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Various device-based experiments have indicated that electron transfer in certain chiral molecules may be
spin dependent, a phenomenon known as the chiral induced spin selectivity (CISS) effect. However, due to the
complexity of these devices and a lack of theoretical understanding, it is not always clear to what extent the chiral
character of the molecules actually contributes to the magnetic-field-dependent signals in these experiments. To
address this issue, we report here an electron transmission model that evaluates the role of the CISS effect in
two-terminal and multiterminal linear-regime electron transport experiments. Our model reveals that for the
CISS effect, the chirality-dependent spin transmission is accompanied by a spin-flip electron reflection process.
Furthermore, we show that more than two terminals are required in order to probe the CISS effect in the linear
regime. In addition, we propose two types of multiterminal nonlocal transport measurements that can distinguish
the CISS effect from other magnetic-field-dependent signals. Our model provides an effective tool to review and
design CISS-related transport experiments, and to enlighten the mechanism of the CISS effect itself.
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I. INTRODUCTION

Developments in the semiconductor industry have allowed
integrated circuits to rapidly shrink in size, reaching the limit
of conventional silicon-based electronics. One idea to go
beyond this limit is to use the spin degree of freedom of
electrons to store and process information (spintronics) [1]. A
spintronic device usually contains two important components:
a spin injector and a spin detector, through which electrical
or optical signals and spin signals can be interconverted.
Conventionally, this conversion is done with bulky solid-state
materials, but the recently discovered chiral induced spin
selectivity (CISS) effect suggests that certain chiral molecules
or their assemblies are capable of generating spin signals
as well. This effect describes that electrons acquire a spin
polarization while being transmitted through certain chiral
(helical) molecules. Notably, experimental observations of the
CISS effect suggest its existence, but complete theoretical
insight in its origin is still lacking [2,3]. The CISS effect is
thus not only relevant for spintronic applications, but also
fundamentally interesting.

The CISS effect has been experimentally reported in chiral
(helical) systems ranging from large biological units such as
dsDNA [4,5] to small molecules such as helicenes [6,7]. Typ-
ically, these experiments can be categorized into either elec-
tron photoemission experiments [4,7–13] or magnetotransport
measurements [5,6,14–20]. The latter, in particular, are usu-
ally based on solid-state devices and are of great importance
to the goal of realizing chiral-molecule-based spintronics.
Important to realize, in such devices, the CISS-related signals
may often be overshadowed by other spurious signals that
arise from magnetic components of the devices. Therefore,
it is essential to understand the exact role of chiral molecules
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in these devices and to distinguish between the CISS-related
signals and other magnetic-field-dependent signals. However,
this has not been addressed, and an effective tool to perform
such analyses is still missing.

We provide here a model that is based on the Landauer-
Büttiker–type of analysis of linear-regime electron transmis-
sion and reflection. Unlike other theoretical works [21–29],
our model is derived from symmetry theorems that hold for
electrical conduction in general and does not require any
assumptions about the CISS effect on a molecular level. With
this model, we quantitatively demonstrate how the CISS effect
leads to spin injection and detection in linear-regime devices,
and analyze whether typical two-terminal and four-terminal
measurements are capable of detecting the CISS effect in the
linear regime.

II. MODEL

We consider a solid-state device as a linear-regime circuit
segment whose constituents are described by the following set
of rules:

(i) A contact [pictured as a wavy line segment perpendic-
ular to the current flow (see, e.g., Fig. 1)] is described as an
electron reservoir with a well-defined chemical potential μ,
which determines the energy of the electrons that leave the
reservoir. A reservoir absorbs all incoming electrons regard-
less of its energy or spin.

(ii) A node (pictured as a circle, see later figures for four-
terminal geometries) is a circuit constituent where chemical
potentials for charge and spin are defined. It is described by
two chemical potentials μ→ and μ←, one for each spin species
with the arrows indicating the spin orientations. At a node a
spin accumulation μs is defined (μs = μ→ − μ←). Inside a
node the momentum of electrons is randomized, while the
spin is preserved. The function and importance of the node
will be further addressed in the discussion section.

2469-9950/2019/99(2)/024418(16) 024418-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.024418&domain=pdf&date_stamp=2019-01-18
https://doi.org/10.1103/PhysRevB.99.024418


XU YANG, CASPAR H. VAN DER WAL, AND BART J. VAN WEES PHYSICAL REVIEW B 99, 024418 (2019)

FM 1  2

P 

FIG. 1. A two-terminal circuit segment with a P-type CISS
molecule and a ferromagnet between contacts 1 and 2 (with chemical
potentials μ1 and μ2). The notion P type represents the chirality of
the molecule and indicates that it allows higher transmission for spins
parallel to the electron momentum. (The opposite chirality allows
higher transmission for spins antiparallel to the electron momentum,
and is denoted as AP type.) The ferromagnet (FM) is assumed
to allow higher transmission of spins parallel to its magnetization
direction, which can be controlled to be either parallel or antiparallel
to the electron transport direction.

(iii) A CISS molecule [pictured as a helix, color coded and
labeled for its chirality (see, e.g., Fig. 1)], a ferromagnet [a
filled square (see, e.g., Fig. 1)], and a nonmagnetic barrier
[a shaded rectangle (see, e.g., Fig. 2)] are viewed as two-
terminal circuit constituents with energy-conserving electron
transmissions and reflections. Each of them is described by
a set of (possibly spin-dependent) transmission and reflection
probabilities;

(iv) The above constituents are connected to each other
via transport channels [pictured as line segments along the
current flow (see, e.g., Fig. 1)], in which both the momentum
and the spin of electrons are preserved.

Before proceeding with introducing the model, we would
like to highlight the important role of dephasing in the

FIG. 2. Transmission and reflection matrices (T and R) for a
nonmagnetic barrier (subscript B, here we use the term barrier, but
it refers to any circuit constituent with spin-independent electron
transmission and reflection), a ferromagnet (subscript FM), and ideal
P-type (superscript P) and AP-type (superscript AP) CISS molecules.
For the CISS molecules the subscripts R (right) and L (left) denote
the direction of the incoming electron flow, and the indicator 0 in the
subscripts means these matrices are for an ideal case where all the
matrix elements are either 1 or 0. The matrices for AP-type molecules
are derived from those for P-type molecules under the assumption
that opposite chiral enantiomers are exact mirror images of each
other, and therefore select opposite spins with equal probability.
Each matrix element represents the probability of a spin-dependent
transmission or reflection, with the column/row position indicating
the corresponding spin orientations before/after the transmission or
reflection (see general form in the top row).

generation of the CISS effect. In a fully phase-coherent two-
terminal electron transport system, time-reversal symmetry
prohibits the production of spin polarization by a charge
current [30]. Consequently, a CISS molecule requires the
presence of dephasing in order to exhibit a CISS-type spin-
polarizing behavior. The necessity of dephasing has already
been addressed by other theoretical works [31–33]. Here, we
emphasize that the Landauer-Buttiker type of analysis, on
which our model is based, does not require phase coherence
[34,35]. Moreover, dephasing can be naturally provided by
inelastic processes such as electron-phonon interactions under
experimental conditions. Therefore, it is reasonable to assume
that a CISS molecule is able to generate a spin polarization
in a linear-regime circuit segment, and our discussions focus
on whether this spin polarization can be detected as a charge
signal.

In the following part of this paper, we first derive a key
transport property of CISS molecules and then introduce
a matrix formalism to quantitatively describe linear-regime
transport devices. Later, in the discussion section, we provide
analyses for a few experimental circuit geometries.

A. Reciprocity and spin-flip reflection by chiral molecules

In order to characterize the CISS effect without having to
understand it on a molecular level, we look at universal rules
that apply to any conductor in the linear regime, namely, the
law of charge conservation and the reciprocity theorem.

The reciprocity theorem states that for a multiterminal cir-
cuit segment in the linear regime, the measured conductance
remains invariant when an exchange of voltage and current
contacts is accompanied by a reversal of magnetic field H

and magnetization M (of all magnetic components) [36,37].
Mathematically, we write

Gij,mn(H,M ) = Gmn,ij (−H,−M ), (1)

where Gij,mn is the four-terminal conductance measured using
current contacts i and j and voltage contacts m and n. In two-
terminal measurements, this theorem reduces to

Gij (H,M ) = Gij (−H,−M ), (2)

meaning that the two-terminal conductance remains constant
under magnetic field and magnetization reversal. This theorem
emphasizes the universal symmetry independent of the mi-
croscopic nature of the transport between electrical contacts.
It is valid for any linear-regime circuit segment regardless of
the number of contacts, or the presence of inelastic scattering
events [37].

By applying the reciprocity theorem to a circuit segment
containing CISS molecules, one can derive a special transport
property of these molecules. For example, in the two-terminal
circuit segment shown in Fig. 1, the reciprocity theorem re-
quires that the two-terminal conductance remains unchanged
when the magnetization direction of the ferromagnet is re-
versed. Since the two-terminal conductance is proportional
to the transmission probability between the two contacts
(Landauer-Büttiker) [35], this requirement translates to

T21(⇒) = T21(⇐), (3)
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where T21 describes the transmission probability of electrons
injected from contact 1 to reach contact 2, and ⇒ and ⇐
indicate the magnetization directions of the ferromagnet. This
requirement gives rise to a necessary spin-flip process associ-
ated with the CISS molecule, as described below.

For ease of illustration, we assume an ideal case where
both the ferromagnet and the CISS molecule allow a 100%
transmission of the favored spin and a 100% reflection of the
other (the general validity of the conclusions is addressed in
Appendix A). We consider electron transport from contact 1
to contact 2 (see Fig. 1) and compare the two transmission
probabilities T21(⇒) and T21(⇐). For T21(⇒), the P-type
CISS molecule (favors spin parallel to electron momentum,
see figure caption) allows the transmission of spin-right elec-
trons, while it reflects spin-left electrons back to contact 1.
At the same time, the ferromagnet is magnetized to also
only allow the transmission of spin-right electrons. Therefore,
all spin-right (and none of the spin-left) electrons can be
transmitted to contact 2, giving T21(⇒) = 0.5. As for T21(⇐),
while the P-type CISS molecule still allows the transmission
of spin-right electrons, the ferromagnet no longer does. It
reflects the spin-right electrons towards the CISS molecule
with their momentum antiparallel to their spin. As a result,
these electrons are reflected by the CISS molecule and are
confined between the CISS molecule and the ferromagnet.
This situation gives T21(⇐) = 0, which is not consistent with
Eq. (3). In order to satisfy Eq. (3), i.e., to have T21(⇐)
= 0.5, a spin-flip process has to take place for the spin-
right electrons, so that they can be transmitted to contact
2 through the ferromagnet. Such a process does not exist
for the ideal and exactly aligned ferromagnet. Therefore, a
spin-flip electron reflection process must exist for the CISS
molecule. Further analysis (see Appendix A) shows that such
a spin-flip reflection process completely meets the broader
restrictions from Eq. (2). In addition, the conclusion that a
spin-flip reflection process must exist is valid for general cases
where the ferromagnet and the CISS molecule are not ideal
(see Appendix A).

In these derivations, the only assumption regarding the
CISS molecule is that it allows higher transmission of one spin
than the other, which is a conceptual description of the CISS
effect itself. Therefore, the spin-flip reflection process has to
be regarded as an inherent property of the CISS effect in a
linear-regime transport system, and this is guaranteed by the
universal symmetry theorems of electrical conduction [36,37].

B. Matrix formalism and barrier-CISS center-barrier (BCB)
model for CISS molecules

We use matrices to quantitatively describe the spin-
dependent transmission and reflection probabilities of CISS
molecules and other circuit constituents, as shown in Fig. 2.
At the top of the figure, the general form of these matrices
is introduced. Matrix element tαβ (or rαβ), where α and β

is either left (←) or right (→), represents the probability
of a spin-α electron being transmitted (or reflected) as a
spin-β electron, and α �= β indicates a spin-flip process.
Here, 0 � tαβ, rαβ � 1, and the spin orientations are chosen
to be either parallel or antiparallel to the electron momentum
in later discussions. Next, the transmission and reflection

P

FIG. 3. A generalized barrier-CISS center-barrier (BCB) model
for P-type CISS molecules. The ideal, 100%-spin-selective CISS
center in the middle introduces the directional spin transmission
in a CISS molecule, while the two identical nonmagnetic barriers
(with transmission probability t) contribute the nonideal electron
transmission and reflection behavior. The overall transmission and
reflection matrices of the entire BCB module are fully determined by
t and have all elements taking finite values between 0 and 1.

matrices of a nonmagnetic barrier are given. These matrices
are spin independent and are fully determined by a transmis-
sion probability t (0 � t � 1), which depends on the material
and dimensions of the barrier. Here, we use the term barrier,
but it refers to any circuit constituent with spin-independent
electron transmission and reflection. In the third row, we show
the transmission and reflection matrices of a ferromagnet.
These matrices are spin dependent, and are determined by the
polarization PFM (0 < |PFM| � 1) of the ferromagnet. Finally,
for P-type and AP-type CISS molecules, we show here an
ideal case where all the matrix elements are either 1 or 0.
The nonzero off-diagonal terms in the reflection matrices
represent the characteristic spin-flip reflections. These ideal
CISS molecules are later referred to as CISS centers, and will
be generalized for more realistic situations.

In accordance with the matrix formalism, we use column
vector μ = (μ→

μ←) to describe chemical potentials, and col-

umn vector I = (I→
I←) to describe currents, where each vector

element describes the contribution from one spin component
(indicated by arrow).

A nonideal CISS molecule with C2 symmetry (twofold
rotational symmetry with an axis perpendicular to the elec-
tron transport path) can be modeled as a linear arrangement
of two identical barriers sandwiching an ideal CISS center,
as shown in Fig. 3 (only the P type is shown). In this
barrier-CISS center-barrier (BCB) model we consider that all
spin-dependent linear-regime transport properties of a CISS
molecule exclusively originate from an ideal CISS center
inside the molecule, and the overall spin dependency is limited
by the multiple spin-independent transmissions and reflec-
tions at other parts (nonmagnetic barriers) of the molecule.
Therefore, the barrier transmission probability t (0 < t � 1)
fully determines the transmission and reflection matrices of
the entire BCB molecule, and consequently determines the
spin-related properties of the molecule. The use of an identical
barrier on each side of the CISS center is to address the C2

symmetry. However, we stress that not all CISS molecules
have this symmetry, and the BCB model is still a simplified
picture. The model can be further generalized by removing
the restriction of the CISS center being ideal, and this case is
discussed in Appendix C. Despite being a simplified picture,
the BCB model captures all qualitative behaviors of a nonideal
CISS molecule, and at the same time keeps quantitative analy-
ses simple. Therefore, we further only discuss the case of BCB
molecules, instead of the more generalized CISS molecules.
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III. DISCUSSIONS

In this section, we use different approaches to separately
analyze two-terminal and multiterminal circuit geometries.
For two-terminal geometries, we evaluate the conductance of
the circuit segment by calculating the electron transmission
probability T21 between the two contacts. In contrast, for
multiterminal geometries, we take a circuit-theory approach
to evaluate the spin accumulation μs at the nodes.

A major difference between the two approaches is the
inclusion of nodes in multiterminal geometries. In our de-
scription, a node is the only location where spin accumula-
tion can be defined. It can be experimentally realized with
a diffusive electron transport channel segment that is much
shorter (along the electron transport direction) than the spin-
diffusion length λs of the channel material. Due to its diffusive
nature, a node emits electrons to all directions, so it can be
considered as a source of electron backscattering. Notably,
adding a node to a near-ideal electron transport channel (with
transmission probability close to 1) significantly alters its
electron transmission probability. Nonetheless, this does not
affect the validity of our approach because we only address
nonideal circuit segments where electron backscattering (re-
flection) already exists due to other circuit constituents (CISS
molecules, ferromagnets, or nonmagnetic barriers). Note that
even when we discuss the use of ideal CISS molecules or ideal
ferromagnets, the entire circuit segment is nonideal due to the
reflection of the rejected spins.

In the following discussion, we consider only the P-type
BCB molecule, and we use expressions TP

R,L and RP
R,L to

describe transmission and reflection matrices of the entire
BCB module, where the subscripts consider electron flow
directions. The derivations of these matrices can be found in
Appendix B.

A. Two-terminal geometries

We discuss here two geometries that are relevant for two-
terminal magnetoresistance measurements [38]. The first is
an FM-BCB geometry, as shown in Fig. 4. It simulates a
common type of experiment where a layer of chiral molecules
is sandwiched between a ferromagnetic layer and a normal
metal contact. The other side of the ferromagnetic layer is
also connected to a normal metal contact (experimentally this
may be a wire that connects the sample with the measurement
instrument). Due to the spin-dependent transmission of the
chiral molecules and the ferromagnet, one might expect a
change of the two-terminal conductance once the magnetiza-
tion of the ferromagnet is reversed. However, this change is
not allowed by the reciprocity theorem [Eq. (2)], which can
be confirmed with our model, as explained below.

FM1 2

P

FIG. 4. An FM-BCB geometry where a ferromagnet and a BCB
molecule are connected in series in a two-terminal circuit segment.
The magnetization reversal of the ferromagnet does not change the
two-terminal conductance.

In order to illustrate this, we calculate the electron trans-
mission probabilities between the two contacts for oppo-
site ferromagnet magnetization directions T FM-BCB

21 (⇒) and
T FM-BCB

21 (⇐), where the arrows indicate the magnetization
directions.

For the magnetization direction to the right (⇒), we
first derive the transmission and reflection matrices with the
combined contribution from the ferromagnet and the BCB
molecule

TFM-BCB
21 (⇒)=TP

R · (
I+RFM(⇒) · RP

R+(
RFM(⇒) · RP

R

)2

+ (
RFM(⇒) · RP

R

)3 + · · · ) · TFM(⇒)

=TP
R · (

I − RFM(⇒) · RP
R

)−1 · TFM(⇒), (4a)

RFM-BCB
11 (⇒)=RFM(⇒)+TFM(⇒) · (I−RP

R · RFM(⇒)
)−1

·RP
R · TFM(⇒), (4b)

where the I = (1 0
0 1) is the identity matrix. The addition of

the multiple reflection terms is due to the multiple reflections
between the ferromagnet and the BCB molecule. Next, we
include the contribution from the contacts and derive the
transmission and reflection probabilities accounting for both
spins

T FM-BCB
21 (⇒) = (1, 1)TFM-BCB

21 (⇒)

(
1/2
1/2

)
, (5a)

RFM-BCB
11 (⇒) = (1, 1)RFM-BCB

11 (⇒)

(
1/2
1/2

)
, (5b)

where the column vector (1/2
1/2) describes the normalized input

current from contact 1 with equal spin-right and spin-left
contributions, and the row vector (1,1) is an operator that de-
scribes the absorption of both spins into contact 2 (calculates
the sum of the two spin components).

For the opposite magnetization direction (⇐), we change
the magnetization-dependent terms in Eqs. (4) and (5) accord-
ingly. Detailed calculations (see Appendix B) prove

T FM-BCB
21 (⇒) ≡ T FM-BCB

21 (⇐) (6)

for all BCB transmission probabilities t and all ferromagnet
polarizations PFM. Therefore, it is not possible to detect any
variation of two-terminal conductance in this geometry by
switching the magnetization direction of the ferromagnet. In
Appendix B we show that it is also not possible to detect
any variation of two-terminal conductance by reversing the
current, and that the above conclusions also hold for the more
generalized CISS model (Appendix C). These conclusions
also agree with earlier reports on general voltage-based de-
tections of current-induced spin signals [39].

The second geometry, as shown in Fig. 5, contains two
ferromagnets, and is similar to a spin valve. In a conventional
spin valve (a nonmagnetic barrier sandwiched between two
ferromagnets), the magnetization reversal of one ferromagnet
leads to a change of the two-terminal conductance [38] (this
does not violate the reciprocity theorem since switching one
ferromagnet does not reverse all magnetizations of the entire
circuit segment), whereas in the geometry shown in Fig. 5,
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FIG. 5. A spin-valve geometry with a BCB molecule placed in-
between two ferromagnets. Unlike a conventional spin valve, here
the magnetization reversal of one ferromagnet does not change the
two-terminal conductance due to the presence of the BCB molecule.

this change does not happen due to the presence of spin-flip
electron reflections in the BCB molecule. (See Appendix B for
more details.) As a result, this geometry is not able to quantita-
tively measure the CISS effect. We emphasize that here the ab-
sence of the spin-valve behavior is unique for the BCB model,
which contains an ideal CISS center. In Appendix C we show
that a further-generalized CISS model regains the spin-valve
behavior. Nevertheless, one cannot experimentally distinguish
whether the regained spin-valve behavior originates from the
CISS molecule or a normal nonmagnetic barrier, and therefore
cannot draw any conclusion about the CISS effect. In general,
it is not possible to measure the CISS effect in the linear
regime using two-terminal experiments.

B. Four-terminal geometries and experimental designs

Four-terminal measurements allow one to completely sep-
arate spin-related signals from charge-related signals, and
therefore allow the detection of spin accumulations created
by the CISS effect [40]. Here, we analyze two geometries
that are relevant for such measurements. In the first geometry,
we use a node connected to BCB molecules to illustrate how
spin injection and detection can occur without using magnetic
materials (Fig. 6). In the second geometry, we use two nodes
to decouple a BCB molecule from electrical contacts and
illustrate the spin-charge conversion property of the molecule
(Fig. 7). In addition, we propose device designs that resemble
these two geometries and discuss possible experimental out-
comes (Fig. 8).

Figure 6(a) shows a geometry where a node is connected
to four contacts. Two of the contacts contain BCB molecules,
and the other two contain nonmagnetic (tunnel) barriers. We
consider an experiment where contacts 1 and 2 are used for
current injection and contacts 3 and 4 are used for voltage
detection. In terms of spin injection, we first assume that the
voltage contacts 3 and 4 are weakly coupled to the node,
and do not contribute to the spin accumulation in the node.
This means that the chemical potentials of contacts 1 and 2
fully determine the spin-dependent chemical potential (col-

umn vector) of the node μnode = (
μnode→
μnode←

). We also assume

μ2 = 0 for convenience since only the chemical potential
difference between the two contacts is relevant. Under these
assumptions, the node receives electrons only from contact 1,
but emits electrons to both contacts 1 and 2. Therefore, the
incoming current (column vector) into the node is

I in = G

e
TP

Rμ1

(
1
1

)
, (7)

1

2

3

4
P

P

(a)

(b)
= 1

= 0.1

= 0.01

FIG. 6. (a) A four-terminal geometry that includes a node. Two
of the contacts contain BCB molecules, and the other two are coupled
to the node via tunnel barriers (with transmission probability tB ). The
node is characterized by a spin-dependent chemical potential vector

μnode = (
μnode→
μnode←

), and each of the four contacts is characterized by a

spin-independent chemical potential μi , with i = 1, 2, 3, 4. (b) Cal-
culated ratio between four-terminal and two-terminal resistances for
this geometry, plotted as a function of t (transmission probability of
the barriers in BCB molecules) for three tB (transmission probability
of the barriers at the contacts) values.

and the outgoing current (column vector) from the node is

Iout = G

e

((
I − RP

L

) + (1 − rB )I
)
μnode, (8)

where G = Ne2/h is the N -channel, one-spin conductance
of the channels connecting the node to each of the contacts,
and rB (0 � rB � 1) is the reflection probability of the tunnel
barrier between the node and contact 2 (different from the
barriers in BCB molecules). Due to the spin-preserving nature
of the node, at steady state the incoming current is equal to the
outgoing current (for both spin components), or I in = Iout.
From this relation we derive

μnode = (
(1 + tB )I − RP

L

)−1
TP

Rμ1

(
1
1

)
, (9)

where tB = 1 − rB is the transmission probability of the tun-
nel barrier. Next, we derive the spin accumulation in the node

μs = μnode→ − μnode←= (1,−1)μnode = kinjμ1, (10)
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where a row vector (1,−1) is used as an operator to calculate
the difference between the two spin chemical potentials, and

kinj = (1,−1)
(
(1 + tB )I − RP

L

)−1
TP

R

(
1
1

)
,

(11)

with 0 < kinj � 1

4
,

is the spin injection coefficient for these current contacts.
This expression shows that the spin accumulation in the node
depends linearly on the chemical potential difference between
the current contacts, and the coefficient kinj is determined by
both the BCB molecule (with parameter t) and the tunnel
barrier connected to contact 2 (with parameter tB).

With regard to spin detection, we discuss whether the
established spin accumulation μs in the node can lead to
a chemical potential difference (and thus a charge voltage)
between the weakly coupled voltage contacts 3 and 4. A
contact cannot distinguish between the two spin components,
therefore, only the charge current (sum of both spins, calcu-
lated by applying an operator (1,1) to a current column vector)
is relevant. At steady state, there is no net charge current at any
of the voltage contacts,

I3 = G

e
(1, 1)

(
(1 − rB )μ3

(
1
1

)
− tBμnode

)
= 0, (12a)

I4 = G

e
(1, 1)

((
I − RP

L

)
μ4

(
1
1

)
− TP

Rμnode

)
= 0, (12b)

which gives

μ4 − μ3 = kdetμs, (13)

where

kdet = 1

2

(1, 1)TP
R

(
1

−1

)
(1, 1)TP

L

(
1
1

) ,

with 0 < kdet �
1

2
,

(14)

is the spin detection coefficient for these voltage contacts.
This expression shows that the chemical potential differ-
ence between the two voltage contacts depends linearly
on the spin accumulation in the node, and the coefficient
kdet is exclusively determined by the BCB molecule (with
parameter t).

Combining Eqs. (10) and (13) we obtain

R4T

R2T

= μ4 − μ3

μ1 − μ2
= kinj kdet, (15)

where R4T is the four-terminal resistance (measured using
contacts 3 and 4 as voltage contacts, while using contacts 1
and 2 as current contacts), and R2T is the two-terminal resis-
tance (measured using contacts 1 and 2 as both voltage and
current contacts). This ratio is determined by both the BCB
molecule (with parameter t) and the tunnel barrier connected
to contact 2 (with parameter tB), and can be experimentally
measured to quantitatively characterize the CISS effect.

As an example, for t = tB = 0.5, we have kinj ≈ 0.11,
kdet ≈ 0.17, and R4T /R2T ≈ 0.02. In Fig. 6(b) we plot

R4T /R2T as a function of t for three different tB values.
Similar plots for kinj and kdet are shown in Appendix B.

The above results show that it is possible to inject and de-
tect a spin accumulation in a node using only BCB molecules
and nonmagnetic (tunnel) barriers, and these processes can
be quantitatively described by the injection and detection
coefficients. We stress that the signs of the injection and
detection coefficients depend on the type (chirality) of the
BCB molecule and the position of the molecule with respect
to the contact. Switching the molecule from P type to AP type
leads to a sign change of the injection or detection coefficient.
The sign change also happens if the contact is connected to the
opposite side of the BCB molecule. For example, in Fig. 6(a),
contacts 1 and 4 are both connected to the node via P-type
BCB molecules, but contact 1 is on the left-hand side of a
molecule, while contact 4 is on the right-hand side. Electrons
emitted from these two contacts travel in opposite directions
through the (same type of) BCB molecules before arriving at
the node. As a result, using contact 4 instead of contact 1 as a
current contact leads to a sign change of kinj . Similarly, using
contact 1 instead of contact 4 as a voltage contact leads to a
sign change of kdet. Experimentally, one can use three BCB
contacts to observe this sign change: a fixed current contact
(thus a fixed kinj ) in combination with two voltage contacts
that use the same type of BCB molecule but are placed on
opposite sides of a node (thus opposite signs for kdet). The
voltages measured by the two voltage contacts (with respect
to a common reference contact) will differ by sign. This can
be experimentally measured as a signature of the CISS effect.

Figure 7 shows a geometry where a BCB molecule is
between two nodes A and B, and is decoupled from the
contacts. The nodes themselves are connected to contacts
in a similar fashion as in the previous geometry. In node
A, we consider a chemical potential vector μA and a spin
accumulation μsA, which are fully determined by the current
contacts 1 and 2. In node B, we consider weakly coupled
voltage contacts 3 and 4, so that its chemical potential vector
μB and its spin accumulation μsB , are fully determined by
μA. At steady state, there is no net charge or spin current in
node B, which leads to

μB = (
I − RP

L

)−1
TP

RμA. (16)

Note that here the matrices only refer to the molecule between
the two nodes. For BCB molecules, this expression always
gives μsB = 0, but for a more generalized CISS molecule (as
described in Appendix C), this expression can give μsB �= 0.
This shows that a spin accumulation at one side of a CISS

1

2 3

4

3

A BP P P

FIG. 7. A four-terminal geometry involving two nodes A and
B, which are connected to each other via a BCB molecule. A spin
accumulation difference between the two nodes results in a (charge)
chemical potential difference between them, and vice versa.
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FIG. 8. Nonlocal device designs with CISS molecules adsorbed
on graphene. (a) A device where electrons travel through CISS
molecules. All contacts are nonmagnetic and are numbered in agree-
ment with Fig. 6(a). A variation of this device can be achieved by
replacing contact 1 with a ferromagnet (see inset). (b) A device where
electrons travel in proximity to CISS molecules. A ferromagnetic
contact 2 is used for spin injection, but one can also use only
nonmagnetic contacts, as in Fig. 7.

molecule can generate a spin accumulation at the other side
of the molecule. Most importantly, for both the BCB model
and the more generalized model, Eq. (16) predicts that a
spin accumulation difference across a CISS molecule creates
a charge voltage across the molecule, and vice versa (spin-
charge conversion via a CISS molecule). Mathematically writ-
ten, the expression always provides μnA �= μnB when μsA �=
μsB , and μsA �= μsB when μnA �= μnB , where μnA (or μnB)
is the average chemical potential of the two spin components
in node A (or in node B). A more detailed description of this
geometry can be found in Appendix C.

Figure 8 shows two types of nonlocal devices that resemble
the two geometries introduced above. We realize the node
function with graphene, chosen for its long spin lifetime and
long spin diffusion length [41]. The first type, as shown
in Fig. 8(a), represents the geometry in Fig. 6(a), where
spin injection and detection are both achieved using CISS
molecules. A current Iinj is injected from contact 1 through
CISS molecules into graphene, then driven out to a normal
metal contact 2. This current induces a spin accumulation in
the graphene layer underneath the current contacts, which then
diffuses to the voltage contacts. The voltage contacts then pick
up a charge voltage Vdet in a similar fashion as explained in
Fig. 6(a). With this, the nonlocal resistance can be determined
Rnl = Vdet/Iinj . Further, we can derive (see Appendix B for
details)

Rnl = −kinj kdetRinj e
− d

λs , (17)

where Rinj is the resistance measured between the current
contacts 1 and 2, d is the distance between contacts 1 and 4,

and λs is the spin diffusion length of graphene. It is assumed
here that the spacing between the current contacts (1 and
2) and the spacing between the voltage contacts (3 and 4)
are both much smaller than λs . The minus sign comes from
the fact that the injection and the detection contacts are on
the same side of the graphene channel (both on top), unlike
the example in Fig. 6(a) (one on the left and the other on the
right).

A variation of this device is obtained by replacing contact
1 (together with the CISS molecules underneath it) with a
ferromagnet, as shown in the inset of Fig. 8(a). This variation
allows one to control the sign of Rnl by controlling the
magnetization direction of the ferromagnet, which should be
aligned parallel or antiparallel to the helical (chiral) axis of
the CISS molecules (out of plane, as indicated by the arrows).
The nonlocal resistance is therefore

Rnl (⇑) = −Rnl (⇓) = PFMkdetRλe
− d

λs , (18)

where the arrows indicate the magnetization directions, PFM

is the polarization of the ferromagnet, and Rλ is the spin
resistance of graphene (see Appendix B for more details).
In this device, the reversal of the magnetization direction of
the ferromagnet leads to a sign change of the nonlocal resis-
tance. Under experimental conditions [42,43], this nonlocal
resistance change �Rnl = Rnl (⇑) − Rnl (⇓) can reach tens of
Ohms (�) and is easily detectable.

The second type of device is depicted in Fig. 8(b). It is
a variation of the geometry in Fig. 7, where contact 2 is
replaced by a ferromagnet. In this device, instead of traveling
through the CISS molecules, the electrons travel through the
graphene channel underneath the molecules. It is assumed that
due to the proximity of the CISS molecules, the electrons in
graphene also experience a (weaker) CISS effect. Whether
this assumption is valid remains to be proven. The nonlocal
signals produced by this device are derived in Appendix B.

IV. CONCLUSION

In summary, we demonstrated that a spin-flip electron
reflection process is inherent to the chiral induced spin se-
lectivity (CISS) effect in linear-regime electron transport.
Furthermore, we developed a set of spin-dependent electron
transmission and reflection matrices and a generalized barrier-
CISS center-barrier (BCB) model to quantitatively describe
the CISS effect in mesoscopic devices. Based on this formal-
ism, we demonstrated that more than two terminals are needed
in order to probe the CISS effect in linear-regime trans-
port experiments. Moreover, we also showed several ways
of injecting and detecting spins using CISS molecules and
demonstrated that CISS molecules can give rise to spin-charge
conversion. In addition, we proposed two types of graphene-
based nonlocal devices which can be used to directly measure
the CISS effect in the linear regime.

We stress again that the above discussions and proposed
devices are all based on linear-regime electron transport.
Therefore, our conclusions cannot exclude the two-terminal
detection of the CISS effect in the nonlinear regime. However,
the spin signals in nonlinear-regime measurements should
approach zero as the two-terminal bias approaches zero (en-
tering the linear regime), and the mechanism that may con-
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tribute to such signals has to be different from spin-dependent
electron transmission and reflection. A recent work shows that
the CISS effect in electron photoemission experiments (three
terminal) can be explained by losses due to spin-dependent
electron absorption in chiral molecules [44], but whether a
similar process can lead to the detection of the CISS effect
in nonlinear two-terminal measurements remains to be inves-
tigated. In general, our model captures the fundamental role
of the CISS effect in linear-regime mesoscopic devices with-
out assuming any microscopic electron transport mechanism
inside CISS molecules. Recently, a new type of spin-orbit cou-
pling was predicted for one-dimensional screw dislocations in
semiconductor crystals, which has a one-dimensional helical
effective electric field. This type of spin-orbit coupling can
lead to an enhanced spin lifetime for electrons traveling along
the helical axis [45]. Future theoretical work should study
whether similar effects exist in chiral or helical molecules.

In general, our model helps to analyze and understand
device-based CISS experiments without having to understand
the CISS effect on a molecular level. It provides a guideline
for future reviewing and designing of CISS-based mesoscopic
spintronic devices.
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APPENDIX A: GENERAL VALIDITY OF THE SPIN-FLIP
REFLECTION PROCESS

In the main text, we stated that a spin-flip electron re-
flection process has to exist in order for spin-dependent
transmission through CISS molecules to be allowed by the
reciprocity theorem. Mathematically, this statement means
that at least one off-diagonal term in the reflection matrices of
CISS molecules has to be nonzero. Now, we prove the general
validity of our statement by limiting all off-diagonal terms of
the reflection matrices to zero, and derive violations against
the description of the CISS effect. Under this limit, the general
form of the transmission and reflection matrices of a CISS
molecule is

TCISS =
(

a c

b d

)
, RCISS =

(
A 0
0 D

)
, (A1)

where 0 � a, b, c, d,A,D � 1. For electrons traveling to-
wards the CISS molecule, each spin component can either be
transmitted (with or without spin flip) or reflected, the sum of
these probabilities is therefore unity:

a + b + A = 1, c + d + D = 1. (A2)

Therefore, we have

RCISS =
(

1 − a − b 0
0 1 − c − d

)
. (A3)

In addition, we adopt transmission and reflection matrices of
a ferromagnet from Fig. 2.

Next, we consider that the CISS effect exists in the linear
regime. This means that (according to the description of the
CISS effect) with an input of spin-nonpolarized electrons, the
CISS molecule gives a spin-polarized transmission output (a
nonzero spin current Is). Here, we do not make assumptions
about the chirality of the molecule or the electron flow di-
rection, so that our conclusions hold for the most general
situations. Therefore, we do not assume the sign of Is , and
write

Is = (1,−1)TCISS

(
1/2
1/2

)
= (a + c) − (b + d )

2
�= 0, (A4)

where the column vector indicates the spin-nonpolarized input
current, and the row vector is an operator that calculates the
difference between the two spin components in the output
current.

In order to illustrate the discrepancy between the assump-
tion of not having any spin-flip reflection and the conceptual
description of the CISS effect [Eq. (A4)], we apply the reci-
procity theorem to the circuit segment shown in Fig. 1. For
this circuit segment, we calculate the total transmission matrix
accounting for the contribution from both the CISS molecule
and the ferromagnet, and obtain

T21 = TFM · (I − RCISS · RFM)−1 · TCISS. (A5)

The transmission probability accounting for both spin species
is therefore

T21 = (1, 1)T21

(
1/2
1/2

)
, (A6)

where the row vector is an operator that calculates the sum of
both spin species. By substituting the matrices, we can write
T21 as a function of PFM:

T21(PFM) = a(1 + PFM)

1 + a + b + PFM(1 − a − b)

+ d(1 − PFM)

1 + c + d − PFM(1 − c − d )
.

(A7)

Here, the magnetization reversal of the ferromagnet is equiv-
alent to a sign change of PFM. Therefore, the broader reci-
procity theorem requires [36,37]

T12(PFM) ≡ T12(−PFM) (A8)

for all 0 < |PFM| � 1. This requirement gives

a = d and b = c,

and, therefore,

(a + c) − (b + d ) = 0,

which violates Eq. (A4).
Therefore, we proved that the spin-flip electron reflection

process has to exist in order for the CISS effect to exist in the
linear transport regime, and this is a direct requirement from
the reciprocity theorem.
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APPENDIX B: FURTHER DISCUSSIONS ABOUT
THE BCB MODEL

1. Derivation of the BCB transmission and reflection matrices

In the BCB model, we consider a CISS molecule as two
normal barriers sandwiching an ideal CISS center. The three
parts together determine the transmission and reflection ma-
trices of the molecule. We derive these matrices in two steps.
First, we calculate the combined contribution of the leftmost
barrier and the ideal CISS center as part 1 (superscript P 1).
Then, we add the second barrier to part 1 and calculate the
total effect.

We adopt the transmission and reflection matrices for a
normal barrier and a CISS center from Fig. 2. Here, we only
discuss P-type CISS molecules, as the AP type can be derived
using the relations given in Fig. 2. For part 1 we have

TP 1
R = (

TP
0,R + TP

0,R · RB · RP
0,R

) · TB =
(

t t (1 − t )
0 0

)
,

(B1a)

RP 1
R = RB + TB · RP

0,R · TB =
(

1 − t t2

0 1 − t

)
, (B1b)

TP 1
L = (

TB + TB · RP
0,R · RB

) · TP
0,L =

(
0 t (1 − t )
0 t

)
,

(B1c)

RP 1
L = RP

0,L + TP
0,R · RB · RP

0,R · RB · TP
0,L =

(
0 (1 − t )2

1 0

)
.

(B1d)

Note that here we have a finite number of reflections
between the first barrier and the CISS center because the
CISS center is ideal. Now, we consider part 1 as one unit and
combine it with the second normal barrier

TP
R = TB · (

I − RP 1
L · RB

)−1 · TP 1
R

=
(

σ/(1 − t ) σ

σ σ (1 − t )

)
, (B2a)

RP
R = RP 1

R + TP 1
L · (

I − RB · RP 1
L

)−1 · RB · TP 1
R

=
(

σ (1 − t )2 − t + 1 σ/(1 − t )
σ (1 − t ) σ (1 − t )2 − t + 1)

)
, (B2b)

TP
L = TP 1

L · (
I − RB · RP 1

L

)−1 · TB

=
(

σ (1 − t ) σ

σ σ/(1 − t )

)
, (B2c)

RP
L = RB + TB · (

I − RP 1
L · RB

)−1 · RP 1
L · TB

=
(

σ (1 − t )2 − t + 1 σ (1 − t )
σ/(1 − t ) σ (1 − t )2 − t + 1)

)
, (B2d)

where σ = t2(1 − t )

−t4 + 4t3 − 6t2 + 4t
.

These results show that in the BCB model, one parameter
t (0 < t � 1) determines the entire set of transmission and

reflection probability matrices. Therefore, it is possible to plot
total electron transmission and reflection probabilities as a
function of t for various geometries, as shown below. With
different t values, the BCB model is able to represent a large
spectrum of CISS molecules with different “strengths” of the
CISS effect. While it is sufficient to illustrate the fundamental
role of a CISS molecule in a solid-state device, it is still
a simplified picture. We will introduce a more generalized
model later in Appendix C.

2. Discussion on the FM-BCB geometry

In the main text, we discussed that the two-terminal trans-
mission remains constant under magnetization reversal in the
FM-BCB geometry, here we illustrate the same result under
current reversal. (Note that this is also a restriction from the
linear regime.)

The transmission and reflection matrices from contact 2 to
contact 1 are

TFM-BCB
12 (⇒) = TFM(⇒) · (

I − RP
R · RFM(⇒)

)−1 · TP
L,

(B3a)

RFM-BCB
22 (⇒) = RP

L + TP
R · (

I − RFM(⇒) · RP
R

)−1

·RFM(⇒) · TP
L, (B3b)

and the corresponding transmission and reflection probabili-
ties accounting for both spins are

T FM-BCB
12 (⇒) = (1, 1)TFM-BCB

12 (⇒)

(
1/2
1/2

)
, (B4a)

RFM-BCB
22 (⇒) = (1, 1)RFM-BCB

22 (⇒)

(
1/2
1/2

)
. (B4b)

With these expressions, we can calculate the transmission
and reflection probabilities as a function of t (BCB transmis-
sion probability) for four situations: two current directions
and two magnetization directions, and the results are plotted
in Fig. 9. Note that for all four situations, the transmission
curves (or the reflection curves) completely overlap with
each other, this means that neither magnetization reversal nor
current reversal can lead to a signal change in the two-terminal
conductance. Furthermore, we are able to quantitatively ana-
lyze the contribution of each spin component in each of the
four situations, and this will be shown in the Supplemental
Material [46].

3. Discussion on the spin-valve geometry

Similar to the FM-BCB geometry, in order to calculate
the two-terminal transmission and reflection probability of the
spin-valve geometry, we first calculate the transmission and
reflection matrices for this geometry. For this, we treat the
spin-valve geometry as an FM-BCB module and a ferromag-
net connected in series, and derive

TSV
21 (⇒,⇒)

= TFM(⇒) · (
I − RFM-BCB

22 (⇒) · RFM(⇒)
)−1

·TFM-BCB
21 (⇒), (B5a)

024418-9



XU YANG, CASPAR H. VAN DER WAL, AND BART J. VAN WEES PHYSICAL REVIEW B 99, 024418 (2019)

0 0.2 0.4 0.6 0.8 1
BCB barrier transmission t

0

0.2

0.4

0.6

0.8

1

T
ot

al
tr

an
sm

is
si

on
or

re
fle

ct
io

n

trans, FM=R, I=R
trans, FM=R, I=L
trans, FM=L, I=R
trans, FM=L, I=L
refl, FM=R, I=R
refl, FM=R, I=L
refl, FM=L, I=R
refl, FM=L, I=L

FIG. 9. Normalized total transmission and reflection of an FM-
BCB segment as a function of t (BCB barrier transmission). Red and
magenta labels (lower group) are for total transmissions accounting
for both spin species for different magnetization orientations (FM
= R or L, for magnetization right or left) and different electron
flow directions (I = R or L, for electron flow from left to right
or from right to left). Blue and cyan labels (upper group) are for
total reflections. The polarization of the ferromagnet is chosen as
PFM = 0.1, comparable to experimental conditions with Co contacts.

RSV
11 (⇒,⇒)

= RFM-BCB
11 (⇒) + TFM-BCB

21 (⇒) · (
I − RFM(⇒)

·RFM-BCB
22 (⇒)

)−1

·RFM(⇒) · TFM-BCB
12 (⇒), (B5b)

TSV
12 (⇒,⇒)

= TFM-BCB
12 (⇒) · (I − RFM(⇒) · RFM-BCB

22 (⇒)
)−1

·TFM(⇒), (B5c)

RSV
22 (⇒,⇒)

= RFM(⇒) + TFM(⇒)

· (I − RFM-BCB
22 (⇒) · RFM(⇒)

)−1

·RFM-BCB
22 (⇒) · TFM(⇒), (B5d)

where the two arrows in the brackets on the left-hand side of
the equations indicate the magnetization direction of the two
ferromagnets, respectively. For the case where the magnetiza-
tion of one of the ferromagnets is reversed, we can substitute
the corresponding magnetization direction with an opposite
arrow.

For the two-terminal transmission and reflection probabili-
ties accounting for both spins, we have

T SV
ij = (1, 1) · TSV

ij ·
(

1/2
1/2

)
, (B6a)

RSV
ij = (1, 1) · RSV

ij ·
(

1/2
1/2

)
, (B6b)

and we can calculate these probabilities as a function of t

(BCB transmission probability) for eight situations: the two
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FIG. 10. Normalized total transmission and reflection of a spin-
valve segment as a function of t (BCB barrier transmission). Red and
magenta labels (lower group) are for total transmissions accounting
for both spin species for different ferromagnet configurations (similar
notation as before, but for two ferromagnets, FM = RR, RL, LR,
or LL) and different current flow directions (I = R or L). Blue and
cyan labels (upper group) are for total reflections. The polarization of
the ferromagnet is chosen as PFM = 0.1, comparable to experimental
conditions with Co contacts.

ferromagnets each with two magnetization directions, and two
opposite current directions, as shown in Fig. 10. Note that for
all eight situations, the transmission curves (or the reflection
curves) completely overlap with each other; this means that
neither magnetization reversal (for either ferromagnet) nor
current reversal can lead to a signal change in the two-terminal
conductance. Furthermore, we can quantitatively analyze the
contribution of each spin component in this geometry, as
shown in the Supplemental Material [46].

4. Discussion on injection and detection coefficients

In the main text, we derived the injection and detection
coefficients kinj and kdet for the four-terminal geometry shown
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FIG. 11. Injection coefficient kinj as a function of t (BCB barrier
transmission) for various tB (contact barrier transmission), for the
geometry described in Fig. 6(a) in the main text.
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FIG. 12. Detection coefficient kdet as a function of t (BCB barrier
transmission) for the geometry described in Fig. 6(a) in the main text.

in Fig. 6(a), and we showed that the product of these two
geometries represents the ratio between four-terminal and
two-terminal resistances. The injection coefficient depends
both on the BCB barrier transmission t and the transmission
probability tB of the barrier at contact 2, whereas the detection
coefficient only depends on the BCB barrier transmission t .
This difference is due to our assumption of weakly coupled
detection contacts. Here, we plot the injection coefficient kinj

(see Fig. 11), the detection coefficient kdet (see Fig. 12),
and the 4T/2T resistance ratio R4T /R2T (see Fig. 13) as a
function of t (transmission probability of the barrier in the
BCB molecule). Especially, for kinj and R4T /R2T , we set tB
(transmission probability of the barrier in contact 2) to a few
different values and illustrate its influence.
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FIG. 13. The ratio between four-terminal and two-terminal re-
sistances as a function of t (BCB barrier transmission) for various tB
(contact barrier transmission), for the geometry described in Fig. 6(a)
in the main text.

5. Discussion on spin-charge conversion

In the main text, we illustrated the spin-charge conversion
property of CISS molecules. The chemical potential vectors
in the two nodes in Fig. 7 are related to each other following
Eq. (16). We also introduced the scalers of charge chemical
potential μn (the average of two spin chemical potentials)
and spin accumulation μs (the difference between two spin
chemical potentials). Here, we show how these scaler chemi-
cal potentials relate to each other.

A vector chemical potential of a node can be rewritten as a
sum of two column vectors

μ =
(

μ→
μ←

)
=

(
μn + 1

2μs

μn − 1
2μs

)
= μn

(
1
1

)
+ 1

2
μs

(
1

−1

)
.

(B7)

By rewriting both μA and μB in this fashion, and substituting
them into Eq. (16), we obtain

�μn

(
1
1

)
+ 1

2
�μs

(
1

−1

)
= (

I − (
I − RP

L

)−1
TP

R

)
μA, (B8)

where �μn = μnA − μnB is the charge chemical potential
difference between the two nodes, and �μs = μsA − μsB is
the spin accumulation difference between the two nodes.

For the BCB model,

I − (
I − RP

L

)−1
TP

R =
(

1 + 1
t−2 −1 − 1

t−2
1

t−2 − 1
t−2

)
, (B9)

where t is the BCB transmission probability. Substituting this
matrix into Eq. (B8) gives

�μn

(
1
1

)
+ 1

2
�μs

(
1

−1

)
= μsA

(
1 + 1

t−2
1

t−2

)
. (B10)

Note that here the charge chemical potentials in node A (μnA)
drops out of the equation. We emphasize that this is a unique
result for the BCB model.

Solving the above vector equation gives

�μs = μsA, (B11a)

�μn = −kconv�μs, (B11b)

where kconv = t/(4 − 2t ) (0 < kconv � 0.5) is the spin-charge
conversion coefficient.

Equation (B11a) shows that μsB = μsA − �μs = 0,
meaning that a spin accumulation in node A cannot generate
a spin accumulation in node B. This result is special for the
BCB model and does not hold for a more generalized CISS
model (as will be introduced later in Appendix C). Equation
(B11b) shows that the charge voltage across a BCB molecule
linearly depends on the spin accumulation difference across
the molecule, and vice versa (spin-charge conversion). The
conversion coefficient kconv depends on t (BCB barrier trans-
mission). Notably, for BCB molecules this coefficient has the
same value as the detection coefficient (kconv = kdet). This is
because the result μsB = 0 makes node B equivalent to a con-
tact: it is not able to distinguish between two spin components.
For a more generalized model (as will be introduced later in
Appendix C), the two coefficients take different values. These
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conclusions were mentioned in the main text; here we showed
the proof.

6. Discussion on nonlocal signals

We first discuss the nonlocal resistance measured with
device geometries shown in Fig. 8(a). In this picture the axes
of the CISS molecules are vertical rather than horizontal,
therefore, the spin orientations are described as spin up or
spin down. As a result, the spin accumulation is defined as
μs = (μ↑ − μ↓).

First, we discuss the case where the spin injection is done
through a BCB molecule. The injected spin accumulation
underneath contact 1 is

μs,inj = −kinjμ1 = −ekinj IinjRinj , (B12)

where the minus sign is due to the fact that the electrons are
traveling downwards through CISS molecules into graphene,
as a result, the injected spin accumulation is negative (mostly
spin down). The resistance

Rinj = R12 = μ1 − μ2

eIinj

(B13)

is the resistance measured between the two injection contacts
1 and 2.

Inside graphene, the spin accumulation diffuses to all di-
rections, and therefore the spin accumulation at the detection
contact is

μs,det = μs,inj e
− d

λs , (B14)

where λs is the spin diffusion length in graphene, and d is
the distance between the inner injection and detection contacts
(1 and 4) (we have assumed that this distance is much larger
than the separation of the two injection contacts or the separa-
tion of the two detection contacts).

Further, the voltage detected by the detection contacts is
[following Eq. (13)]

Vdet = 1

e
kdetμs,det. (B15)

With this, we have

Rnl = Vdet

Iinj

= −kinj kdetRinj e
− d

λs , (B16)

as in Eq. (17).
For the case where the spin injection is obtained through a

ferromagnet, the spin injection becomes

μs,inj = ±ePFMIinjRλ, (B17)

where PFM is the polarization of the ferromagnet (with magne-
tization direction out of plane), and Rλ is the spin resistance
of graphene. This spin resistance is determined by the spin
relaxation length in graphene and the shape of the graphene
channel, and is defined as Rλ = Rsqλs/W , where Rsq is
the square resistance of graphene and W is the width of
the graphene channel (assuming the channel width remains
the same across the spin diffusion length). The sign of the
injected spin accumulation is determined by the magneti-
zation direction of the ferromagnet, with magnetization up
for positive spin accumulation and magnetization down for
negative spin accumulation.

The diffusion and detection mechanisms are the same as in
the previous case. Therefore, the nonlocal resistance for this
situation is

Rnl = ±kdetPFMRλe
− d

λs , (B18)

as in Eq. (18). With the help of the ferromagnet, it is possible
to switch the sign of the nonlocal resistance.

Next, for the device shown in Fig. 8(b), the CISS molecules
are aligned in plane of the device, therefore, we assume
the ferromagnet also has in-plane magnetization, and we
describe spin accumulation again as μs = μ→ − μ←. We
simplify the discussion by assuming the spin injection is
mainly contributed by the ferromagnet, and the spin detec-
tion is achieved through the spin-charge conversion mech-
anism of the CISS molecules. The spin accumulation un-
derneath the detection contacts can be generated by two
mechanisms: the spin diffusion in graphene (as in the previous
case), and the spin-charge conversion between the injection
node and the detection node. However, in the BCB model,
the spin-charge conversion does not contribute to a spin
accumulation underneath the detector contacts. Therefore, we
only consider the spin diffusion mechanism. Similar to the
previous case, we can derive the nonlocal signal

Rnl = ±kconvPFMRλe
− d

λs , (B19)

where kconv is the spin-charge conversion coefficient described
before, but here it concerns the proximity-induced CISS effect
in the graphene channel, rather than the CISS molecules
themselves. Important to realize, due to the proximity effect,
the diffusion length λs and the spin resistance Rλ of graphene
may differ from the previous case.

APPENDIX C: GENERALIZED CISS MODEL

The BCB model is a simplified model where the spin-
dependent characteristics of a CISS molecule are exclusively
originated from an ideal CISS center. However, the assump-
tion of having an ideal spin-flip core in a molecule may
not be accurate. Therefore, we assume a general form of
transmission and reflection matrices

TP
R =

(
a, c

b, d

)
, RP

R =
(

A,C

B,D

)
, (C1)

where

0 � a, b, c, d,A,B,C,D � 1, (C2a)

a + b + A + B = c + d + C + D = 1, (C2b)

a + c > b + d. (C2c)

Here, the first restriction (C2a) comes from the fact that
all matrix elements are probabilities. The second restriction
(C2b) addresses that for each spin component, the sum of its
probabilities of being transmitted and being reflected equals
1. The third restriction (C2c) is the conceptual description of
the CISS effect, which shows that a spin polarization arises
after transmission through a CISS molecule. This restriction
is similar to Eq. (A4), but here we determine a sign for

024418-12



SPIN-DEPENDENT ELECTRON TRANSMISSION MODEL … PHYSICAL REVIEW B 99, 024418 (2019)

the polarization because we have assumed the chirality (P
type) of the molecule and the electron flow direction (R for
rightwards).

We still assume that the molecule has C2 symmetry, so that
the transmission and reflection matrices for reversed current
can be written as

TP
L =

(
0 1
1 0

)
· TP

R ·
(

0 1
1 0

)
, (C3a)

RP
L =

(
0 1
1 0

)
· RP

R ·
(

0 1
1 0

)
. (C3b)

The matrices for AP -type molecules can be derived ac-
cording to Fig. 2. Before we proceed with the mathematical
proof, we discuss the validity of these symmetry assumptions.

Since we only consider the electron transport in CISS
molecules, the C2 symmetry that we require only refers to the
symmetry in electron transport. Furthermore, this symmetry is
also a requirement of the linear regime. A highly asymmetric
molecule can still be treated with our model, but only under
the assumption that it is composed of a symmetric (C2) part
which contributes to CISS, and asymmetrically distributed
normal barriers. In terms of the symmetry relations between
the two chiralities, it is by definition that the two chiral enan-
tiomers are exact mirror images of each other, and thereby
select opposite spins with equal probability (when placed in
the same circuit environment).

We apply the reciprocity theorem to a geometry similar
to Fig. 4 in the main text, but now the BCB molecule
is replaced by a generalized CISS molecule. The general
reciprocity theorem requires that the two-terminal resistance
remains unchanged under magnetization reversal regardless
of the polarization of the ferromagnet. Therefore, we assume
the ferromagnet is 100% polarized for convenience. Following
the same steps as in the FM-BCB geometry, the two-terminal
transmission probabilities considering two magnetization di-
rections and two current directions become

T21(⇒) = a + b + (c + d )
B

1 − D
, (C4a)

T21(⇐) = c + d + (a + b)
C

1 − A
, (C4b)

T12(⇒) = b + d + (a + c)
C

1 − D
, (C4c)

T12(⇐) = a + c + (b + d )
B

1 − A
, (C4d)

where the arrows indicate the magnetization direction of the
ferromagnet, and the subscripts indicate the electron flow
direction. The reciprocity theorem requires these four expres-
sions to have the same value

T12(⇒) = T12(⇐) = T21(⇒) = T21(⇐) = T , (C5)

which can be written as a vector equation⎛
⎜⎜⎜⎝

1 1 B
1−D

B
1−D

C
1−A

C
1−A

1 1
C

1−D
1 C

1−D
1

1 B
1−A

1 B
1−A

⎞
⎟⎟⎟⎠

⎛
⎜⎝

a

b

c

d

⎞
⎟⎠ = T

⎛
⎜⎝

1
1
1
1

⎞
⎟⎠. (C6)
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FIG. 14. Normalized total transmission and reflection of an FM-
CISS segment as a function of s (generalized CISS strength). Red and
magenta labels (lower group) are for total transmissions accounting
for both spin species for different magnetization orientations (FM =
R or L) and different electron flow directions (I = R or L). Blue and
cyan labels (upper group) are for total reflections. The polarization of
the ferromagnet is chosen as PFM = 0.7 to be consistent with Fig. 15.

In order for this equation to be self-consistent, relation

A = D

is required. Consequently, we can derive

b = c, (C7a)

a − d = C − B. (C7b)

Therefore, the generalized form of the transmission and
reflection matrices of a CISS molecule is

TP
R =

(
a b

b a(1 − s)

)
, RP

R =
(

A B + as

B A

)
, (C8)

with a + b + A + B = 1, and s (0 � s � 1) being a quan-
titative description of the strength of the CISS effect in a
molecule.

Next, we discuss the results given by this generalized
model for the geometries discussed in the main text, and
compare it with the BCB model. We arbitrarily choose the
following transmission and reflection matrices for the gener-
alized model:

TP
R =

(
0.6 0.15
0.15 0.6(1 − s)

)
, RP

R =
(

0.2 0.05 + 0.6s

0.05 0.2

)
,

(C9)

and use parameter s as the variable to tune the CISS strength.
For the FM-BCB geometry (which now becomes FM-

CISS geometry), we plot the two-terminal transmission and
reflection probabilities as a function of s for four situations:
two magnetization directions and two current directions. The
results show that all four situations give identical results for all
CISS strength s, as shown in Fig. 14. This is consistent with
the BCB model, just as required by the reciprocity theorem.

For the spin-valve geometry, we plot the two-terminal
transmission and reflection probabilities as a function of s
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FIG. 15. Normalized total transmission and reflection of a spin-
valve segment as a function of s (generalized CISS strength). Red
and magenta labels (lower group) are for total transmissions account-
ing for both spin species for different ferromagnet configurations
(two ferromagnets, FM = RR, RL, LR, or LL) and different current
flow directions (I = R or L). Blue and cyan labels (upper group) are
for total reflections. The polarization of the ferromagnet is chosen
as PFM = 0.7 in order to amplify the deviation between parallel and
antiparallel ferromagnet configurations. This deviation is larger when
the ferromagnet polarization is higher.

for eight situations: two ferromagnets each with two mag-
netization directions, and two current directions. The results
are shown in Fig. 15. Unlike the BCB model, here we find
different transmission and reflection probabilities for cases
where the two magnetization directions are parallel vs an-
tiparallel. The transmission probability is in general higher
when the two ferromagnets are magnetized parallel compared
to antiparallel. Notably, the difference between the two con-
figurations decreases as the CISS strength s increases. This is
because with increasing s, electrons have a higher probability
of encountering spin-flip reflections. This also explains why
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FIG. 16. Injection coefficient kinj as a function of s (generalized
CISS strength) for various tB (contact barrier transmissiion), for the
geometry described in Fig. 6(a) in the main text.
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FIG. 17. Detection coefficient kdet as a function of s (generalized
CISS strength) for the geometry described in Fig. 6(a) in the main
text.

in a BCB model, where an ideal spin-flip process is present,
switching the magnetization directions does not lead to any
conductance variation. The direction of the current has no
effect on the transmission and reflection probabilities, as is
required by the linear regime.

For four-terminal geometries, we calculate here the spin
injection and detection coefficients using the formulas derived
in the main text, and we plot these coefficients as a function of
the CISS strength s. Figure 16 shows the injection coefficient
as a function of s for a few tB values. Figure 17 shows the
detection coefficient as a function of s, and Fig. 18 shows the
ratio between four-terminal and two-terminal resistances as a
function of s.

Last but not least, we discuss the spin-charge conver-
sion property of the generalized CISS molecule. Substituting
the corresponding transmission and reflection matrices into
Eq. (B8), and solving the vector equation, we can obtain
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FIG. 18. The ratio between four-terminal and two-terminal re-
sistances as a function of s (generalized CISS strength) for various
tB (contact barrier transmission), for the geometry described by
Fig. 6(a) in the main text.
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relations between the conversion coefficient kconv and the
chemical potential vector μA. Unlike the BCB model, here it

is not possible to drop out either μnA or μsA from the equation.
The final result gives

kconv = −�μn

�μs

= (A − B − 1)sμnA + 1
2 (b + B )sμsA

2(A+B − 1)sμnA + (b +B )( − 2 + 2A+ 2B + s)μsA

, (C10)

where a, b,A,B, s are the parameters in the transmission
and reflection matrices of the generalized CISS model. This
equation shows that a nonzero charge voltage difference
(�μn) can give rise to a spin accumulation difference (�μs)
across a generalized CISS molecule, and vice versa (spin-
charge conversion). Interestingly, the conversion coefficient
kconv depends not only on the transmission and reflection
matrices of the molecule, but also on the spin accumulation
in the nodes connected to the molecule. If s = 0, i.e., the
molecule does not exhibit any CISS effect, the spin-charge
conversion property also diminishes (kconv = 0).

With these discussions, we demonstrated that a generalized
CISS molecule shows differences from the simplified BCB
model. Nonetheless, these differences are rather quantitative
than qualitative, and are not easily measurable in experi-
ments. Furthermore, the generalized model also introduces
extra degrees of freedom to calculations as it uses four
variables to describe a CISS molecule, compared to one in
the BCB model. Having taken the above into consideration,
in the main text we only showed the results of the BCB
model.
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