal charge
transport in chiral van der Waals Tellurium

S
olid-state electronics is keen to seek materials with low symmetry and low dimensionality
for potential novel charge and spin transport properties. This consideration highlights
a recently developed quasi-two-dimensional chiral van der Waals semiconducting ma-
terial, Tellurene. Here we report for this material a giant mesoscopic conductance ani-
sotropy that reaches 104 at cryogenic temperatures. Interestingly, the principal axis of
the observed conductance anisotropy does not align with the principal symmetry axis of
the crystal. Moreover, the chiral (inversion-asymmetric) crystal exhibits nonreciprocal
(rectified) charge transport both for longitudinal and transverse conduction. Our results
suggests broad application areas for the material, for example in piezoelectricity and non-
linear electronics.
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Layered van der Waals (vdW) materials have been incorporated in nano-electronic
and spintronic devices for their functional properties such as magnetism, spin-orbit
interaction, and optical response [1–3]. These properties often arise from their low-
ered dimensionality and low crystal symmetry, and can be imprinted into adjacent
layers using heterostructure stacking [4]. Further lowering the dimensionality or
crystal symmetry can enable additional novel properties and open up new applica-
tion areas. For example, strong in-plane anisotropy can give rise to piezoelectric-
ity for energy conversion [5], inversion asymmetry enables nonreciprocal (rectified)
electronic responses, and chirality brings forward chemical and bio-organic applica-
tions [6] as well as chirality-induced spin selectivity (CISS) for spintronic technolo-
gies [7, 8].

These considerations inspire to explore the electronic properties of trigonal Tel-
lurium (Te), which has a unique crystal structure consisting of a vdW stack of one-
dimensional (1D) helical chains of Te atoms [9]. The semiconducting material was
recently made into quasi-two-dimensional (2D) Tellurene flakes [10], and have been
explored for its charge and spin transport properties [11–14].

The 1D nature of Tellurene suggests strong in-plane anisotropy for charge con-
duction, and the helical chain breaks inversion symmetry and introduces chirality.
However, current experiments only found negligible in-plane anisotropy [10], and
the nonlinear transport behaviors and chirality-related properties remain largely un-
explored. Here, by reducing the size of the Tellurene electronic device, we uncover
the expected giant in-plane charge transport anisotropy. Additionally, we investi-
gate the nonreciprocal transport behaviors of the chiral crystal in terms of second-
harmonic nonlinear response.

6.1 Highly anisotropic charge transport in Tellurene

6.1.1 Angle-resolved mesoscopic conductance

We use Tellurene single crystals that were grown in solution following procedures
reported in Ref. 10. The helically winding chains (along c-axis) form a hexagonal
stack (in the a-b plane) via vdW interaction, as illustrated in Fig. 6.1a-b. Within each
chain, Te atoms form valence bonds with two nearest neighbors, and three Te atoms
complete a helical turn [9]. Chains with the same handedness form enantiomeric
single crystal flakes, but the as-grown solution is a racemic mixture of flakes with
opposite chiralities.

Typically, the Tellurene single crystal flakes show elongated shape with paral-
lel long edges, which are expected to be aligned with the trigonal principal axis (c-
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Figure 6.1: a-b. Crystal structure of trigonal chiral Tellurium (bulk space group P3121 and
P3221 for opposite enantiomeric forms). It consists of helical chains curving around the c-axis
(panel a). The chains are attached to each other via vdW binding and form a hexagonal stack in
the a-b-plane (panel b). c. Selected-area electron diffraction (SAED) pattern and d. TEM image
of a cross-sectioned Tellurene flake. The cut is taken perpendicular to the long parallel edges
of a trapezoidal flake. The scale bar in panel c is 5 nm−1, and the white circle with diameter
of 125 nm in panel d indicate the region where SAED is taken. e. A typical trapezoidal flake,
on which the device for conductance anisotropy measurements is made. Circularly patterned
Ti-Au contacts are labeled by their angular direction with respect to the c-axis. The scale bar
is 20 µm. f. Conductance anisotropy measurement geometry. Four electrodes are used in
each measurement, two for applying low-frequency ac voltage bias Vxx and measuring the
longitudinal current Ixx, and the other two for measuring the transverse voltage response
Vxy . g-h. Angular dependence of longitudinal conductance Gxx and transverse resistance
Rxy at a temperature of 300 K. The red line in panel h is a sinusoidal fit.

axis) [10, 11]. This was confirmed by the selected-area electron diffraction (SEAD)
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pattern obtained through a flake cross section (Fig. 6.1c), and the simultaneously ob-
tained TEM image (Fig. 6.1d) reveals that the flake lies in the a-c plane, which we
define as the in-plane orientation. All anisotropic behaviors herein are investigated
within this plane.

We first studied the anisotropic electrical conduction in trapezoidal shaped Tel-
lurene flakes, where eight circularly arranged Ti-Au electrical contacts were dis-
tributed according to crystallographic directions (see Fig. 6.1e and Methods). We
applied voltage bias using the pair of opposing contacts (±Vxx) along a specific di-
rection with respect to the crystal c-axis, and measured the subsequent longitudinal
current (Ixx) and transverse voltage (Vxy) responses. The measurement geometry is
illustrated (for the 0◦ direction) in Fig. 6.1f. For other angular directions, all four
electrodes were rotated counterclockwise simultaneously. To ensure linear response,
we used low-amplitude (5 mV), low-frequency (below 33 Hz) ac voltage bias, and
registered the linear responses using lock-in amplifiers (see Methods). The obtained
angular dependence of longitudinal conductance Gxx and transverse resistance Rxy

at 300 K are plotted in Fig. 6.1g-h.

We highlight here three unusual observations. First, the direction measuring low-
est conductance (along 45◦ and 225◦) is not orthogonal to that measuring the highest
(along 0◦ and 180◦). This angular dependence significantly departures from a sinu-
soidal curve with 180◦ period, which is the requirement of the (2D) tensor-form of
Ohm’s law (see Appendix A). Second, the longitudinal conductance measured along
45◦ (225◦) direction significantly differs from that measured along 135◦ (315◦) direc-
tion, despite that the two directions appear equivalent considering the trapezoidal
flake geometry. Third, although the transverse resistance does follow a sinusoidal
dependence, it is nonzero even when the ac bias is applied along (or perpendicular
to) the crystal c-axis.

These qualitative behaviors were also largely reproduced in another sample (see
Appendix B), except that the lowest Gxx was measured along the 135◦(315◦) rather
than the 45◦(225◦) direction.

To investigate the possible origin of these anomalies, we first examined the con-
tact resistance and were able to exclude its dominant contribution to the observations
(Appendix B). We could also exclude the role of the trapezoidal flake geometry be-
cause of the different behaviors along the 45◦(225◦) and the 135◦(315◦) directions.
Moreover, we could rule out errors due to device fabrication by fitting the Gxx an-
gular dependences with sinusoidal curves with 180◦ period. This yielded best fits
with angular shifts larger than ±10 degrees away from the c-axis (opposite signs for
the two samples, and the absolute value varies depends on temperature). This is
significantly larger than any (rotational) misalignment that could be identified from
optical microscopic images (see e.g. Fig. 6.1e).
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6.1.2 Inhomogeneity and chirality effects in 2D conduction

We attribute the observed behaviors to inhomogeneities within the micrometer-sized
device and the chirality of the material.

Generally, the anisotropic charge transport in a 2D crystal is described by the (2D)
tensor-form of Ohm’s law for linear response

j =

(
σxx σxy

σyx σyy

)
E, (6.1)

where j and E are current density and electric field vectors defined in the x-y plane.
In the absence of a magnetic field or magnetization, the conductivity tensor (σ)ij is
always symmetric and can be diagonalized along a particular direction. For an achi-
ral crystal, this direction is always parallel or perpendicular to the crystal principal
axis; while for a chiral crystal, this direction can be rotated from the crystal princi-
pal axis by an angle, whose sign depends on the chirality. This rotation manifests
as a finite transverse conduction when the driving bias is applied along the crystal
principal axis. The sign of this transverse signal depends on the (sign of) chirality.

For the angle-resolved measurement geometry we used, the conductivity tensor
description always predicts a 180◦-periodic sinusoidal angular dependence for lon-
gitudinal and transverse responses, because j and E can always be decomposed into
x- and y-components (see Appendix A).

Therefore, our repeatedly observed deviations from a sine curve suggest the pres-
ence of inhomogeneity within the Tellurene devices. This makes it improper to de-
scribe the charge transport in the device using the material-averaged property of
conductivity. Instead, we must take into account the inhomogeneities and the subse-
quent irregular current paths within the mesoscopic device, and describe the charge
transport using the directly measured conductances. It is important to realize that
such significant inhomogeneity contributions were observed in micrometer-scale de-
vices.

We attribute the inhomogeneities to mechanisms for conduction between the
1D helical Te chains (inter-chain conduction). Unlike the intra-chain (1D) transport
through covalently bound Te atoms, the inter-chain conduction must overcome the
vdW gap, and is expected to be orders of magnitude weaker [15]. However, the
conductance we observed at 300 K was at the same order of magnitude along all
angular directions. This suggests that the inter-chain conduction may be facilitated
by extrinsic mechanisms, which may not be distributed following the crystal lattice.
The inhomogeneous distribution of these conduction mechanisms causes irregular
current paths, and can give rise to mesoscopic conductances with an angular de-
pendence that deviates from a sinusoidal shape. This deviation was previously also
observed in other materials using similar device geometries [16–18]. Note that the
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180◦ periodicity is always guaranteed by the nature of linear response. In our de-
vices, the presence of irregular current paths is further evidenced by the occasionally
observed negative conductance values when using a four-terminal measurement ge-
ometry (Appendix C).

In addition to the inhomogeneity, the chirality of Tellurene eliminates the ap-
parent mirror symmetry within the trapezoidal flake geometry, and thereby distin-
guishes the 45◦ (225◦) direction from the 135◦ (315◦) one, and also allows transverse
conduction when bias is applied along the high symmetry axes. This is of the same
symmetry origin as the aforementioned rotated conductivity tensor for chiral crys-
tals, although here the conduction is not (perfectly) described by a tensor.

b.a.

Figure 6.2: A conductor network model for the non-sinusoidal conductance anisotropy mea-
sured in inhomogeneous materials. a. The conductor network is formed by 1D (horizontal)
chains and a few (partially tilted) channels for inter-chain conduction. The horizontal chains
and the inter-chain channels are assumed to have different conductivity values. The network
is contacted by eight circularly distributed electrodes. The color scheme describe the poten-
tial landscape when a bias is applied using the pair of horizontal electrodes (0◦ direction). b.
The calculated angle-resolved 2T conductance probed using opposing pair of electrodes along
different directions. The angles are defined in the same way as in Fig. 6.1e.

In order to illustrate this, we construct a conductor network model formed by
horizontally aligned parallel 1D conductors, as shown in Fig. 6.2a. They are inter-
connected by arbitrarily distributed but (partially) orderly tilted channels with a dif-
ferent conductivity value, which mimic the inhomogeneous (extrinsic) inter-chain
conduction mechanisms (see Methods). The tilting of the inter-chain channels intro-
duces chirality. With this model, we simulate the angular dependence of Gxx, and
can indeed qualitatively reproduce the anomalies discussed earlier (see Fig. 6.2b).

Note that in principle inhomogeneity alone can readily explain all the anomalies
we observed, but the qualitative repetition in two samples suggests a potential role
of their (opposite) chirality. The chirality distinguishes left from right, and this can
in fact be identified from the crystal structure (projected on the a-c plane) shown in
Fig. 6.1a. This symmetry aspect may therefore also be reflected in the distribution of
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inter-chain conduction mechanisms. We emphasize that further evidence of this is
still needed, for example, by verifying whether the two samples indeed had opposite
chiralities.

6.1.3 Anisotropic temperature dependence

Next, we repeated the angle-resolved conductance measurement at different temper-
atures, and the results are shown in Fig. 6.3a-b.
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Figure 6.3: Anisotropic temperature dependence of longitudinal conductance. a. Angle-
resolved longitudinal conductance measured at four different temperatures, plotted in log
scale. The topmost curve (300 K) is the same as shown in Fig. 6.1g. b. Anisotropic temperature
dependence of the longitudinal conductance, plotted for the four distinct angular directions
in log scale. c. Temperature dependence of conductance ratios of two pairs of orthogonal
directions, Gxx(90

◦)/Gxx(0
◦) and Gxx(45

◦)/Gxx(135
◦), plotted in log scale.

As shown in Fig. 6.3b, in all four distinct angular directions that we measured, the
2T conductance decreased with decreasing temperature, as expected from a semicon-
ductor. This temperature dependence was also anisotropic. The Gxx along the 90◦

(270◦) direction showed much stronger temperature dependence than along other
directions. It reduced by five orders of magnitude, and changed from having the
second highest value (slightly lower than along the c-axis) at room temperature to
having the lowest at temperatures below 20 K. In contrast, the Gxx along the c-axis
changed by less than one order of magnitude, and nearly remained constant below
50 K.

These temperature dependences are highlighted in Fig. 6.3c as two sets of con-
ductance ratios between orthogonal crystal directions. The ratio Gxx(90

◦)/Gxx(0
◦)

is nearly unity for temperatures above 50 K, in agreement with previous results [10,
19]. Remarkably, it drops four orders of magnitude to about 10−4 at very low tem-
perature (4.7 K). This strong anisotropy is comparable to other vdW materials such
as (kish) graphite [15]. The ratio Gxx(45

◦)/Gxx(135
◦) also changes with temperature,

but only roughly by one order of magnitude.
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180◦ periodicity is always guaranteed by the nature of linear response. In our de-
vices, the presence of irregular current paths is further evidenced by the occasionally
observed negative conductance values when using a four-terminal measurement ge-
ometry (Appendix C).

In addition to the inhomogeneity, the chirality of Tellurene eliminates the ap-
parent mirror symmetry within the trapezoidal flake geometry, and thereby distin-
guishes the 45◦ (225◦) direction from the 135◦ (315◦) one, and also allows transverse
conduction when bias is applied along the high symmetry axes. This is of the same
symmetry origin as the aforementioned rotated conductivity tensor for chiral crys-
tals, although here the conduction is not (perfectly) described by a tensor.

b.a.

Figure 6.2: A conductor network model for the non-sinusoidal conductance anisotropy mea-
sured in inhomogeneous materials. a. The conductor network is formed by 1D (horizontal)
chains and a few (partially tilted) channels for inter-chain conduction. The horizontal chains
and the inter-chain channels are assumed to have different conductivity values. The network
is contacted by eight circularly distributed electrodes. The color scheme describe the poten-
tial landscape when a bias is applied using the pair of horizontal electrodes (0◦ direction). b.
The calculated angle-resolved 2T conductance probed using opposing pair of electrodes along
different directions. The angles are defined in the same way as in Fig. 6.1e.

In order to illustrate this, we construct a conductor network model formed by
horizontally aligned parallel 1D conductors, as shown in Fig. 6.2a. They are inter-
connected by arbitrarily distributed but (partially) orderly tilted channels with a dif-
ferent conductivity value, which mimic the inhomogeneous (extrinsic) inter-chain
conduction mechanisms (see Methods). The tilting of the inter-chain channels intro-
duces chirality. With this model, we simulate the angular dependence of Gxx, and
can indeed qualitatively reproduce the anomalies discussed earlier (see Fig. 6.2b).

Note that in principle inhomogeneity alone can readily explain all the anomalies
we observed, but the qualitative repetition in two samples suggests a potential role
of their (opposite) chirality. The chirality distinguishes left from right, and this can
in fact be identified from the crystal structure (projected on the a-c plane) shown in
Fig. 6.1a. This symmetry aspect may therefore also be reflected in the distribution of
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inter-chain conduction mechanisms. We emphasize that further evidence of this is
still needed, for example, by verifying whether the two samples indeed had opposite
chiralities.

6.1.3 Anisotropic temperature dependence

Next, we repeated the angle-resolved conductance measurement at different temper-
atures, and the results are shown in Fig. 6.3a-b.
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Figure 6.3: Anisotropic temperature dependence of longitudinal conductance. a. Angle-
resolved longitudinal conductance measured at four different temperatures, plotted in log
scale. The topmost curve (300 K) is the same as shown in Fig. 6.1g. b. Anisotropic temperature
dependence of the longitudinal conductance, plotted for the four distinct angular directions
in log scale. c. Temperature dependence of conductance ratios of two pairs of orthogonal
directions, Gxx(90

◦)/Gxx(0
◦) and Gxx(45

◦)/Gxx(135
◦), plotted in log scale.

As shown in Fig. 6.3b, in all four distinct angular directions that we measured, the
2T conductance decreased with decreasing temperature, as expected from a semicon-
ductor. This temperature dependence was also anisotropic. The Gxx along the 90◦

(270◦) direction showed much stronger temperature dependence than along other
directions. It reduced by five orders of magnitude, and changed from having the
second highest value (slightly lower than along the c-axis) at room temperature to
having the lowest at temperatures below 20 K. In contrast, the Gxx along the c-axis
changed by less than one order of magnitude, and nearly remained constant below
50 K.

These temperature dependences are highlighted in Fig. 6.3c as two sets of con-
ductance ratios between orthogonal crystal directions. The ratio Gxx(90

◦)/Gxx(0
◦)

is nearly unity for temperatures above 50 K, in agreement with previous results [10,
19]. Remarkably, it drops four orders of magnitude to about 10−4 at very low tem-
perature (4.7 K). This strong anisotropy is comparable to other vdW materials such
as (kish) graphite [15]. The ratio Gxx(45

◦)/Gxx(135
◦) also changes with temperature,

but only roughly by one order of magnitude.
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This highly anisotropic temperature dependence can also be explained by the
presence of extrinsic mechanisms for inter-chain conduction, which has a different
temperature dependence from the intra-chain conduction.

Note that for trigonal Tellurium, which is a inversion-lacking Weyl semimetal [14,
20–22], there exists an intrinsic source of anisotropic temperature dependence of elec-
trical conductivity [23]. However, this mechanisms suggests that the conductance
ratio between orthogonal directions scales linearly with temperature [23], which is
not what we observed.

6.2 Nonreciprocal charge transport in Tellurene

6.2.1 Bias dependence of nonlinear charge transport

In order to further understand the conduction mechanisms, we measured the bias
dependence of the charge transport at temperature of 50 K. This is done by apply-
ing a dc bias on top of the ac driving voltage, and recording the first and second
order response in both longitudinal and transverse directions (see Methods and Ap-
pendix C). The results are shown in Fig. 6.4.

-100 -50 0 50 100

0.0

6.0x10-6

1.2x10-5

 

 

G
(1


)

xx
 (S

)

DC Bias (mV)

 270

 225

 180

 315 135

 90

 45

 0

-100 0 100
-6.70x10-6

0.00

6.70x10-6

-5.30x10-6

0.00

5.30x10-6

-1.30x10-5

0.00

1.30x10-5

-3.30x10-5

0.00

3.30x10-5

 

DC Bias (mV)

 0
 180

 

G
(2


)

xx
   

(S
 / 

V)

 45
 225

 

 90
 270

 

 

 135
 315

-100 0 100
-9.30x108

0.00

9.30x108

-1.30x1012

0.00

1.30x1012

-1.30x109

0.00

1.30x109

0.00

1.30x1010

2.60x1010

 

DC Bias (mV)

 0
 180

 R
(2


)

xy
 (

  
A)

 45
 225

 

 90
 270

 

 

 135
 315

a. b. c.

Figure 6.4: Angle-resolved bias dependence of first and second order responses in longitu-
dinal and transverse directions. a. First order longitudinal conductance G

(1ω)
xx = Ixx/Vxx.

We have subtracted the mixing of second order response into the first order due to the
dc+ac measurement technique [24]. b. Second-order longitudinal conductance coefficient
G

(2ω)
xx = I

(2ω)
xx /V 2

xx. c. Second order transverse resistance coefficient R
(2ω)
xy = V

(2ω)
xy /I2xx.

Each box in Panel b and c contains a pair of curves measured at opposite directions.

In Fig. 6.4a is the bias dependence of the first-harmonic longitudinal conduc-
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tances (effectively the differential conductance, here noted as G
(1ω)
xx ) along different

crystal directions. The bias dependence is again anisotropic. In directions along the
c-axis (0◦ and 180◦), the longitudinal conductances remain nearly unchanged within
the bias range, while along other directions, the conductance changes monotonically
with bias.

The presence of this bias non-even conductance, especially in the 45◦ (225◦) and
135◦ (315◦) directions, highlights the rectified (nonreciprocal) charge transport. Inter-
estingly, the slopes for the 45◦ and 135◦ curves have opposite signs, and we suggest
that their finite but incomplete compensation may be the reason for the finite but
relatively weak bias dependence along the 90◦ (270◦) direction.

These nonlinear behaviors are further detailed in the second-order responses of
the crystal. For these measurements, we first confirmed the parabolic shape of the
second-order I-V in all directions by sweeping the ac amplitude from 0 to 5 mV at
zero dc bias. Then, we fixed the ac amplitude at 5 mV and swept the dc bias between
±100 mV. Both the longitudinal (current) and transverse (voltage) second-order re-
sponses were measured, and the associated coefficients are plotted in Fig. 6.4b-c. The
measurement geometry requires the two (180◦-separated) curves within each box to
overlap when both the horizontal and vertical axes reverse sign. This disqualifies
the 135◦ and 315◦ transverse results for further analysis. We focus here only on the
other valid curves.

We separately discuss the second-order longitudinal conductance G(2ω)
xx and trans-

verse resistance R
(2ω)
xy for each distinct angular direction. When the ac bias is applied

along the c-axis (0◦ and 180◦), both the G
(2ω)
xx and R

(2ω)
xy scale linearly with dc bias,

but their slopes have opposite signs. Notably, G(2ω)
xx vanishes at zero dc bias, in agree-

ment with the flat G(1ω)
xx bias dependence, while R

(2ω)
xy remains finite.

The orthogonal direction (90◦ and 270◦) shows overall similar behaviors, but with
a few differences. On one hand, the G

(2ω)
xx is nonzero at zero dc bias, and it reaches

saturation at about 30 mV bias. The R
(2ω)
xy , on the other hand, is much smaller at zero

dc bias as compared to the c-axis direction.
For the 45◦ and 225◦ directions, G

(2ω)
xx also scales linearly with dc bias before

reaching saturation at around 30 mV, where the R
(2ω)
xy shows a sharp turn and re-

verses its bias dependence before vanishing. Note that the R
(2ω)
xy here is three orders

of magnitude larger than the 0◦ (180◦) and 90◦ (270◦) directions.

6.2.2 Discussion on nonlinear mechanisms

From a symmetry point of view, these nonreciprocal transport properties are indeed
allowed in Tellurene because of its lack of inversion symmetry [25]. We interpret the
observations as a combined result of intrinsic and extrinsic mechanisms.
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This highly anisotropic temperature dependence can also be explained by the
presence of extrinsic mechanisms for inter-chain conduction, which has a different
temperature dependence from the intra-chain conduction.

Note that for trigonal Tellurium, which is a inversion-lacking Weyl semimetal [14,
20–22], there exists an intrinsic source of anisotropic temperature dependence of elec-
trical conductivity [23]. However, this mechanisms suggests that the conductance
ratio between orthogonal directions scales linearly with temperature [23], which is
not what we observed.

6.2 Nonreciprocal charge transport in Tellurene

6.2.1 Bias dependence of nonlinear charge transport

In order to further understand the conduction mechanisms, we measured the bias
dependence of the charge transport at temperature of 50 K. This is done by apply-
ing a dc bias on top of the ac driving voltage, and recording the first and second
order response in both longitudinal and transverse directions (see Methods and Ap-
pendix C). The results are shown in Fig. 6.4.
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Figure 6.4: Angle-resolved bias dependence of first and second order responses in longitu-
dinal and transverse directions. a. First order longitudinal conductance G

(1ω)
xx = Ixx/Vxx.

We have subtracted the mixing of second order response into the first order due to the
dc+ac measurement technique [24]. b. Second-order longitudinal conductance coefficient
G

(2ω)
xx = I

(2ω)
xx /V 2

xx. c. Second order transverse resistance coefficient R
(2ω)
xy = V

(2ω)
xy /I2xx.

Each box in Panel b and c contains a pair of curves measured at opposite directions.

In Fig. 6.4a is the bias dependence of the first-harmonic longitudinal conduc-
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tances (effectively the differential conductance, here noted as G
(1ω)
xx ) along different

crystal directions. The bias dependence is again anisotropic. In directions along the
c-axis (0◦ and 180◦), the longitudinal conductances remain nearly unchanged within
the bias range, while along other directions, the conductance changes monotonically
with bias.

The presence of this bias non-even conductance, especially in the 45◦ (225◦) and
135◦ (315◦) directions, highlights the rectified (nonreciprocal) charge transport. Inter-
estingly, the slopes for the 45◦ and 135◦ curves have opposite signs, and we suggest
that their finite but incomplete compensation may be the reason for the finite but
relatively weak bias dependence along the 90◦ (270◦) direction.

These nonlinear behaviors are further detailed in the second-order responses of
the crystal. For these measurements, we first confirmed the parabolic shape of the
second-order I-V in all directions by sweeping the ac amplitude from 0 to 5 mV at
zero dc bias. Then, we fixed the ac amplitude at 5 mV and swept the dc bias between
±100 mV. Both the longitudinal (current) and transverse (voltage) second-order re-
sponses were measured, and the associated coefficients are plotted in Fig. 6.4b-c. The
measurement geometry requires the two (180◦-separated) curves within each box to
overlap when both the horizontal and vertical axes reverse sign. This disqualifies
the 135◦ and 315◦ transverse results for further analysis. We focus here only on the
other valid curves.

We separately discuss the second-order longitudinal conductance G(2ω)
xx and trans-

verse resistance R
(2ω)
xy for each distinct angular direction. When the ac bias is applied

along the c-axis (0◦ and 180◦), both the G
(2ω)
xx and R

(2ω)
xy scale linearly with dc bias,

but their slopes have opposite signs. Notably, G(2ω)
xx vanishes at zero dc bias, in agree-

ment with the flat G(1ω)
xx bias dependence, while R

(2ω)
xy remains finite.

The orthogonal direction (90◦ and 270◦) shows overall similar behaviors, but with
a few differences. On one hand, the G

(2ω)
xx is nonzero at zero dc bias, and it reaches

saturation at about 30 mV bias. The R
(2ω)
xy , on the other hand, is much smaller at zero

dc bias as compared to the c-axis direction.
For the 45◦ and 225◦ directions, G

(2ω)
xx also scales linearly with dc bias before

reaching saturation at around 30 mV, where the R
(2ω)
xy shows a sharp turn and re-

verses its bias dependence before vanishing. Note that the R
(2ω)
xy here is three orders

of magnitude larger than the 0◦ (180◦) and 90◦ (270◦) directions.

6.2.2 Discussion on nonlinear mechanisms

From a symmetry point of view, these nonreciprocal transport properties are indeed
allowed in Tellurene because of its lack of inversion symmetry [25]. We interpret the
observations as a combined result of intrinsic and extrinsic mechanisms.
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The intrinsic nonlinearity can arise from the bias-dependent nonequilibrium band
occupation in the material. What we measured here is a second-order current density
(electron velocity) driven by an oscillating electric field under time-reversal invariant
conditions. Here the intrinsic contribution has two aspects: firstly, the momentum-
integrated group velocity of the Bloch electrons, and secondly, the momentum-inte-
grated Berry curvature gradient over all occupied states [26, 27]. At zero dc bias, the
first integral is required to vanish due to its odd k-dependence and the equal occu-
pation of k and −k states (time-reversal pairs) [27]. Therefore, the intrinsic nonlinear
response at low bias is solely determined by the second integral, which is referred to
as the Berry curvature dipole [27]. It gives rise to nonlinear transverse conduction
in polar and inversion-lacking materials, which is termed the nonlinear anomalous
Hall effect [27–29]. In a (quasi) 2D system, the anisotropy of this effect transforms as
an in-plane vector, it should be strongest in one direction but vanishes in the orthog-
onal direction. This however does not (fully) describe our observations in Fig. 6.4c.
Moreover, the magnitude of this effect in trigonal Tellurium is expected to be too
small to observe [30].

When a dc bias is applied, the k and −k states at the Fermi surface are no longer
equally occupied, and therefore the group velocity integral becomes nonzero. This
allows a second-order response that is odd in the dc bias in both the longitudinal
and the transverse directions. This mechanism explains the linear bias dependence
of G

(2ω)
xx and R

(2ω)
xy around zero bias in all (valid) directions, however, it does not

explain their nonzero values at zero bias (equilibrium).
We attribute the finite equilibrium nonreciprocal transport, as well as other ob-

served nonlinear features, to extrinsic mechanisms. The transverse response can
arise from asymmetric disorder scatterings [31], which can add to the intrinsic Berry
curvature dipole contribution and give rise to a nontrivial in-plane anisotropy. This
disorder scatterings may also be reflected in the longitudinal response [32]. In addi-
tion, the longitudinal term may also be induced by, for instance, asymmetric poten-
tial profile for inter-chain conduction, or electron-electron interactions [33, 34].

6.3 Conclusion

In summary, we investigated the electrical transport properties of a quasi 2D van
der Waals chiral crystal, Tellurene, and observed its giant conductance anisotropy
of up to 104. The anisotropy exhibited strong temperature dependence, suggesting
a role of extrinsic conduction mechanisms in the crystal. There is also a nonrecip-
rocal bias dependence associated with the charge transport, and we studied this as
second-order longitudinal and transverse electrical responses. This can again largely
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be accounted for by extrinsic conduction mechanisms.
Our results demonstrated the complexity of electrical conduction in low-symmetry,

low-dimensional crystals, and highlighted the rich physics enabled in these mate-
rials. These phenomena can be potentially applied to piezoelectric and nonlinear
electronic applications, but this requires further theoretical understandings. The ap-
plications can even be extended to the spin degree of freedom given the strong spin-
orbit coupling of the material [11], and this directions should also be addressed in
future researches.

6.4 Methods
Device fabrication. We transfer the solution-grown Tullurene flakes on a Si-SiO2 (295 nm oxide) substrate
using Langmuir–Blodgett transfer technique. Then we selected trapezoidal flakes that were around 50 nm
thick for charge transport devices (Fig. 6.1e). On each flake, we deposited eight circularly arranged electri-
cal contacts (5-nm Ti–50-nm Au), which were 45◦ separated from each other, as shown in Fig. 6.1e and f.
The channel length between the two opposing contacts was 1 µm, and the width at the end of the contacts
was 0.2 µm. The contacts were labeled by their angular orientation with respect to the c-axis, following a
counterclockwise order. The measurement geometry is illustrated in Fig. 6.1f. At each angle, we applied
longitudinal ac voltage bias with amplitude of 5 mV (root mean square) using Vxx electrodes, and used
lock-in technique to measure simultaneously the linear response of longitudinal current Ixx (using the
same electrodes) and the transverse voltage Vxy . When the angular direction of the measurement was
changed, all four electrodes were rotated at the same time. The measurement direction was labeled using
the same angular label of the +Vxx electrode. The measurement geometry shown in Fig. 6.1f is for the 0◦

direction.
Electrical measurements. For the in-plane conductance anisotropy measurement, we characterized the

I-V response in each angular direction by sweeping a low frequency (ranging from 3 to 33 Hz) ac bias
Vxx from 0 to 5 mV, and at the same time measured the first-harmonic response of Ixx and Vxy using
a lock-in amplifier (Stanford Research Systems SR830). The slopes of the linear I-V are used to extract
the longitudinal conductance Gxx = dIxx/dVxx and the transverse resistance Rxy = dVxy/dIxx. The
angular dependence of both quantities are plotted in Fig. 6.1g-h for T = 300 K.

The same measurement geometry was used for the bias-dependent measurements, but in addition to
the low frequency ac bias, a dc bias was applied on top using a voltage divider circuit (see Appendix C).
The ac bias was kept at a constant amplitude of 5 mV, while the dc bias was swept between −100 and
100 mV. Both the first-harmonic and the second-harmonic responses of Ixx and Vxy were measured.
These results were used to obtain the plots in Fig. 6.4. Note that the dc+ac measurement technique causes
second-harmonic responses to mix into first-harmonic signals [24]. This mixing contribution has been
subtracted for the curves in Fig. 6.4a.

Simulation details. The conductor network modeling in Fig. 6.2 was done with COMSOL Multi-
physics 5.2a software. We simulated the circularly arranged electrode geometry, and between the top
and bottom opposing electrodes we inserted 30 parallel elongated rectangular conducting channels to
represent the 1D Te chains. Note that in the actual sample, 500 Te chains could fit in the distance between
opposing electrodes [9]. We also introduced a few rectangles to make electrical contact between the par-
allel channels. They represent the extrinsic inter-chain conduction mechanisms. Their partially aligned
tilting reflects the chirality of the material. The conductivity of the eight electrodes were set four orders of
magnitude higher than that of the horizontal channels, which was again one order of magnitude higher
than that of the inter-chain channels. The conductance was evaluated by applying a fixed current density
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The intrinsic nonlinearity can arise from the bias-dependent nonequilibrium band
occupation in the material. What we measured here is a second-order current density
(electron velocity) driven by an oscillating electric field under time-reversal invariant
conditions. Here the intrinsic contribution has two aspects: firstly, the momentum-
integrated group velocity of the Bloch electrons, and secondly, the momentum-inte-
grated Berry curvature gradient over all occupied states [26, 27]. At zero dc bias, the
first integral is required to vanish due to its odd k-dependence and the equal occu-
pation of k and −k states (time-reversal pairs) [27]. Therefore, the intrinsic nonlinear
response at low bias is solely determined by the second integral, which is referred to
as the Berry curvature dipole [27]. It gives rise to nonlinear transverse conduction
in polar and inversion-lacking materials, which is termed the nonlinear anomalous
Hall effect [27–29]. In a (quasi) 2D system, the anisotropy of this effect transforms as
an in-plane vector, it should be strongest in one direction but vanishes in the orthog-
onal direction. This however does not (fully) describe our observations in Fig. 6.4c.
Moreover, the magnitude of this effect in trigonal Tellurium is expected to be too
small to observe [30].

When a dc bias is applied, the k and −k states at the Fermi surface are no longer
equally occupied, and therefore the group velocity integral becomes nonzero. This
allows a second-order response that is odd in the dc bias in both the longitudinal
and the transverse directions. This mechanism explains the linear bias dependence
of G

(2ω)
xx and R

(2ω)
xy around zero bias in all (valid) directions, however, it does not

explain their nonzero values at zero bias (equilibrium).
We attribute the finite equilibrium nonreciprocal transport, as well as other ob-

served nonlinear features, to extrinsic mechanisms. The transverse response can
arise from asymmetric disorder scatterings [31], which can add to the intrinsic Berry
curvature dipole contribution and give rise to a nontrivial in-plane anisotropy. This
disorder scatterings may also be reflected in the longitudinal response [32]. In addi-
tion, the longitudinal term may also be induced by, for instance, asymmetric poten-
tial profile for inter-chain conduction, or electron-electron interactions [33, 34].

6.3 Conclusion

In summary, we investigated the electrical transport properties of a quasi 2D van
der Waals chiral crystal, Tellurene, and observed its giant conductance anisotropy
of up to 104. The anisotropy exhibited strong temperature dependence, suggesting
a role of extrinsic conduction mechanisms in the crystal. There is also a nonrecip-
rocal bias dependence associated with the charge transport, and we studied this as
second-order longitudinal and transverse electrical responses. This can again largely
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be accounted for by extrinsic conduction mechanisms.
Our results demonstrated the complexity of electrical conduction in low-symmetry,

low-dimensional crystals, and highlighted the rich physics enabled in these mate-
rials. These phenomena can be potentially applied to piezoelectric and nonlinear
electronic applications, but this requires further theoretical understandings. The ap-
plications can even be extended to the spin degree of freedom given the strong spin-
orbit coupling of the material [11], and this directions should also be addressed in
future researches.

6.4 Methods
Device fabrication. We transfer the solution-grown Tullurene flakes on a Si-SiO2 (295 nm oxide) substrate
using Langmuir–Blodgett transfer technique. Then we selected trapezoidal flakes that were around 50 nm
thick for charge transport devices (Fig. 6.1e). On each flake, we deposited eight circularly arranged electri-
cal contacts (5-nm Ti–50-nm Au), which were 45◦ separated from each other, as shown in Fig. 6.1e and f.
The channel length between the two opposing contacts was 1 µm, and the width at the end of the contacts
was 0.2 µm. The contacts were labeled by their angular orientation with respect to the c-axis, following a
counterclockwise order. The measurement geometry is illustrated in Fig. 6.1f. At each angle, we applied
longitudinal ac voltage bias with amplitude of 5 mV (root mean square) using Vxx electrodes, and used
lock-in technique to measure simultaneously the linear response of longitudinal current Ixx (using the
same electrodes) and the transverse voltage Vxy . When the angular direction of the measurement was
changed, all four electrodes were rotated at the same time. The measurement direction was labeled using
the same angular label of the +Vxx electrode. The measurement geometry shown in Fig. 6.1f is for the 0◦

direction.
Electrical measurements. For the in-plane conductance anisotropy measurement, we characterized the

I-V response in each angular direction by sweeping a low frequency (ranging from 3 to 33 Hz) ac bias
Vxx from 0 to 5 mV, and at the same time measured the first-harmonic response of Ixx and Vxy using
a lock-in amplifier (Stanford Research Systems SR830). The slopes of the linear I-V are used to extract
the longitudinal conductance Gxx = dIxx/dVxx and the transverse resistance Rxy = dVxy/dIxx. The
angular dependence of both quantities are plotted in Fig. 6.1g-h for T = 300 K.

The same measurement geometry was used for the bias-dependent measurements, but in addition to
the low frequency ac bias, a dc bias was applied on top using a voltage divider circuit (see Appendix C).
The ac bias was kept at a constant amplitude of 5 mV, while the dc bias was swept between −100 and
100 mV. Both the first-harmonic and the second-harmonic responses of Ixx and Vxy were measured.
These results were used to obtain the plots in Fig. 6.4. Note that the dc+ac measurement technique causes
second-harmonic responses to mix into first-harmonic signals [24]. This mixing contribution has been
subtracted for the curves in Fig. 6.4a.

Simulation details. The conductor network modeling in Fig. 6.2 was done with COMSOL Multi-
physics 5.2a software. We simulated the circularly arranged electrode geometry, and between the top
and bottom opposing electrodes we inserted 30 parallel elongated rectangular conducting channels to
represent the 1D Te chains. Note that in the actual sample, 500 Te chains could fit in the distance between
opposing electrodes [9]. We also introduced a few rectangles to make electrical contact between the par-
allel channels. They represent the extrinsic inter-chain conduction mechanisms. Their partially aligned
tilting reflects the chirality of the material. The conductivity of the eight electrodes were set four orders of
magnitude higher than that of the horizontal channels, which was again one order of magnitude higher
than that of the inter-chain channels. The conductance was evaluated by applying a fixed current density
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(against ground) using each opposing pair of electrodes, and the horizontal left-to-right current direction
is considered 0◦. Other angular directions were rotated in a counterclockwise fashion. The plotted meso-
scopic conductance in Fig. 6.2b was the normalized result.

6.5 Appendices

A. 2D tensor-form Ohm’s law
The 2D tensor-form Ohm’s law describes a charge current density in response to a driving electric field,
both are 2D (column) vectors. The (linear) response tensor connecting the two vectors is known as the
conductivity tensor. This is given by (Eqn. 1 in the main text)

(
jx
jy

)
=

(
σxx σxy

σyx σyy

)(
Ex

Ey

)
, (6.2)

where the x- and y-directions are defined by an external frame of reference, often the crystal structure of
the conducting material.

Figure 6.5: 2D tensor-form Ohm’s law and the corresponding angular dependence of longi-
tudinal conductance. a. Current density (j in response to a driving electric field (E), which
is along the θ direction, in a 2D (x-y plane) anisotropic conducting material. b. The longitu-
dinal (along the direction of the driving electric field) current density response as a function
of angular direction θ (semi-log scale, arbitrary unit). The three curves represent conducting
materials with σxy = σyx < 0, = 0, and > 0, respectively. All three are sinusoidal curves with
a period of 180◦.

We can rewrite the current density vector in terms of longitudinal (j‖) and transverse (j⊥) responses
with respect to the driving electric field, which we assume is applied at an angle θ with respect to the
x-direction, as illustrated in Fig. 6.5a.

However, the conductivity tensor is still defined in x- and y-terms because these directions are related
to the material property. Therefore, we need to project the conductivity tensor from its original x-y frame
of reference to a new frame of reference that is rotated (counterclockwise) by an angle θ. For this, we
introduce a rotation operator of angle θ

Rθ =

(
cos θ − sin θ

sin θ cos θ

)
, (6.3)

which satisfies R−1
θ = RT

θ (where RT
θ is the transpose of Rθ).
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The 2D Ohm’s law thus becomes
(
j‖
j⊥

)
= R−1

θ

(
σxx σxy

σyx σyy

)
Rθ

(
E

0

)
, (6.4)

where E is the length of E.
This expression gives a j‖ that is a sinusoidal function of θ with a 180◦ period, as plotted in Fig. 6.5b

(semi-log scale). The three curves in this figure correspond to situations where the unrotated conductivity
tensor has its off-diagonal term σxy = σyx < 0, = 0, and > 0, respectively (assuming σxx = 10 σyy ,
and are kept unchanged for all three curves). At angles where j‖ takes maximum or minimum values,
the rotated conductivity tensor becomes diagonal.

B. Results on another sample (Sample B) and effect of contact resis-
tance
We performed the anisotropic conductance measurement on a different Tellurene flake using the same
device and measurement geometry, and the results for three different temperatures are shown in Fig. 6.6a.
For these results a gate voltage of −50 V was applied (see Appendix D). Similar to Sample A (main
text), these results also show that the highest and lowest conductances are measured in non-orthogonal
directions, and that the conductances are different along the 45◦ (225◦) and 135◦ (315◦) directions. Unlike
Sample A though, here it is the 135◦ (315◦) direction that has the lowest conductance.

The 90◦ (270◦) direction again showed strongest temperature dependence with a change of about
four orders of magnitude. However, the other directions also showed relatively strong temperature de-
pendence, and as a result, the anisotropy ratio Gxx(90◦)/Gxx(0◦) at 4 K is only roughly 10−2.
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Figure 6.6: Anisotropic conductance measurements on Sample B. a. Angular dependence of the two-
terminal Gxx at various temperatures. b. The two-terminal result of 300 K (black), as compared to when
the electrical contact resistance is removed (red).

At 300 K, we checked the effect of contact resistance on this sample. We used a three-terminal tech-
nique, where we drive charge current between two electrodes, one of which is grounded, and then mea-
sure the voltage difference between a third reference electrode and the grounded electrode. This measure-
ment was intended to determine the contact resistance of the grounded electrode. However, we found
that depending on the reference electrode choice, the measured three-terminal resistance was different.
This indicated that the sample itself was inhomogeneous, and therefore the three-terminal results con-
tained not only the contact resistance, but also information on the conduction path. We thereby tried to
use all available reference electrodes, and took the lowest measured resistance as an estimate for the con-
tact resistance of the ground electrode. In this way, we estimated the upper limit of contact resistance for
all eight electrode, and subtracted from the Gxx two-terminal measurement results. The angular depen-
dence of Gxx before (black) and after (red) the subtraction are plotted in Fig. 6.6b.
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(against ground) using each opposing pair of electrodes, and the horizontal left-to-right current direction
is considered 0◦. Other angular directions were rotated in a counterclockwise fashion. The plotted meso-
scopic conductance in Fig. 6.2b was the normalized result.

6.5 Appendices

A. 2D tensor-form Ohm’s law
The 2D tensor-form Ohm’s law describes a charge current density in response to a driving electric field,
both are 2D (column) vectors. The (linear) response tensor connecting the two vectors is known as the
conductivity tensor. This is given by (Eqn. 1 in the main text)
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where the x- and y-directions are defined by an external frame of reference, often the crystal structure of
the conducting material.

Figure 6.5: 2D tensor-form Ohm’s law and the corresponding angular dependence of longi-
tudinal conductance. a. Current density (j in response to a driving electric field (E), which
is along the θ direction, in a 2D (x-y plane) anisotropic conducting material. b. The longitu-
dinal (along the direction of the driving electric field) current density response as a function
of angular direction θ (semi-log scale, arbitrary unit). The three curves represent conducting
materials with σxy = σyx < 0, = 0, and > 0, respectively. All three are sinusoidal curves with
a period of 180◦.

We can rewrite the current density vector in terms of longitudinal (j‖) and transverse (j⊥) responses
with respect to the driving electric field, which we assume is applied at an angle θ with respect to the
x-direction, as illustrated in Fig. 6.5a.

However, the conductivity tensor is still defined in x- and y-terms because these directions are related
to the material property. Therefore, we need to project the conductivity tensor from its original x-y frame
of reference to a new frame of reference that is rotated (counterclockwise) by an angle θ. For this, we
introduce a rotation operator of angle θ

Rθ =

(
cos θ − sin θ

sin θ cos θ

)
, (6.3)

which satisfies R−1
θ = RT

θ (where RT
θ is the transpose of Rθ).
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where E is the length of E.
This expression gives a j‖ that is a sinusoidal function of θ with a 180◦ period, as plotted in Fig. 6.5b

(semi-log scale). The three curves in this figure correspond to situations where the unrotated conductivity
tensor has its off-diagonal term σxy = σyx < 0, = 0, and > 0, respectively (assuming σxx = 10 σyy ,
and are kept unchanged for all three curves). At angles where j‖ takes maximum or minimum values,
the rotated conductivity tensor becomes diagonal.

B. Results on another sample (Sample B) and effect of contact resis-
tance
We performed the anisotropic conductance measurement on a different Tellurene flake using the same
device and measurement geometry, and the results for three different temperatures are shown in Fig. 6.6a.
For these results a gate voltage of −50 V was applied (see Appendix D). Similar to Sample A (main
text), these results also show that the highest and lowest conductances are measured in non-orthogonal
directions, and that the conductances are different along the 45◦ (225◦) and 135◦ (315◦) directions. Unlike
Sample A though, here it is the 135◦ (315◦) direction that has the lowest conductance.

The 90◦ (270◦) direction again showed strongest temperature dependence with a change of about
four orders of magnitude. However, the other directions also showed relatively strong temperature de-
pendence, and as a result, the anisotropy ratio Gxx(90◦)/Gxx(0◦) at 4 K is only roughly 10−2.
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Figure 6.6: Anisotropic conductance measurements on Sample B. a. Angular dependence of the two-
terminal Gxx at various temperatures. b. The two-terminal result of 300 K (black), as compared to when
the electrical contact resistance is removed (red).

At 300 K, we checked the effect of contact resistance on this sample. We used a three-terminal tech-
nique, where we drive charge current between two electrodes, one of which is grounded, and then mea-
sure the voltage difference between a third reference electrode and the grounded electrode. This measure-
ment was intended to determine the contact resistance of the grounded electrode. However, we found
that depending on the reference electrode choice, the measured three-terminal resistance was different.
This indicated that the sample itself was inhomogeneous, and therefore the three-terminal results con-
tained not only the contact resistance, but also information on the conduction path. We thereby tried to
use all available reference electrodes, and took the lowest measured resistance as an estimate for the con-
tact resistance of the ground electrode. In this way, we estimated the upper limit of contact resistance for
all eight electrode, and subtracted from the Gxx two-terminal measurement results. The angular depen-
dence of Gxx before (black) and after (red) the subtraction are plotted in Fig. 6.6b.
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C. Circuit geometry and additional results (Sample B)

We illustrate here the measurement geometry in Fig. 6.7a. Here we highlight the voltage divider circuit for
the dc+ac measurements in the green dashed box. During the experiments we used R = 100 Ω. Using this
circuit, we could apply a driving voltage of V ≈ Vac/1000 + Vdc/100 on the sample, and the subsequent
responses were all measured at the ac frequency. Notably, we simultaneously measured the two-terminal
current response Ixx, four-terminal longitudinal voltage responses (similar to a van der Pauw geometry)
Vxx−L and Vxx−R, and four-terminal transverse voltage response Vxy .
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Figure 6.7: Measurement circuit and additional results. a. The circuit geometry for the conductance
measurements. In the green dashed box is the voltage divider circuit for applying a dc+ac driving voltage.
The subsequent two-terminal charge current Ixx, transverse voltage response Vxy , longitudinal four-
terminal (van der Pauw geometry) voltage responses Vxx−L and Vxx−R are measured at the ac frequency
with a lock-in amplifier. All grounds are shared. When the angular direction is changed, all electrical
contacts are changed simultaneously. b-c. The angular dependence of longitudinal van der Pauw voltage
responses for Sample B at 4 K. These results are from the same set of measurements where the 4 K curve
in Fig. 6.6a was obtained.

The longitudinal conductances Gxx that we showed in the main text were all determined using the
two-terminal current response Ixx and the driving ac voltage Vac/1000, instead of the four-terminal van
der Pauw geometry that is commonly used for characterizing 2D conductors. This is because the van
der Pauw geometry requires the samples to be homogeneous within the area of measurement, so that a
(possibly anisotropic) conductivity tensor can be defined. However, as discussed in the main text, this
is not the case for our samples. To illustrate this, we take the same set of measurements that gave the
4 K two-terminal Gxx curve in Fig. 6.6a, and use the simultaneously measured quantities to obtain the
longitudinal four-terminal resistances Rxx−R = Vxx−R/Ixx and Rxx−L = Vxx−L/Ixx, as shown in
Fig. 6.7b-c. These results do not follow twofold sine curves, and can even provide negative resistance
values. This is a further evidence for inhomogeneity-induced irregular current paths within the sample
area.
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Figure 6.8: Gate and dc bias dependence measurement on Sample B. a. Gate dependence of Gxx at the
four distinct angular directions, without applying and dc bias.b. Gate dependence of the conductance
ratios Gxx(90◦)/Gxx(0◦) and Gxx(135◦)/Gxx(45◦), obtained from the data in Panel a. c-f. Gate depen-
dence under dc biases, along the four distinct angular direction. The dc bias is swept with equal steps
from positive (more orange) to negative (more blue) values, with a maximum current (absolute value) of
100 nA. (Thereby the maximum dc bias that was applied for the 0◦ direction was less than that along the
45◦ direction.)

D. Gate dependence (Sample B)

We performed gate dependence measurement on Sample B. The p-type semiconductor was turned on

at negative gate voltages, and the longitudinal conductance Gxx is plotted against the gate voltage in

Fig. 6.8. For Panels a-b, we only applied the ac driving bias to obtain the Gxx values, while for Panels c-f,

we used a voltage divider circuit to apply a dc bias on top of the ac driving bias (see above Appendix C),

in order to observe the bias-induced change to the gate dependences. Details of each panel is explained

in the figure legend.
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C. Circuit geometry and additional results (Sample B)

We illustrate here the measurement geometry in Fig. 6.7a. Here we highlight the voltage divider circuit for
the dc+ac measurements in the green dashed box. During the experiments we used R = 100 Ω. Using this
circuit, we could apply a driving voltage of V ≈ Vac/1000 + Vdc/100 on the sample, and the subsequent
responses were all measured at the ac frequency. Notably, we simultaneously measured the two-terminal
current response Ixx, four-terminal longitudinal voltage responses (similar to a van der Pauw geometry)
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Figure 6.7: Measurement circuit and additional results. a. The circuit geometry for the conductance
measurements. In the green dashed box is the voltage divider circuit for applying a dc+ac driving voltage.
The subsequent two-terminal charge current Ixx, transverse voltage response Vxy , longitudinal four-
terminal (van der Pauw geometry) voltage responses Vxx−L and Vxx−R are measured at the ac frequency
with a lock-in amplifier. All grounds are shared. When the angular direction is changed, all electrical
contacts are changed simultaneously. b-c. The angular dependence of longitudinal van der Pauw voltage
responses for Sample B at 4 K. These results are from the same set of measurements where the 4 K curve
in Fig. 6.6a was obtained.

The longitudinal conductances Gxx that we showed in the main text were all determined using the
two-terminal current response Ixx and the driving ac voltage Vac/1000, instead of the four-terminal van
der Pauw geometry that is commonly used for characterizing 2D conductors. This is because the van
der Pauw geometry requires the samples to be homogeneous within the area of measurement, so that a
(possibly anisotropic) conductivity tensor can be defined. However, as discussed in the main text, this
is not the case for our samples. To illustrate this, we take the same set of measurements that gave the
4 K two-terminal Gxx curve in Fig. 6.6a, and use the simultaneously measured quantities to obtain the
longitudinal four-terminal resistances Rxx−R = Vxx−R/Ixx and Rxx−L = Vxx−L/Ixx, as shown in
Fig. 6.7b-c. These results do not follow twofold sine curves, and can even provide negative resistance
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100 nA. (Thereby the maximum dc bias that was applied for the 0◦ direction was less than that along the
45◦ direction.)
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in order to observe the bias-induced change to the gate dependences. Details of each panel is explained

in the figure legend.
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Chapter 7

Enhancing and rectifying elec-
tron transport through a biomolecular junction
comprising Photosystem I and graphene

Biological systems provide a large pool of chiral materials. Understanding the electrical
properties of these materials opens up possibilities for bio-organic opto-electronic, photo-
voltaic, or spintronic applications. For this purpose, here we incorporate natural pho-
tosynthetic protein complex Photosystem I (PSI) onto graphene electrodes, and inves-
tigate the electron transport through the biomolecular junction. Comparing to earlier
researches, we significantly enhanced and rectified the electron transport by using phage-
displayed peptides as binders between PSI and graphene. Further, we studied how the
electron transport through the junction is affected by mechanical contact. Our results
provide insights for future device designs involving large bio-orgnaic systems.

This chapter is being prepared as:
X. Yang, T. Bosma, E. B. P. Brul, A. Kunzendorf, P. I. Gordiichuk, A. Herrmann, B. J.
van Wees & C. H. van der Wal, ”Enhancing and rectifying electron transport through a
biomolecular junction comprising Photosystem I and graphene”
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Chirality is abundant in natural bio-organic systems. Understanding its role in
various biological processes is not only fundamentally interesting, but also impor-
tant to the development of nature-inspired technologies. For example, the chirality
of a photosynthetic membrane protein complex, photosystem I (PSI), reportedly in-
duces spin-polarized electron transfer during its photo-excitation and relaxation cy-
cles [1]. This suggests a role of electronic spin in photosynthesis, and hints potential
opto-spintronic applications for PSI [2]. Additionally, PSI is one of the most efficient
light-harvesting systems to date. It has a quantum efficiency of nearly 100% [3, 4],
which contributes to the overall high efficiency of photosynthesis [5, 6], and shows
application prospects in fields like photovoltaics and opto-electronics [7–13]. Be-
cause of this, PSI has been incorporated onto electrodes to understand its electron
transport properties and to pave way for future applications. The desired elec-
trode should be optically transparent and support efficient electronic charge and
spin transport, and is thereby often chosen as graphene [14–17]. However, the elec-
tron transport across the PSI-graphene biomolecular junction has remained poor,
hindering further technological developments.

Here we enhance the electron transport in PSI-graphene junctions by modifying
PSI with phage-displayed peptides. This is demonstrated on commercially available
CVD (chemical vapor deposition) graphene, and the electron transport is character-
ized using conductive atomic force microscopy (cAFM) techniques.

7.1 Binding PSI onto graphene using peptides

7.1.1 Sample preparation

For our research, cyanobacterial PSI was extracted and purified following the proce-
dure described in Ref.13. These PSI units typically appear as trimers with diameters
of around 25 nm and heights of around 7 nm [13, 18]. They were kept in Buffer A
(see Experimental Section) at a concentration of 1 µM before use.

To form biomolecular junctions, the PSI units were immobilized onto graphene
surfaces in two steps. First, the PSI-Buffer A solution was mixed with a phosphate-
buffered saline (PBS) solution that contained the peptides (see later discussions for
details on peptides). This gave a mixed solution with PSI concentration of 0.1 µM
and a desired PSI:peptide ratio. Second, the graphene substrate (graphene on SiO2)
was immersed in the mixed solution for a period of time for immobilization. Both
steps were performed in the dark to minimize optical activity of PSI. Both the PSI-to-
peptide ratio and the incubation time were varied for optimization, which concluded
a 1 : 1 ratio and a 2-hour incubation time.

7

7.1. Binding PSI onto graphene using peptides 135

After immobilization, the graphene substrate was cleaned with water (Milli-Q)
and then blown dry with gentle nitrogen flow. This treatment was intended to re-
move any excess PSI or peptides while keeping the immobilized ones on the graphene
surface. The surface profiles and the subsequent electrical measurements were then
measured with an AFM (Bruker MultiMode 8).

7.1.2 Peptide improves PSI coverage

Figure 7.1 shows the surface profiles of control samples prepared using only the pep-
tides (a) and only the PSI (b), and the sample prepared using both (c). Figure 7.1a
reveals nonuniform structures with height variation of around 1 nm, which likely
corresponds to aggregated peptides. Figure 7.1b shows scattered grainy structures
that resemble the shape and height of PSI. In comparison, Figure 7.1c, which corre-
sponds to a sample prepared with 1 : 1 PSI-to-peptide ratio and an incubation time
of 2 hours, shows similar grainy structures as in Fig. 7.1b, but as a densely packed
monolayer. This indicates an improved PSI coverage due to the use of peptides. This
region exhibits a high PSI number density (coverage) of around 1000 µm−2. How-
ever, we found that for the same sample and other samples prepared using the same
peptide (GGD, see Table 7.1 for details), the PSI coverage was not uniform across the
entire sample surface. We explain this as a consequence of the washing and drying
procedures where nonuniform mechanical interactions took place due to water and
air flow.

For comparison, we tested four other different sequences of peptides: HGI, IGH,
IGG, GGI, as introduced in Table 7.1. They all contained two functional segments,
one that was previously developed using phage display to bind to PSI with a con-
trolled orientation [19], and another (two variants) which was reported to bind to
graphene [20, 21]. These segments were linked to each other with glycine G (either
one or three units). These peptide structures were designed in order to serve as
binders between PSI and graphene.

Using each of these peptides, we immobilized PSI following the same procedure
as described above. Then we performed AFM scans (size 3 µm by 3 µm) at five
random locations on each sample in order to analyze the average number density of
immobilized PSI units. All the four peptides yielded uniform PSI coverage, with HGI
being the highest at 22.67 µm−2 (see Table 7.1). This is however still much lower than
the maximum coverage of about 1000 µm−2 observed on the GGD samples, which
are although highly nonuniform.

It is worth noting that the GGD peptide contained a segment that has inverted
sequence as compared to the phage-displayed PSI-binding segment used in other
peptides [19]. It was likely that this sequence inversion affected the binding rate and
binding strength between the peptide and the PSI [22–24]. For the other peptides, it
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being the highest at 22.67 µm−2 (see Table 7.1). This is however still much lower than
the maximum coverage of about 1000 µm−2 observed on the GGD samples, which
are although highly nonuniform.

It is worth noting that the GGD peptide contained a segment that has inverted
sequence as compared to the phage-displayed PSI-binding segment used in other
peptides [19]. It was likely that this sequence inversion affected the binding rate and
binding strength between the peptide and the PSI [22–24]. For the other peptides, it
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Figure 7.1: AFM height profile of CVD graphene substrates after being immersed 2 hours in a.
a peptide solution, b. a PSI solution, and c. a PSI + peptide (1:1) mixed solution. A line profile
(white line) parallel to the AFM scan direction is shown below each surface map. The scales
of all line profiles are set equal. The structure of a PSI trimer is shown as insets in b, where the
top inset shows the top-view of a PSI trimer with a diameter of about 25 nm; and the bottom
inset shows the side-view of a PSI monomer with a height of about 8 nm). PSI structure is
taken from RCSB PDB (1JB0) [18]. The peptide used was GGD (see Table 7.1).[Change fig
label Height]

Table 7.1: Comparison of immobilized PSI number density for different binding peptides.

Peptide name Peptide sequence PSI coverage (µm−2)
HGI HSSYWYAFNNKT-GGG-IQAGKTEHLAPD 22.67
IGH IQAGKTEHLAPD-GGG-HSSYWYAFNNKT 6.22
IGG IQAGKTEHLAPD-G-GAMHLPWHMGTL 8.11
GGI GAMHLPWHMGTL-G-IQAGKTEHLAPD 8.89
GGD GAMHLPWHMGTL-G-DPALHETKGAQI up to 1000*

* Among the five randomly chosen regions, some showed densely packed PSI like in
Figure 7.1c, but some were completely empty.

was possible that the binding properties of either segment was affected when com-
bining them into one peptide using a few glycine units. The exact impact was how-
ever unclear.
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7.2 Enhanced and rectified PSI-graphene electron trans-
port

7.2.1 Point-and-shoot technique for I-V characterization

The densely covered region obtained using the GGD peptide allowed us to perform
electrical measurements on the PSI-graphene biomolecular junction, and this was
done using conductive AFM (cAFM) techniques. We used Pt/Ir coated AFM probes
and the Bruker MultiMode 8 was operated in PeakForce Tunneling AFM (PF-TUNA)
mode. The geometry and the electrical wiring of this measurement is shown in Fig-
ure 7.2a. We first used a Point and Shoot method. The sample height profile was
scanned with a controlled tip-sample contact force of no more than 1 nN. Then, ac-
cording to this height profile, we positioned the AFM probe over individual PSI units
and ramped down until a contact force of 10 nN. At this position, a bias sweep be-
tween ±1 V was applied and the current through the junction was measured. One
of the I-V curves obtained using this method is shown in Figure 7.2b.

The curve in Figure 7.2b exhibits rectified I-V behavior, and the rectification is
quantified with

� = −I−0.5

I0.5
(7.1)

where I−0.5 and I0.5 are the currents measured at a sample bias of −0.5 V and 0.5 V,
respectively. These bias voltages were phenomenologically chosen to be at the region
where all (valid) I-V curves are nonlinear and do not reach the instrumental limit
(within roughly ±550 nA under our settings). For the GGD sample, majority of the
I-V showed rectifications of � > 1.

This rectified electron transport was previously attributed to the orientation of
PSI, because the internal electric dipole of PSI (which is determined by its structure)
would induce asymmetric electron transfer [7, 25]. This would imply that the GGD
peptide helped control the orientations of the bound PSI.

We also observed an exceptionally high charge current through the PSI-graphene
junction. It often reached about 100 nA (at ±0.5 V sample bias), significantly higher
than previously reported PSI junctions using other binding molecules or other sub-
strates [14–17, 19, 25].

We emphasize here two aspects about this high conductance. First, it was mea-
sured across a biomolecular junction with a thickness of around 8 nm. This strongly
suggests that the electron transport happens via a conduction pathway, rather than
by completely tunneling through the entire junction. Second and more importantly,
the high conductance (as compared to other works using binding molecules other
than peptides) indicated that the peptides helped enhance the electrical conduction
through the junction. This could be due to the selective binding of the peptide to
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Figure 7.1: AFM height profile of CVD graphene substrates after being immersed 2 hours in a.
a peptide solution, b. a PSI solution, and c. a PSI + peptide (1:1) mixed solution. A line profile
(white line) parallel to the AFM scan direction is shown below each surface map. The scales
of all line profiles are set equal. The structure of a PSI trimer is shown as insets in b, where the
top inset shows the top-view of a PSI trimer with a diameter of about 25 nm; and the bottom
inset shows the side-view of a PSI monomer with a height of about 8 nm). PSI structure is
taken from RCSB PDB (1JB0) [18]. The peptide used was GGD (see Table 7.1).[Change fig
label Height]

Table 7.1: Comparison of immobilized PSI number density for different binding peptides.

Peptide name Peptide sequence PSI coverage (µm−2)
HGI HSSYWYAFNNKT-GGG-IQAGKTEHLAPD 22.67
IGH IQAGKTEHLAPD-GGG-HSSYWYAFNNKT 6.22
IGG IQAGKTEHLAPD-G-GAMHLPWHMGTL 8.11
GGI GAMHLPWHMGTL-G-IQAGKTEHLAPD 8.89
GGD GAMHLPWHMGTL-G-DPALHETKGAQI up to 1000*

* Among the five randomly chosen regions, some showed densely packed PSI like in
Figure 7.1c, but some were completely empty.
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ever unclear.
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7.2 Enhanced and rectified PSI-graphene electron trans-
port

7.2.1 Point-and-shoot technique for I-V characterization

The densely covered region obtained using the GGD peptide allowed us to perform
electrical measurements on the PSI-graphene biomolecular junction, and this was
done using conductive AFM (cAFM) techniques. We used Pt/Ir coated AFM probes
and the Bruker MultiMode 8 was operated in PeakForce Tunneling AFM (PF-TUNA)
mode. The geometry and the electrical wiring of this measurement is shown in Fig-
ure 7.2a. We first used a Point and Shoot method. The sample height profile was
scanned with a controlled tip-sample contact force of no more than 1 nN. Then, ac-
cording to this height profile, we positioned the AFM probe over individual PSI units
and ramped down until a contact force of 10 nN. At this position, a bias sweep be-
tween ±1 V was applied and the current through the junction was measured. One
of the I-V curves obtained using this method is shown in Figure 7.2b.

The curve in Figure 7.2b exhibits rectified I-V behavior, and the rectification is
quantified with

� = −I−0.5

I0.5
(7.1)

where I−0.5 and I0.5 are the currents measured at a sample bias of −0.5 V and 0.5 V,
respectively. These bias voltages were phenomenologically chosen to be at the region
where all (valid) I-V curves are nonlinear and do not reach the instrumental limit
(within roughly ±550 nA under our settings). For the GGD sample, majority of the
I-V showed rectifications of � > 1.

This rectified electron transport was previously attributed to the orientation of
PSI, because the internal electric dipole of PSI (which is determined by its structure)
would induce asymmetric electron transfer [7, 25]. This would imply that the GGD
peptide helped control the orientations of the bound PSI.

We also observed an exceptionally high charge current through the PSI-graphene
junction. It often reached about 100 nA (at ±0.5 V sample bias), significantly higher
than previously reported PSI junctions using other binding molecules or other sub-
strates [14–17, 19, 25].

We emphasize here two aspects about this high conductance. First, it was mea-
sured across a biomolecular junction with a thickness of around 8 nm. This strongly
suggests that the electron transport happens via a conduction pathway, rather than
by completely tunneling through the entire junction. Second and more importantly,
the high conductance (as compared to other works using binding molecules other
than peptides) indicated that the peptides helped enhance the electrical conduction
through the junction. This could be due to the selective binding of the peptide to



7

138 Chapter 7.

SiO2 

Graphene 

Peptide 
PSI 

Ag 
Current Amplifier 

a. b. 

c. d. 

Figure 7.2: Geometry of the cAFM measurements and typical I-V curves obtained from the
measurements. a. The wiring of the PF-TUNA mode used for cAFM measurements, illustrat-
ing the configuration of an AFM tip directly placed on top of a PSI unit, which has an internal
electric dipole moment indicated by the gray arrow, and b. the I-V curve obtained for this
configuration. c. The short-circuit configuration where the tip is in contact with the graphene
substrate (inset), and its corresponding I-V curve. d. The open-circuit configuration where
the AFM tip is not in contact with any conductive material (inset), and its corresponding I-V
curve.

one end of the electron transfer chain within PSI, as was initially designed [19]. Con-
sequently, it may provide an electron transfer path between PSI and graphene, and
thereby enhance the conduction through the entire junction.

Note that two other types of I-V curves were also often measured. One is a short-
circuit curve, as shown in Figure 7.2c. This linear I-V behavior was obtained when
the AFM tip was placed in a region without PSI coverage, and can be explained
by the direct contact between the tip and the graphene substrate. The other is an
open-circuit flat line, which was caused by poor tip-sample contact, as shown in Fig-
ure 7.2d. The poor contact could be due to wearing off of the tip coating, ramping
onto nonconductive parts of PSI or contaminants on the sample, noneffective bind-
ing between PSI and graphene, or denaturation of PSI.
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7.2.2 Random positioning method for statistical confirmation

In order to statistically confirm the role of peptides in the PSI-graphene junction,
we took a Random Positioning approach, where we performed ramping and subse-
quent I-V sweeps at a large number of random positions on a GGD sample within
a region that was densely covered by PSI. (For control experiment, we also chose a
densely packed region on a sample where PSI was deposited onto graphene with-
out using peptides.) With this approach, we were able to exclude the influence of
subjective selection of measurement positions and systematic errors associated with
the positioning of the AFM probe. After obtaining a large amount of I-V curves, we
removed short-circuit and open-circuit ones in order to account for only the effectively
bound PSI units (see Experimental Section), and left 648 (out of 5436, yield of 11.92%)
valid I-V curves for the GGD sample, and only 142 (out of 2126, yield of 6.67%) for
the control sample. For all valid curves, we took the logarithm value of the |I−0.5|
(without unit) and �, and plotted their distributions as 2D histograms, as shown in
Figure 7.3.
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Figure 7.3: 2D histograms for log |I−0.5/[A]|, which denotes the logarithm (base 10) of the
current value (in Ampere), and log�, for the samples of PSI on graphene prepared a. without
and b. with peptides. Red dashed lines show log� = 0, which indicates symmetric IV.

The results strongly suggest an enhanced and rectified electron transport across
the PSI-graphene junction due to the use of peptides: First of all, the use of peptides
nearly doubled the yield of valid I-V curves, indicating the ability of peptides in
improving the electrically active binding between PSI and graphene. Secondly, the
use of peptides introduced a clearly rectified I-V behavior by shifting log� values
from centered around 0 to around 0.3, confirming the role of peptides in altering the
electron transport properties of the junctions. Finally, comparing the most probable
current magnitude in the two histograms, the use of peptides increased the |I−0.5| by
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Figure 7.2: Geometry of the cAFM measurements and typical I-V curves obtained from the
measurements. a. The wiring of the PF-TUNA mode used for cAFM measurements, illustrat-
ing the configuration of an AFM tip directly placed on top of a PSI unit, which has an internal
electric dipole moment indicated by the gray arrow, and b. the I-V curve obtained for this
configuration. c. The short-circuit configuration where the tip is in contact with the graphene
substrate (inset), and its corresponding I-V curve. d. The open-circuit configuration where
the AFM tip is not in contact with any conductive material (inset), and its corresponding I-V
curve.

one end of the electron transfer chain within PSI, as was initially designed [19]. Con-
sequently, it may provide an electron transfer path between PSI and graphene, and
thereby enhance the conduction through the entire junction.

Note that two other types of I-V curves were also often measured. One is a short-
circuit curve, as shown in Figure 7.2c. This linear I-V behavior was obtained when
the AFM tip was placed in a region without PSI coverage, and can be explained
by the direct contact between the tip and the graphene substrate. The other is an
open-circuit flat line, which was caused by poor tip-sample contact, as shown in Fig-
ure 7.2d. The poor contact could be due to wearing off of the tip coating, ramping
onto nonconductive parts of PSI or contaminants on the sample, noneffective bind-
ing between PSI and graphene, or denaturation of PSI.
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7.2.2 Random positioning method for statistical confirmation

In order to statistically confirm the role of peptides in the PSI-graphene junction,
we took a Random Positioning approach, where we performed ramping and subse-
quent I-V sweeps at a large number of random positions on a GGD sample within
a region that was densely covered by PSI. (For control experiment, we also chose a
densely packed region on a sample where PSI was deposited onto graphene with-
out using peptides.) With this approach, we were able to exclude the influence of
subjective selection of measurement positions and systematic errors associated with
the positioning of the AFM probe. After obtaining a large amount of I-V curves, we
removed short-circuit and open-circuit ones in order to account for only the effectively
bound PSI units (see Experimental Section), and left 648 (out of 5436, yield of 11.92%)
valid I-V curves for the GGD sample, and only 142 (out of 2126, yield of 6.67%) for
the control sample. For all valid curves, we took the logarithm value of the |I−0.5|
(without unit) and �, and plotted their distributions as 2D histograms, as shown in
Figure 7.3.
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Figure 7.3: 2D histograms for log |I−0.5/[A]|, which denotes the logarithm (base 10) of the
current value (in Ampere), and log�, for the samples of PSI on graphene prepared a. without
and b. with peptides. Red dashed lines show log� = 0, which indicates symmetric IV.

The results strongly suggest an enhanced and rectified electron transport across
the PSI-graphene junction due to the use of peptides: First of all, the use of peptides
nearly doubled the yield of valid I-V curves, indicating the ability of peptides in
improving the electrically active binding between PSI and graphene. Secondly, the
use of peptides introduced a clearly rectified I-V behavior by shifting log� values
from centered around 0 to around 0.3, confirming the role of peptides in altering the
electron transport properties of the junctions. Finally, comparing the most probable
current magnitude in the two histograms, the use of peptides increased the |I−0.5| by
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roughly one order of magnitude, suggesting a significant enhancement of electrical
conduction through the junctions.

We point out that the current limit of the system was around ±550 nA, thus cur-
rents with higher magnitudes (log |I−0.5/[A]| > −6.3) were removed during data
filtering and were not accounted for in the statistics. Taking this into account, the
actual enhancement of the current magnitude could be larger than shown here. Fur-
thermore, it was not necessarily the case that the rectification was caused by the pep-
tide orienting PSI, as was previously discussed [7, 26]. This could alternatively be
explained as electrode and electrical interface effects, such as asymmetric electrode
materials [27], asymmetric coupling at the molecule-electrode interfaces [28, 29], and
asymmetric tunnel barriers at the interfaces [30].

It is worth noting that both the log |I−0.5| and log� showed large scatters. The
current magnitude, especially, spanned over the entire range the instrument could
measure (four orders of magnitude). This adds complexity to understanding the
electrical coupling between the PSI and the graphene substrate. We attribute this
large span to two mechanisms. First, as a result of random positioning, the AFM tip
was not guaranteed to land exactly atop the PSI electron transfer chain. The relative
position affects the effective contact area and the exact electron transport path, and
consequently, the measured current magnitude. Secondly, the contact force between
the AFM tip and PSI might fluctuate during the data acquisition processes. Although
the force was set to be kept constantly at 10 nN, the actual value could be different
due to environmental disturbances and instabilities of the AFM stage. This second
aspect is further investigated in the next section.

7.3 Mechanical tuning of PSI-graphene electron trans-
port

We studied the impact of contact-force on I-V curves on a single PSI unit (bound on
graphene using the GGD peptide). First, we performed a zoom-in height profile scan
to have only one PSI unit in the image (Figure 7.4a). Then, we ramp the AFM probe at
the center of the PSI unit (indicated by marker in Figure 7.4a) to repeat Point and Shoot
at a set of gradually increasing contact forces. At each contact force, we obtained an
I-V curve, as plotted in Figure 7.4b. In the end, we scanned again the height profile
to make sure the PSI unit was still in the image (Figure 7.4c), confirming that the
AFM stage had not drifted and thus all the I-V curves were measured on the same
PSI unit. These results showed that the PSI I-V strongly depended on the contact
force, and higher contact forces gave steeper I-V curves.

We calculated the resistance of PSI within the linear regime (between ±0.05 V
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Figure 7.4: Force dependence of I-V curves across a PSI-graphene junction. a. Height profile
scan of a single PSI unit, before I-V sweeps. The marker indicates where the tip is ramped for
all I-V sweeps. b. Selected I-V sweeps at the marker location under different contact forces,
in the experiment the forces were ramped from low to high. c. Height profile scan of the same
PSI unit, after all I-V sweeps. d. Resistance at the zero-bias (linear) regime (obtained from
the I-V curves between ±0.05 V sample bias) as a function of applied contact force, plotted
in log scale. The black line is an exponential fit for forces between 10 and 65 nN. Inset: Force
dependence of log�, the black line is a linear fit for forces below 65 nN, and dashed line marks
log� = 0, which corresponds to nonrectified IV.

sample bias) and plotted it as a function of contact force, see Figure 7.4d. The force
dependence shows two regimes. For forces lower than 65 nN, there is a clear trend of
decreasing resistance with increasing contact force, and the dependence is roughly
exponential (black line, note the semi-log scale). However, for higher forces, the re-
sistance jumps down to about 10−3 GΩ, and the force dependence becomes unclear.

We also calculated the rectifications of these I-V curves at ±0.5 V sample bias,
and plotted log� against the contact force in the inset of Figure 7.4d. We observe
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roughly one order of magnitude, suggesting a significant enhancement of electrical
conduction through the junctions.

We point out that the current limit of the system was around ±550 nA, thus cur-
rents with higher magnitudes (log |I−0.5/[A]| > −6.3) were removed during data
filtering and were not accounted for in the statistics. Taking this into account, the
actual enhancement of the current magnitude could be larger than shown here. Fur-
thermore, it was not necessarily the case that the rectification was caused by the pep-
tide orienting PSI, as was previously discussed [7, 26]. This could alternatively be
explained as electrode and electrical interface effects, such as asymmetric electrode
materials [27], asymmetric coupling at the molecule-electrode interfaces [28, 29], and
asymmetric tunnel barriers at the interfaces [30].

It is worth noting that both the log |I−0.5| and log� showed large scatters. The
current magnitude, especially, spanned over the entire range the instrument could
measure (four orders of magnitude). This adds complexity to understanding the
electrical coupling between the PSI and the graphene substrate. We attribute this
large span to two mechanisms. First, as a result of random positioning, the AFM tip
was not guaranteed to land exactly atop the PSI electron transfer chain. The relative
position affects the effective contact area and the exact electron transport path, and
consequently, the measured current magnitude. Secondly, the contact force between
the AFM tip and PSI might fluctuate during the data acquisition processes. Although
the force was set to be kept constantly at 10 nN, the actual value could be different
due to environmental disturbances and instabilities of the AFM stage. This second
aspect is further investigated in the next section.

7.3 Mechanical tuning of PSI-graphene electron trans-
port

We studied the impact of contact-force on I-V curves on a single PSI unit (bound on
graphene using the GGD peptide). First, we performed a zoom-in height profile scan
to have only one PSI unit in the image (Figure 7.4a). Then, we ramp the AFM probe at
the center of the PSI unit (indicated by marker in Figure 7.4a) to repeat Point and Shoot
at a set of gradually increasing contact forces. At each contact force, we obtained an
I-V curve, as plotted in Figure 7.4b. In the end, we scanned again the height profile
to make sure the PSI unit was still in the image (Figure 7.4c), confirming that the
AFM stage had not drifted and thus all the I-V curves were measured on the same
PSI unit. These results showed that the PSI I-V strongly depended on the contact
force, and higher contact forces gave steeper I-V curves.

We calculated the resistance of PSI within the linear regime (between ±0.05 V
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Figure 7.4: Force dependence of I-V curves across a PSI-graphene junction. a. Height profile
scan of a single PSI unit, before I-V sweeps. The marker indicates where the tip is ramped for
all I-V sweeps. b. Selected I-V sweeps at the marker location under different contact forces,
in the experiment the forces were ramped from low to high. c. Height profile scan of the same
PSI unit, after all I-V sweeps. d. Resistance at the zero-bias (linear) regime (obtained from
the I-V curves between ±0.05 V sample bias) as a function of applied contact force, plotted
in log scale. The black line is an exponential fit for forces between 10 and 65 nN. Inset: Force
dependence of log�, the black line is a linear fit for forces below 65 nN, and dashed line marks
log� = 0, which corresponds to nonrectified IV.

sample bias) and plotted it as a function of contact force, see Figure 7.4d. The force
dependence shows two regimes. For forces lower than 65 nN, there is a clear trend of
decreasing resistance with increasing contact force, and the dependence is roughly
exponential (black line, note the semi-log scale). However, for higher forces, the re-
sistance jumps down to about 10−3 GΩ, and the force dependence becomes unclear.

We also calculated the rectifications of these I-V curves at ±0.5 V sample bias,
and plotted log� against the contact force in the inset of Figure 7.4d. We observe
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here the same two force regimes. For forces lower than 65 nN, � increases exponen-
tially with increasing contact force (black line, note the plotted log� value), while
for higher forces log� jumps to around zero.

We explain the trends at lower forces as results of PSI deformation, and the sepa-
ration of regimes as a structural breakdown of PSI. For lower forces, increasing con-
tact force causes larger deformation, which could shorten the distance between the
two electrodes (tip and graphene), and subsequently reduce the barrier width for
any associated tunneling. Also, larger deformation could enlarge the contact area
between PSI and the tip, providing more channels for conduction. These combined
give rise to a lower electrical resistance. At the same time, in the nonlinear regime
where the rectification was evaluated, the shortened channel length can also lead to
an increased electric field across the junction (at a given bias voltage). This may am-
plify any asymmetric transport behavior either due to the electrical interfaces or due
to the internal electric dipole associated with PSI orientation, and therefore increase
the rectification �. The breakdown of these trends at about 65 nN can be attributed
to an inelastic structural damage of PSI. This structural change is also evidenced by
the height difference of the same PSI unit before and after taking the series of I-V
curves. In Figure 7.4a (before measurements), the height variation within the scan
area is about 12.4 nm, while in Figure 7.4c (after measurements) it is about 10.6 nm.

The above force dependence demonstrates that the electrical properties of PSI
or a PSI-graphene junction are highly sensitive to mechanical interactions. On one
hand, this provides an extra degree-of-freedom to tune the electrical properties of
such a junction for potential applications such as force sensing. On the other hand,
it also demonstrates complication for designing devices based on such biomolecular
materials.

Furthermore, these force dependences show that results from the common exper-
imental technique, cAFM, can be strongly affected by the environment. For exam-
ple, the fluctuations of temperature and humidity may cause the AFM stage to drift,
hence may change the contact force. It is therefore more complicated than commonly
expected to conduct systematic electrical measurements with cAFM. One should al-
ways take into account the tip-sample contact force, and rely mainly on statistical
results rather than individual I-V curves. For instance, during our Random Position-
ing experiments (including the control experiment), the AFM system was identically
prepared before data acquisition and was kept in the same environment, and each
measurement session took the same amount of time. Therefore, for all samples, the
systematic instability of the contact force should be comparable, and this is sup-
ported by the similar levels of scatters in the two panels in Figure 7.3. As a result, it
was proper to compare the centers of distribution in these two figures.
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7.4 Conclusion

In summary, with the use of peptides that were partially developed using phage dis-
play, we successfully obtained a monolayer of Photosystem I trimers on graphene
surfaces, and at the same time observed significant enhancement of electrical trans-
port across the biomolecular junction. Our statistical results showed at least a one-
order-of-magnitude increase of tunneling current and an introduction of rectified
current-voltage (I-V ) behavior due to the use of peptides. This is possibly due to the
direct bindings of the peptides to the PSI electron transfer chain and graphene, and
thereby altered the electrical properties of both the electrical interfaces and the entire
junction itself. Further, we found that the current magnitude and the rectification
were both affected by the tip-sample contact force, and we observed a breakdown of
PSI at a force of about 65 nN. We also discussed that cAFM measurements on large
biomolecular junctions must be based on proper statistical approaches that consider
the tip-sample contact force.

Overall, the peptides provide a new tool to incorporate photosynthetic protein
complexes onto solid-state devices while maintaining a good electrical coupling be-
tween the two parts. Similar techniques can be applied to other large protein com-
plexes too. Further research should improve the coverage of the protein complexes
by tuning the sequence of the peptides, and focus on the potential applications of
these hybrid devices, for example, in the field of opto-electronics, photovoltaics, or
spintronics.

7.5 Methods
Photosystem I cultivation, extraction and purification were done following the procedure reported in Ref. 13.
The purified PSI was kept in Buffer A (20 mM HEPES, 10 mM MgCl2, 10 mM CaCl2, 500 mM Mannitol)
and 0.3% DDM, and was stored in the dark at −80 ◦C at a PSI trimer concentration of 1 µM.

Peptides: Lyophilized peptides with > 90% purity were purchased from two companies. Peptide
GGD was from Proteogenix and the others were from Caslo. All peptides were kept in PBS at 5 µM prior
to immobilization.

PSI immobilization: The PSI and peptide solution were defrosted in the dark in ice before being mixed
and further diluted with PBS. The final solution had the PSI and the peptide both at 0.1 µM concentration.
This solution was then shaken at 500 rpm at 4 ◦C in the dark for 1 hour. Afterwards, a piece of CVD
graphene on SiO2 sample (purchased from Graphenea, cut into 2.5 mm by 5 mm shape) was immersed in
the solution and incubated for 2 hours. During incubation, the system was kept at room temperature in
the dark. After the incubation the samples were gently taken out of the solution and rinsed with Milli-Q
water before being blown-dry with gentle nitrogen flow. The sample was then immediately kept in the
dark until further measurements, which for our case varies between 1 and 24 hours.

AFM measurements: After immobilization the sample was glued to a stainless steel sample plate, and
the sample plate was brought into electrical contact to the graphene surface with silver paste. The sample
was then scanned in PeakForce TUNA mode with a Bruker Multimode 8, using Bruker’s PFTUNA probes
(f0 = 70 kHz, k = 0.4 N/m). During AFM scans all light sources in the environment (apart from the
red laser in the AFM scanning head) were turned off, and the scanning head opening was covered with a
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here the same two force regimes. For forces lower than 65 nN, � increases exponen-
tially with increasing contact force (black line, note the plotted log� value), while
for higher forces log� jumps to around zero.

We explain the trends at lower forces as results of PSI deformation, and the sepa-
ration of regimes as a structural breakdown of PSI. For lower forces, increasing con-
tact force causes larger deformation, which could shorten the distance between the
two electrodes (tip and graphene), and subsequently reduce the barrier width for
any associated tunneling. Also, larger deformation could enlarge the contact area
between PSI and the tip, providing more channels for conduction. These combined
give rise to a lower electrical resistance. At the same time, in the nonlinear regime
where the rectification was evaluated, the shortened channel length can also lead to
an increased electric field across the junction (at a given bias voltage). This may am-
plify any asymmetric transport behavior either due to the electrical interfaces or due
to the internal electric dipole associated with PSI orientation, and therefore increase
the rectification �. The breakdown of these trends at about 65 nN can be attributed
to an inelastic structural damage of PSI. This structural change is also evidenced by
the height difference of the same PSI unit before and after taking the series of I-V
curves. In Figure 7.4a (before measurements), the height variation within the scan
area is about 12.4 nm, while in Figure 7.4c (after measurements) it is about 10.6 nm.

The above force dependence demonstrates that the electrical properties of PSI
or a PSI-graphene junction are highly sensitive to mechanical interactions. On one
hand, this provides an extra degree-of-freedom to tune the electrical properties of
such a junction for potential applications such as force sensing. On the other hand,
it also demonstrates complication for designing devices based on such biomolecular
materials.

Furthermore, these force dependences show that results from the common exper-
imental technique, cAFM, can be strongly affected by the environment. For exam-
ple, the fluctuations of temperature and humidity may cause the AFM stage to drift,
hence may change the contact force. It is therefore more complicated than commonly
expected to conduct systematic electrical measurements with cAFM. One should al-
ways take into account the tip-sample contact force, and rely mainly on statistical
results rather than individual I-V curves. For instance, during our Random Position-
ing experiments (including the control experiment), the AFM system was identically
prepared before data acquisition and was kept in the same environment, and each
measurement session took the same amount of time. Therefore, for all samples, the
systematic instability of the contact force should be comparable, and this is sup-
ported by the similar levels of scatters in the two panels in Figure 7.3. As a result, it
was proper to compare the centers of distribution in these two figures.
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7.4 Conclusion

In summary, with the use of peptides that were partially developed using phage dis-
play, we successfully obtained a monolayer of Photosystem I trimers on graphene
surfaces, and at the same time observed significant enhancement of electrical trans-
port across the biomolecular junction. Our statistical results showed at least a one-
order-of-magnitude increase of tunneling current and an introduction of rectified
current-voltage (I-V ) behavior due to the use of peptides. This is possibly due to the
direct bindings of the peptides to the PSI electron transfer chain and graphene, and
thereby altered the electrical properties of both the electrical interfaces and the entire
junction itself. Further, we found that the current magnitude and the rectification
were both affected by the tip-sample contact force, and we observed a breakdown of
PSI at a force of about 65 nN. We also discussed that cAFM measurements on large
biomolecular junctions must be based on proper statistical approaches that consider
the tip-sample contact force.

Overall, the peptides provide a new tool to incorporate photosynthetic protein
complexes onto solid-state devices while maintaining a good electrical coupling be-
tween the two parts. Similar techniques can be applied to other large protein com-
plexes too. Further research should improve the coverage of the protein complexes
by tuning the sequence of the peptides, and focus on the potential applications of
these hybrid devices, for example, in the field of opto-electronics, photovoltaics, or
spintronics.

7.5 Methods
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The purified PSI was kept in Buffer A (20 mM HEPES, 10 mM MgCl2, 10 mM CaCl2, 500 mM Mannitol)
and 0.3% DDM, and was stored in the dark at −80 ◦C at a PSI trimer concentration of 1 µM.

Peptides: Lyophilized peptides with > 90% purity were purchased from two companies. Peptide
GGD was from Proteogenix and the others were from Caslo. All peptides were kept in PBS at 5 µM prior
to immobilization.

PSI immobilization: The PSI and peptide solution were defrosted in the dark in ice before being mixed
and further diluted with PBS. The final solution had the PSI and the peptide both at 0.1 µM concentration.
This solution was then shaken at 500 rpm at 4 ◦C in the dark for 1 hour. Afterwards, a piece of CVD
graphene on SiO2 sample (purchased from Graphenea, cut into 2.5 mm by 5 mm shape) was immersed in
the solution and incubated for 2 hours. During incubation, the system was kept at room temperature in
the dark. After the incubation the samples were gently taken out of the solution and rinsed with Milli-Q
water before being blown-dry with gentle nitrogen flow. The sample was then immediately kept in the
dark until further measurements, which for our case varies between 1 and 24 hours.

AFM measurements: After immobilization the sample was glued to a stainless steel sample plate, and
the sample plate was brought into electrical contact to the graphene surface with silver paste. The sample
was then scanned in PeakForce TUNA mode with a Bruker Multimode 8, using Bruker’s PFTUNA probes
(f0 = 70 kHz, k = 0.4 N/m). During AFM scans all light sources in the environment (apart from the
red laser in the AFM scanning head) were turned off, and the scanning head opening was covered with a
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stainless steel cover piece. The images and I-V curves were analyzed with the NanoScope Analysis 1.8

software.
Data filtering for statistics: After obtaining a large number of I-V curves, we filter out short-circuit

and open-circuit ones. Here, short-circuit curves were defined as those in which I−0.5 or I0.5 reached the
current limit of the AFM (the highest positive or lowest negative current that the system could measure),
which was roughly ±550 nA for the settings we used. Open-circuit curves accounted for two cases: first,
those in which I−0.5 and I0.5 were equal (the value was often not zero due to system offset); and secondly,
those in which the maximum absolute value of the curve was smaller than the resolution of the current
meter (the minimum current that the system could detect, roughly 30 pA for our settings).
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[25] O. E. Castañeda Ocampo, P. Gordiichuk, S. Catarci, D. A. Gautier, A. Herrmann, and R. C. Chiechi, “Mechanism
of orientation-dependent asymmetric charge transport in tunneling junctions comprising photosystem I,” Journal of
the American Chemical Society 137(26), pp. 8419–8427, 2015.

[26] C. Krzeminski, C. Delerue, G. Allan, D. Vuillaume, and R. Metzger, “Theory of electrical rectification in a molecular
monolayer,” Physical Review B 64(8), p. 085405, 2001.

[27] J. Pan, Z. Zhang, K. Ding, X. Deng, and C. Guo, “Current rectification induced by asymmetrical electrode materials
in a molecular device,” Applied Physics Letters 98(9), p. 092102, 2011.

[28] S. Sherif, G. Rubio-Bollinger, E. Pinilla-Cienfuegos, E. Coronado, J. C. Cuevas, and N. Agraı̈t, “Current rectification
in a single molecule diode: the role of electrode coupling,” Nanotechnology 26(29), p. 291001, 2015.
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Chapter 8

Closing remark – Spinchiraltronics

This thesis began with two fundamental questions concerning the theoretical and experi-
mental development of chirality-induced spin selectivity (CISS). After approaching these
questions from a solid-state spintronics point of view, here we conclude the thesis by an-
swering them. With this, we illustrate a systematic approach to further study CISS, and
envision a future where additional controls and functionalities are enabled by bridging
chirality and spin in electronic devices.
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8.1 Conclusion

A brief recap

We first briefly review the main conclusions of each chapter.
In Chapter 2, we learned that the concepts of chirality and spin are related to

the fundamental symmetries of space and time. From this symmetry perspective,
we discussed how the observations of CISS differ from other physical phenomena
related to chirality or spin, such as electron helicity dichroism, the electrical magne-
tochiral effect, or the Edelstein effect.

In Chapter 3, we revealed that the commonly used two-terminal electronic de-
vices are fundamentally unable to detect CISS in the linear response regime. Here
we particularly emphasized the distinctions between the electrical detection of CISS
in electronic devices and the generation of CISS within chiral materials. We also
highlighted differences between experiments within the linear response regime and
those in the nonlinear regime.

In Chapter 4, we pointed out that energy-dependent electron transport combined
with energy relaxation can enable the two-terminal electrical detection of CISS. Us-
ing examples of tunneling and thermally activated molecular resonant transmission,
we underlined key ingredients that determine the sign of typical two-terminal elec-
trical signals.

In Chapter 5, we addressed another type of electronic device that contained an
optically responsive chiral component. We quantitatively analyzed how electrical
signals in this type of devices can be translated to spin-related information.

In Chapter 6, we built electronic devices using a chiral van der Waals solid-state
material, Tellurene. We highlighted electron transport properties that are related to
its strong anisotropy and low crystal symmetry.

In Chapter 7, we characterized the electron transport through a biomolecular
junction comprising a chiral photosynthetic protein complex, photosystem I. We
demonstrated techniques that can significantly modify the electronic properties of
this junction.

Answering the questions

Now we look at the two questions this thesis set out to answer (Section 1.4).

1. How does chirality interact with spin on a microscopic level?

This question concerns the mechanism of generating a spin imbalance by electron
transmission through a chiral system. Although obtaining such a microscopic pic-
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ture was not our goal, we are nevertheless able to provide insights based on the
knowledge obtained through this thesis.

(a) What are the fundamental restrictions?
Due to the Kramers degeneracy of transmission eigenfunctions (Chapter 2), it is

fundamentally forbidden for a chiral system to exhibit spin-selective electron trans-
mission, unless there exists a nonunitary mechanism within the chiral system (Chap-
ter 3 and 4).

(b) Can we confirm the spin-orbit origin?
In most of our theoretical analyses, we have indeed assumed CISS to be a spin-

orbit effect that is present in the linear response regime (Chapter 3 and 4). However,
the experimental situation for this is still unclear (note that this does not affect the
conclusions of Chapter 3 and 4). It is therefore important that future experiments
directly address CISS in the linear response regime to obtain a clearer picture.

(c) Can we distinguish CISS from other spin–charge conversion mechanisms?
Based on current descriptions, there are key differences between CISS (if present

in the linear response regime) and other spin–charge conversion mechanisms that
are relevant to spintronics. First, compared with magnetism, CISS does not break
time reversal symmetry (Chapter 2). Second, compared with spin-orbit effects such
as spin Hall effect and Rashba-Edelstein effect, CISS produces a collinear alignment
between spin and charge currents (Chapter 2-4).

2. How does this interaction generate signals observed in various types of experi-
ments?

This question concerns the experimental detection of CISS. It was thoroughly dis-
cussed in this thesis with a focus on electron transport experiments.

(a) What are the requirements for experimental geometries?
In Chapter 3 and 4 we discussed that the typical two-terminal spin-valve type of

electronic devices can only detect CISS in the nonlinear regime. In order to detect
CISS in the linear response regime, one has to use either a multi-terminal geometry
(Chapter 3 and 5), or a two-terminal geometry that does not rely on magnetization
reversal for generating charge signals (Chapter 4).

(b) Can the magnetic-field- or magnetization-dependent signals be interpreted
as due to electronic spin?

For an ideal spin-valve type of device (Chapter 3 and 4), the observed magnetore-
sistance (MR) in the nonlinear regime is indeed related to the spin–charge conversion
by CISS. If this conversion mechanism had not existed, the MR signals would have
vanished. However, the value of the MR ratio cannot be directly translated to the
spin polarization generated by CISS. The MR is co-determined by other factors such
as the spin polarization of the ferromagnet.
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In realistic situations, the presence of a magnetic field or an incomplete magneti-
zation reversal could change the picture. For example, in Chapter 5 we discussed a
possible charge contribution to the observed spintronic signals.

(c) How to better characterize CISS using (other) spintronic experiments?
A pressing issue regarding CISS experiments is the insufficient direct observa-

tion in the linear response regime. This needs to be addressed using new types of
experimental geometries. For example, the multi-terminal geometries introduced
in Chapter 3, or the Hanle precession or chiral spin valve geometry introduced in
Chapter 4. At the same time, it is also important to repeat existing experimental
methods (e.g. magnetic conducting atomic force microscopy or two-terminal spin
valve device) with a broader range of chiral molecules, and to correlate the quantita-
tive observations to various material properties (e.g. HOMO-LUMO gap or specific
optical rotation).

8.2 Further questions

As mentioned in Chapter 1, CISS is a growing field with a growing amount of ques-
tions. The more of which we try to answer, the more new ones arise. Here we name
a few questions that future researches should address.

First of all, how to consistently describe CISS in photoemission and transport
experiments? Can we find an experimental observable that is suited for both the
single-electron and the thermodynamical pictures? If so, how does this observable
depend on temperature and electron energy?

Next, how to consistently describe CISS in different chiral materials? Is it possible
to define a material property that on one hand describes CISS, and on the other hand
directly relates to other characteristic chiral properties, such as the specific optical
rotation? If so, how would this property then depend on temperature and electron
energy, and how can it be deduced from the molecular (crystal) structure of the ma-
terial?

Further, what is the dynamics of CISS? Can we investigate CISS using time-
resolved experiments, such as ultrafast optics? Correspondingly, can we obtain a
frequency-domain spectrum of CISS? If so, how would it differ from the chiral opti-
cal rotation and circular dichroism spectra of the same chiral material?

Moreover, does CISS have a role in nature? Would it be possible that the bio-
logical homochirality has given electronic spin an essential role in natural processes,
such as photosynthesis? Or conversely, could CISS have helped the formation of
homochirality itself?

Last but not the least, how can we use CISS to better control electronic spin in
electronic devices? Can we combine chirality with other electrical, thermal, or opti-
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cal effects to improve the properties of spintronic devices? Can we gain even more
control by tuning chirality itself?

8.3 Outlook – Spinchiraltronics

We now envision a future where chirality is deeply connected with spin in electronic
devices for information technologies. This is of particular importance thanks to the
abundance of chiral materials.

As mentioned in Chapter 1 and 7, nearly all naturally occurring biological molecules
(or molecular complexes) are chiral and exist only in one enantiomeric form. Survey-
ing this rich library could reveal a large pool of easily accessible functional materials
with electronic properties that are suitable for device-based applications.

Also, there are solid-state materials that are chiral and have novel electronic prop-
erties, such as the Tellurene introduced in Chapter 6. These materials can be pro-
cessed with existing nano-fabrication technologies and can be readily incorporated
in complex nano-electronic and spintronic devices.

Another source of chirality is related to the increasingly popular van der Waals
materials, which can be stacked to form heterostructures to enrich their functional
properties. For them, twisted heterostructure-stacking introduces chirality, and the
chiral stack can be further processed for device fabrication. The chirality introduced
in this way can be tuned by controlling the twisting angle and the layered materials
that are involved, which opens up a new degree of freedom for designing novel
spintronic devices.

We should not forget that chirality itself also has a binary nature, which can be
used to encode and decode digital information. In Chapter 4 we envisioned a chiral
spin valve that makes use of optical molecular switches, which can change chirality
under light illumination. Integrating this class of molecular materials into solid-state
spintronic devices would not only enable the control of the binary state of chirality,
but also evoke on-demand tuning of all chirality-induced spintronic phenomena.
This paves way for a whole new area of spintronics where chirality is put into action
on a fundamental level – an area that can be called spinchiraltronics.
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Summary

The concepts of chirality and spin are constantly encountered in our everyday life,
and at the same time, they are related to the most fundamental aspects of nature.
Chirality is the geometrical property of a stationary object that makes it distinguish-
able from its own mirror image. A pair of chiral enantiomers is analogous to a pair
of hands — they are mirror images of each other but cannot be made to exactly over-
lap — and they are often referred to using the corresponding handedness. Spin is
a quantum mechanical concept that relates to the magnetic property of electrons. It
can be envisioned as the rotational motion of an electron around its own axis, and
the orientation of this axis can be controlled magnetically.

Chiral molecules are the foundation of life. Nearly all naturally occurring and
biologically active molecules are chiral and exist in only one enantiomeric form. For
example, the DNA double helix that encodes genetic information for all living or-
ganisms are uniformly right-handed, all the natural sugars are also right-handed,
and 19 out of the 20 natural amino acids are left-handed (the other one is not chiral).
Electronic spin is the origin of ferromagnetism, which has enabled a broad range
of applications from compass needles to computer hard drives. Today, as the con-
ventional silicon-based electronics technologies are approaching fundamental limits,
scientists are looking into new alternatives that use the electronic spin not only to
store digital information, but also to process it — a field known as spintronics.

On a fundamental level, chirality and spin both manifest nature’s most elemen-
tary symmetries, or rather, the lack thereof. Chirality relates to the broken symmetry
of space, as it makes it possible to distinguish between left and right (handednesses),
while spin relates to the broken symmetry of time, since it allows to differentiate
between opposite directions of motion (clockwise vs. counterclockwise rotations).
Opposite chiral enantiomers are interconverted by space-inversion, while opposite
spin orientations are interconverted by time-reversal.

The significance of chirality and spin have long been recognized, but in separate
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fields and mostly for unrelated applications. This has been changed by the discovery
of the chirality-induced spin selectivity (CISS) effect. It describes that, as electrons
pass through a chiral (helical) structure (molecule), a spin polarization (imbalance
between opposite spin orientations) arises. If the chiral molecule is replaced by its
opposite enantiomer, the preferred spin orientation also reverses. CISS has attracted
increasing research attention thanks to its direct relevance to fundamental symme-
tries of nature and applications in fields across physics, chemistry, and biology. How-
ever, 20 years after its discovery, the microscopic origin of CISS remains a mystery,
and detailed understanding of key experimental results is still lacking.

There are various types of experiments designed to demonstrate CISS, and many
of them involve the thermodynamic transport of electrons. These experiments usu-
ally make use of micrometer- or even nanometer-scale electronic devices comprising
a chiral (molecular) component, electrical contacts, and often a ferromagnet (FM)
to control or detect the spins. By driving a charge current through such devices and
measuring the subsequent voltage drop, one obtains the resistance for electron trans-
port. This resistance is often reported to change when the magnetization direction of
the FM is flipped, generating a magnetoresistance (MR) signal.

The MR signal is characteristic for spintronic devices since it reveals information
about coupled charge and spin transport, and it is key to the understanding of exper-
imental results related to CISS. The first part of this thesis focuses on this MR signal
in spintronic devices used in CISS experiments, and explains theoretically when and
how the MR can arise, and what it can tell us about the CISS effect.

Understanding the signal

Although the microscopic mechanism of CISS remains largely unclear, we can never-
theless turn to fundamental laws that govern electron transport for insights into the
MR signal. In particular, we look at the Onsager reciprocity, which describes symme-
try relations between coupled thermodynamic processes. In an electronic/spintronic
device, when the roles of voltage and current probes are interchanged, and at the
same time all magnetic fields and magnetizations are reversed, the Onsager reci-
procity requires that the measured resistance must remain the same in the linear
response regime (at sufficiently low bias). This robust fundamental symmetry re-
quirement directly implies that in electronic devices that are usually used for CISS
experiments, where a single FM and chiral component are connected in series be-
tween two electrodes (two-terminal, 2T), the MR signal must remain zero in the lin-
ear response regime.

Starting from this, we introduce an electron-transmission model to describe chi-
ral molecules in electronic devices as generic circuit components where electrons
can either transmit through or be reflected back. CISS then implies that the elec-
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tron transmission probabilities must be spin-dependent. This generic and concep-
tual description, when combined with Onsager reciprocity and time-reversal sym-
metry, immediately reveals that there must be certain dephasing mechanisms for the
transmitted electrons, and there must be a spin-flip process for electrons reflected off
the chiral component. This understanding allows us to use elementary spin-space
electron transmission and reflection matrices to describe a chiral component, and to
analyze signals generated by it when placed into an electronic device together with
other (possibly magnetic) components. This also provides a framework for analyz-
ing whether CISS can generate signals in more complex electronic devices (e.g. with
multiple FMs or chiral components, or with more than two electrodes), and if so,
how such signals depend on the spin-polarizing strength of the chiral component.

Next, we extend this rather microscopic picture of electron transmission and re-
flection to a more macroscopic one of thermodynamic driving forces and responses.
Here the driving forces are charge and spin electrochemical potential differences,
and the responses are charge and spin currents. With this, the descriptions of a chi-
ral (nonmagnetic) component and an (achiral) magnetic components can be unified
using a transport matrix formalism, where the former is described by a symmetric
transport matrix, and the latter by an asymmetric one. The symmetry of these trans-
port matrices is directly imposed by Onsager reciprocity. This description reveals in
detail why the MR signal cannot arise in 2T devices with one chiral component and
one FM in the linear response regime. It is a result of the exact compensation of two
simultaneous processes: first, spin injection by the chiral component and spin detec-
tion by the FM, and second, spin injection by the FM and spin detection by the chiral
component. This result then suggests a way to induce the desired MR signal — by
breaking the symmetry between these two processes in the nonlinear regime, which
can happen when the transport is energy-dependent and is subject to energy relax-
ation. We demonstrate the emergence of MR due to this mechanism using examples
of energy-dependent quantum tunneling and energy-dependent resonant transmis-
sion through molecular orbitals, and we indeed can largely reproduce experimen-
tally observed current-voltage characteristics. Furthermore, this understanding of
nonlinear MR enables us to identify key factors that codetermine the sign of the MR
signal, which include bias direction, charge carrier type, and the chirality.

Based on this understanding of spintronic signals in electronic devices that con-
tain chiral components, we propose new device geometries that can better separate
CISS-related signals from other (mostly charge) signals, and can do so even in the lin-
ear response regime. These include multiterminal nonlocal geometries where charge
and spin signals are spatially separated, and novel magnet-free 2T geometries that
uses solely chiral components for spin injection and detection. This therefore pro-
vides operation principles and design guidelines for future CISS experiments using
electronic devices.
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To obtain a more quantitative understanding, we introduce a circuit model ap-
proach that uses elementary circuit analysis to relate experimentally observed charge
signals to possible spin-dependent processes within an electronic device. To illus-
trate this approach, we analyze an experimental geometry that was earlier used to
demonstrate CISS in a bio-organic photosynthetic protein complex, photosystem I
(PSI). Our results conclude that the signals observed in that experiment cannot be in-
terpreted as fully due to the CISS effect that causes spin-polarized photo-excitations
inside PSI complexes.

Experimental explorations

The second part of this thesis shows results of two distinct experiments where we
incorporate chiral materials into electronic devices. The first experiment uses a chi-
ral solid-state van-der-Waals (vdW) semiconductor, tellurene. It is a thin-flake sin-
gle crystal, and each flake consists of parallel-aligned, vdW-bound one-dimensional
helical chains of tellurium atoms. With this material, we fabricate mesoscopic elec-
tronic devices using nano-fabrication technologies, and we measure the anisotropic
electron transport properties of this material using a lock-in technique that can sep-
arately address linear and nonlinear responses. We observe a strong in-plane aniso-
tropy for the linear electrical conduction in this material, and we identify a signature
that may relate to the chirality of the material. At the same time, we also observe
an anisotropic temperature dependence of this linear conductance and a nonrecip-
rocal electrical conduction (exhibited as second-order response), which is linked to
the lack of inversion symmetry of the chiral tellurene material. These results provide
insight into the electron transport within this material, and help with the design and
understanding of more complex electronic/spintronic device geometries involving
tellurene.

In the second experiment, we develop a technique that uses an engineered chain
of amino acids (peptides) to immobilize the chiral bio-organic photosynthetic pro-
tein complex PSI onto a single layer of carbon atoms (graphene). We electrically con-
tact the PSI units with a few-nanometer-scale conductive probe, and drive electron
transport through the PSI-peptide-graphene junction. We use a random-positioning
approach to statistically analyze results obtained on a large number of PSI units, and
discover that the introduction of peptide significantly enhances the electrical conduc-
tion through the junction, and at the same time introduces a rectified (asymmetric)
current-voltage profile. This conduction and rectification can further be tuned me-
chanically by applying a force on PSI using the conductive probe. These results shed
light on possibilities of using complex bio-organic materials for electronic applica-
tions.

Summary 157

All in all, this thesis combines theoretical and experimental work to gain new
understanding of the rich physics introduced by chirality and spin in electronic de-
vices. The results presented here pave the way for future developments that employ
these two elementary concepts for electronic/spintronic applications.
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tropy for the linear electrical conduction in this material, and we identify a signature
that may relate to the chirality of the material. At the same time, we also observe
an anisotropic temperature dependence of this linear conductance and a nonrecip-
rocal electrical conduction (exhibited as second-order response), which is linked to
the lack of inversion symmetry of the chiral tellurene material. These results provide
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understanding of more complex electronic/spintronic device geometries involving
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In the second experiment, we develop a technique that uses an engineered chain
of amino acids (peptides) to immobilize the chiral bio-organic photosynthetic pro-
tein complex PSI onto a single layer of carbon atoms (graphene). We electrically con-
tact the PSI units with a few-nanometer-scale conductive probe, and drive electron
transport through the PSI-peptide-graphene junction. We use a random-positioning
approach to statistically analyze results obtained on a large number of PSI units, and
discover that the introduction of peptide significantly enhances the electrical conduc-
tion through the junction, and at the same time introduces a rectified (asymmetric)
current-voltage profile. This conduction and rectification can further be tuned me-
chanically by applying a force on PSI using the conductive probe. These results shed
light on possibilities of using complex bio-organic materials for electronic applica-
tions.
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All in all, this thesis combines theoretical and experimental work to gain new
understanding of the rich physics introduced by chirality and spin in electronic de-
vices. The results presented here pave the way for future developments that employ
these two elementary concepts for electronic/spintronic applications.



Samenvatting

In ons dagelijks leven worden we voortdurend geconfronteerd met de concepten
chiraliteit en spin, tegelijkertijd zijn zij verwant aan de fundamenteelste aspecten
der natuur. Chiraliteit is de geometrische eigenschap van een vast object die het
te onderscheiden maakt van zijn spiegelbeeld. Een paar chirale enantiomeren is te
vergelijken met een paar handen – zij zijn elkaars spiegelbeeld, maar kunnen niet
zo worden gevormd dat zij exact overlappen – en vaak wordt naar hen verwezen
als links- of rechtshandig. Spin is een kwantummechanisch concept dat betrekking
heeft op de magnetische eigenschappen van een elektron. Het kan worden gezien
als de roterende beweging van een elektron om zijn eigen as waarbij de richting van
de as magnetische kan worden bepaald.

Chirale moleculen zijn de fundamenten van het leven. Bijna alle natuurlijk voor-
komende en biologisch actieve moleculen zijn chiraal en bestaan alleen maar in één
enantiomerische vorm. De DNA dubbele helix waarin voor alle levende organis-
men de genetische informatie in gecodeerd is, is rechtshandig, ook alle natuurlijke
suikers zijn rechtshandig en 19 van de 20 natuurlijke aminozuren zijn linkshandig
(de overige is niet chiraal). Elektron spin is de oorsprong van ferromagnetisme, dat
een brede reeks aan toepassingen, van kompas naalden tot harde schijven van een
computer, vindt. Hedentendage, terwijl de traditionele, op silicium gebaseerde elek-
tronica technologie haar fundamentele grenzen nadert, onderzoeken wetenschap-
pers nieuwe alternatieven die de elektron spin niet louter voor het opslaan van dig-
itale informatie benutten, maar ook voor het verwerken ervan – een discipline beter
bekend als spintronica.

Fundamenteel gezien manifesteren zowel chiraliteit als spin de elementairste
symmetrieën der natuur, of beter gezegd, het gebrek eraan. Chiraliteit toont de sym-
metriebreking van ruimte, daar het mogelijk maakt te onderscheiden tussen links- en
rechts(handigheid). Onderwijl toont spin de symmetriebreking van tijd, aangezien
deze het mogelijk maakt het verschil tussen tegenovergestelde bewegingsrichtingen
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(met-de-klok-mee ten opzichte van tegen-de-klok-in) te onderscheiden. De tegen-
overgestelde chirale enantiomeren zijn onderling converteerbaar door middel van
ruimte-inversie, terwijl tegenovergestelde spin oriëntaties converteerbaar zijn door
middel van tijd-omkering.

Niettemin is voor geruime tijd het belang van chiraliteit en spin voornamelijk
alleen in andere disciplines en niet verwante toepassingen bekend. Dit veranderde
na de vondst van het ‘chirality-induced spin selectivity’ (CISS) effect. Dat beschrijft
dat wanneer een elektron zich door een chirale (helische) structuur (molecuul) be-
weegt er een spin polarisatie (een onevenwichtigheid tussen de beide spin oriëntaties)
ontstaat. Wanneer het chirale molecuul wordt vervangen door zijn tegenovergestelde
enantiomeer, draait ook de verkozen spin oriëntatie om. CISS wekt groter wordende
wetenschappelijke belangstelling, wat te danken is aan haar directe relevantie voor
fundamentele symmetrieën der natuur en toepassingen in disciplines verspreid over
natuurkunde, scheikunde en biologie. Echter, 20 jaar na haar ontdekking blijft de
microscopische oorsprong een raadsel en een diepgaand begrip van de voornaamste
experimentele resultaten ontbreekt nog steeds.

Verschillende type experimenten zijn ontworpen om CISS te demonstreren, velen
dezes hebben betrekking tot thermodynamisch transport van elektronen. Deze ex-
perimenten maken meestal gebruik van micrometer- of zelfs nanometerschaal elek-
tronische schakelingen om een chiraal moleculaire component, elektrische contacten
en vaak een ferromagneet (FM), om controle te krijgen over de spin of om hem te de-
tecteren, te compromitteren. Door een ladingsstroom door zo’n schakeling te sturen
en vervolgens het potentiaal verschil te meten kan de weerstand voor elektrontrans-
port verkregen worden. Voor deze weerstand wordt vaak gevonden te veranderen
wanneer de magnetisatie oriëntatie wordt omgekeerd, een magnetoweerstand (MW)
signaal genererend.

De MW is kenmerkend voor een spintronische schakeling, omdat het informatie
over de koppeling tussen lading- en spintransport blootstelt, en het is de sleutel tot
het begrijpen van de resultaten uit CISS experimenten. Het eerste deel van dit proef-
schrift focust zich op dit MW signaal in spintronische schakelingen in deze experi-
menten en verklaart theoretisch wanneer en hoe de MW kan ontstaan en wat het ons
kan vertellen over het CISS effect.

Begrip van het signaal

Ofschoon het microscopische mechanisme achter CISS grotendeels onduidelijk blijft,
kunnen we desalniettemin kijken naar de fundamentele wetten in elektrontransport
om inzicht te verkrijgen in het MW signaal. In het bijzonder wordt de Onsager re-
ciprociteit beschouwd, waarin de symmetrieën tussen gekoppelde thermodynamis-
che processen worden beschreven. In een elektronische/spintronische schakeling,
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waarbij de rollen van spanning en stroom sondes worden uitgewisseld en waarbij
tegelijkertijd alle magnetische velden en magnetisaties worden omgekeerd, verlangt
de Onsager reciprociteit dat de gemeten weerstand ten alle tijden gelijk blijft in het
lineaire response stelsel (bij spanning die gering genoeg is). Dit sterke fundamentele
symmetrie vereiste dicteert dat in de elektronische schakelingen gewoonlijk benut
voor CISS experimenten, waarin een enkele FM en een chiraal component in serie
zijn verbonden tussen twee elektroden (tweepuntsmeting, 2T), het MW signaal nul
moet blijven in het lineaire response stelsel.

Met dit als beginpunt introduceren we een elektron transmissiemodel om chi-
rale moleculen in elektronische schakeling te beschrijven als generieke componenten
waar elektronen ofwel doorgezonden kunnen worden, ofwel teruggekaatst kunnen
worden. De CISS sluit dan in dat de elektron transmissiewaarschijnlijkheden spin
afhankelijk betamen te zijn. Deze generieke en conceptuele beschrijving, wanneer
het wordt samengenomen met de Onsager reciprociteit en tijdsomkeringssymme-
trie, verraad meteen dat er een zekere defaseringsmechanisme moet bestaan voor de
doorgezonden elektronen. Hierbij dient er zich een spin-flip voor te doen voor de
van de chirale component weerkaatste elektronen. Dit begrip geeft ons de mogeli-
jkheid om elementaire spin-ruimte elektrontransmissie en reflectie matrixen aan te
wenden om een chiraal component te beschrijven en de daardoor gegenereerde sig-
nalen te analyseren wanneer het op een elektronische schakeling is geplaatst samen
met een andere (mogelijk magnetisch) component. Dit verschaft ons het raamwerk
om te kunnen analyseren of CISS signalen kan opwekken in complexere elektronis-
che schakelingen (zoals meerdere FM’en of chirale componenten of meer dan twee
elektrodes) en indien mogelijk hoe zulke signalen afhangen van de sterkte van de
spinpolarisatie van het chirale component.

Vervolgens breiden we de nogal microscopische voorstelling van elektron trans-
missie en reflectie uit tot een macroscopischer geheel met thermodynamische dri-
jfkrachten en responsen. De drijvende krachten zijn hierbij de lading en spin elek-
trochemische potentiaal verschillen en de responsen zijn de ladings- en spinstromen.
Met gebruikmaking hiervan kunnen de beschrijving van een chiraal (niet magnetis-
che) component en een (achiraal) magnetische component worden samengevoegd
in een transport matrix vorm, waarbij het eerst genoemde is beschreven door een
symmetrische transport matrix en het laatst genoemde door een asymmetrische. De
symmetrie van deze transport matrixen is opgelegd door de Onsager reciprociteit.
Deze beschrijving toont in detail waarom het MW signaal niet kan ontstaan in een 2T
schakeling met één chiraal component en één FM in het lineaire response stelsel. Het
is een resultaat van de exacte tegenwicht van twee gelijktijdige processen: als eerste,
spininjectie door het chirale component en spindetectie door de FM, en als tweede,
spininjectie door de FM en spindetectie door het chirale component. Dit resultaat
stelt voor een manier om het gewenste MW signaal te induceren – door het breken
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van de symmetrie tussen deze twee processen in het non-lineaire stelsel, wat gedaan
kan worden wanneer het transport energie afhankelijk is en is onderworpen aan
energierelaxatie. Wij tonen de verschijning van de MW aan door dit mechanisme ge-
bruikmakend van energieafhankelijk kwantumtunnelen en energieafhankelijke res-
onante transmissie door moleculaire orbitalen en we kunnen daadwerkelijk groten-
deels de experimenteel geobserveerde stroom-spanning karakteristieken reproduc-
eren. Bovendien staat dit begrip van de non-lineaire MW ons toe om de knelpunt-
factoren die mede het teken van het MW signaal (de richting van de stroom in
beschouwing nemend), de ladingsdrager en chiraliteit bepalen, te kunnen identi-
ficeren.

Op basis van dit begrip van spintronische signalen in elektronische schakelin-
gen die chirale componenten bevatten, stellen we nieuwe schakelingsgeometrieën
voor die signalen door CISS beter kunnen onderscheiden van andere (meestal lad-
ings) signalen, zelfs tot in het lineaire response stelsel. Zij omvatten meerpuntse
niet-lokale geometrieën waarbij ladings- en spinsignalen fysiek gescheiden zijn en
nieuwe magneetvrije 2T-geometrieën die uitsluitend chirale componenten gebruiken
voor spininjectie en detectie. Dit verschaft basisprincipes en ontwerprichtlijnen voor
toekomstige CISS-experimenten met elektronische schakelingen.

Om meer kwantitatief inzicht te krijgen, introduceren we een benadering met
een circuitmodel dat elementaire circuitanalyse gebruikt om de experimenteel waar-
genomen ladingssignalen te linken aan mogelijke spinafhankelijke processen bin-
nen een elektronisch schakeling. Om deze benadering te illustreren, analyseren we
een experimentele geometrie die eerder werd gebruikt om CISS te demonstreren in
een bio-organisch fotosynthetisch eiwitcomplex, fotosysteem I (PSI). Uit onze resul-
taten concluderen wij dat de signalen die in dat experiment zijn waargenomen niet
volledig door het CISS-effect dat spin-gepolariseerde foto-excitaties in PSI-complexen
veroorzaakt, kunnen worden verklaard.

Experimentele onderzoek

Het tweede deel van dit proefschrift toont de resultaten van twee verschillende ex-
perimenten waarbij we chirale materialen in elektronische schakeling integreren.

Het eerste experiment maakt gebruik van een chirale van-der-Waals (vdW) half-
geleider, tellurene. Dat is een monokristallijne structuur waarbij elke laag bestaat uit
parallel uitgelijnde, vdW-gebonden eendimensionale spiraalvormige ketens van tel-
luriumatomen. Met dit materiaal fabriceren we mesoscopische elektronische schake-
lingen gebruikmakend van nanofabricagetechnologieën en wij meten de anisotrope
elektrontransporteigenschappen van dit materiaal met behulp van de lock-in tech-
niek die afzonderlijk lineaire en niet-lineaire reacties kan aanspreken. We zien een
sterke anisotropie in-het-vlak voor de lineaire elektrische geleiding in dit materi-
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aal en we onderscheiden een eigenschap die mogelijk verband kan houden met de
chiraliteit van het materiaal. Tegelijkertijd zien we ook een anisotrope temperatu-
urafhankelijkheid in de lineaire geleiding en een niet reciproke elektrische geleid-
ing (zich manifesterend als tweede-orde respons), die verband houdt met het ge-
brek aan inversiesymmetrie in het chirale tellurene. Deze resultaten geven begrip
van het elektronentransport in dit materiaal en dragen bij aan het ontwerpen en be-
vatten van complexere elektronische/spintronische schakelingsgeometrieën waarbij
tellurene gebruikt wordt.

In het tweede experiment ontwikkelen we een techniek die een ontworpen keten
van aminozuren (peptiden) gebruikt om het chirale bio-organische fotosynthetische
eiwitcomplex PSI te fixeren op een enkele laag koolstofatomen (grafeen). We maken
elektrisch contact met de PSI-laag via een geleidende sonde van enkele nanome-
ters en zenden de elektronen door de PSI-peptide-grafeen verbinding. Hier ex-
ploiteren we een methode van willekeurige positionering om de resultaten die op
een groot aantal verschillende PSI-lagen zijn verkregen statistisch te analyseren. We
ontdekken dat het introduceren van de peptide de elektrische geleiding door de PSI-
peptide-grafeen verbinding aanzienlijk verbetert en tegelijkertijd een gelijkgerichte
(asymmetrische) stroom-spanning curve toont. Deze geleiding en rectificatie kan
verder mechanisch worden afgestemd door een kracht op PSI uit te oefenen met
behulp van de geleidende sonde. Deze resultaten werpen het licht op de mogeli-
jkheden om complexe bio-organische materialen te gebruiken voor elektronische
toepassingen.

Samenvattend, dit proefschrift combineert theoretisch en experimenteel werk om
nieuw inzicht te bekomen in de rijke natuurkunde ingewijd door chirale en spin in
elektronische schakelingen. De resultaten die hier worden gepresenteerd leiden de
weg naar toekomstige ontwikkelingen die deze twee elementaire concepten benut-
ten voor elektronische/spintronische toepassingen.
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Experimentele onderzoek

Het tweede deel van dit proefschrift toont de resultaten van twee verschillende ex-
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parallel uitgelijnde, vdW-gebonden eendimensionale spiraalvormige ketens van tel-
luriumatomen. Met dit materiaal fabriceren we mesoscopische elektronische schake-
lingen gebruikmakend van nanofabricagetechnologieën en wij meten de anisotrope
elektrontransporteigenschappen van dit materiaal met behulp van de lock-in tech-
niek die afzonderlijk lineaire en niet-lineaire reacties kan aanspreken. We zien een
sterke anisotropie in-het-vlak voor de lineaire elektrische geleiding in dit materi-
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aal en we onderscheiden een eigenschap die mogelijk verband kan houden met de
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ing (zich manifesterend als tweede-orde respons), die verband houdt met het ge-
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behulp van de geleidende sonde. Deze resultaten werpen het licht op de mogeli-
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Samenvattend, dit proefschrift combineert theoretisch en experimenteel werk om
nieuw inzicht te bekomen in de rijke natuurkunde ingewijd door chirale en spin in
elektronische schakelingen. De resultaten die hier worden gepresenteerd leiden de
weg naar toekomstige ontwikkelingen die deze twee elementaire concepten benut-
ten voor elektronische/spintronische toepassingen.
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