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ABSTRACT: Central to spintronics is the interconversion between
electronic charge and spin currents, and this can arise from the chirality-
induced spin selectivity (CISS) effect. CISS is often studied as
magnetoresistance (MR) in two-terminal (2T) electronic nanodevices
containing a chiral (molecular) component and a ferromagnet. However,
fundamental understanding of when and how this MR can occur is
lacking. Here, we uncover an elementary mechanism that generates such
an MR for nonlinear response. It requires energy-dependent transport and
energy relaxation within the device. The sign of the MR depends on
chirality, charge carrier type, and bias direction. Additionally, we reveal
how CISS can be detected in the linear response regime in magnet-free 2T
nanodevices, either by forming a chirality-based spin-valve using two or more chiral components or by Hanle spin precession in
devices with a single chiral component. Our results provide operation principles and design guidelines for chirality-based spintronic
nanodevices and technologies.
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Recognizing and separating chiral enantiomers using
electronic/spintronic technologies addresses fundamental

questions of electronic charge and spin transport.1 It can open
up new avenues for chiral chemistry and can bring chiral
(molecular) structures into electronic and spintronic applica-
tions. This is enabled by the chirality-induced spin selectivity
(CISS) effect,2−4 which describes the generation of a collinear
spin current by a charge current through a chiral component
(single molecule, assembly of molecules, or solid-state system).
In two-terminal (2T) electronic nanodevices that contain a
chiral component and a single ferromagnet (FM), CISS is
reported as a change of electrical resistance upon magnet-
ization reversal.5−12 This magnetoresistance (MR) has been
interpreted in analogy to that of a conventional spin valve,
based on the understanding that both the FM and the chiral
component act as spin−charge converters.13−18 However, this
interpretation overlooks the fundamental distinction between
their underlying mechanismsmagnetism breaks time reversal
symmetry, while CISS, as a spin−orbit effect, does not. In fact,
Onsager reciprocity (which has its roots in fundamental
microscopic reversibility) prohibits the detection of spin−orbit
effects as 2T charge signals using a single FM in the linear
response regime (at sufficiently low bias).19−22 Therefore, it
requires theories beyond linear response for possible
explanations of the MR observed in CISS experiments.22−25

Here we show that such a 2T MR can indeed arise from the
breaking of Onsager reciprocity in the nonlinear regime. When
the conditions for generating CISS in a chiral component are
fulfilled, the emergence of the 2T MR requires two key
ingredients: (a) energy-dependent electron transport due to,

for instance, tunneling or thermally activated conduction
through molecular orbitals, and (b) energy relaxation due to
inelastic processes. Note that there exists an interesting parallel
in chemistry, where absolute asymmetric synthesis is enabled
by the lone influence of a magnetic field or magnetization in
the nonlinear regime [see Supporting Information A
(SI.A)].1,26,27

Below, before demonstrating the emergence of 2T MR in
the nonlinear regime and identifying key factors that
codetermine its sign, we will first introduce a transport matrix
formalism unifying the description of coupled charge and spin
transport in generic spin−charge converters such as a chiral
component and an FM tunnel junction/interface (FMTJ).
Afterward, we will explore new device designs that make 2T
electrical detection of CISS possible in the linear response
regime, and reveal a chiral spin valve built without magnetic
materials.

Transport Matrix Formalism beyond Landauer For-
mula. The (spin-resolved) Landauer formula considers charge
voltages as driving forces for electronic charge and spin
transport.28 However, in a circuit with multiple spin−charge
converters, we must also consider the buildup of spin
accumulations, which also drive the coupled charge and spin
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transport (see SI.B).29,30 Here, we include this (thermody-
namic) spin degree-of-freedom by extending the Landauer
formula using a Büttiker-type multiterminal transmission
analysis.31 Building on this, we introduce a transport matrix
formalism that describes the (thermodynamic) responses of
generic spin−charge converters. The symmetry/asymmetry of
these transport matrices in the linear/nonlinear response
regime is fundamentally related to the (breaking of) Onsager
reciprocity. It does not depend on specific microscopic
mechanisms and is not restricted to the transmission analysis
that we use (see SI.B).
Spin−Charge Conversion in a Chiral Component. CISS

arises from spin−orbit interaction and the absence of space-
inversion symmetry. Further symmetry considerations require
that the sign of the CISS-induced collinear spin currents must
depend on the direction of the charge current and the (sign of)
chirality. Note that the generation of CISS requires a
nonunitary transport mechanism within the chiral compo-
nent,32,33 which we assume to be present (see SI.C). In an
ideal case, as illustrated in Figure 1, this directional, spin-

dependent electron transport effectively allows only one spin
orientation, say, parallel to the electron momentum, to
transmit through the chiral component, and reflects and
spin-flips the other.22 The spin-flip reflection prevents a net
spin current in and out of electrodes at thermodynamic
equilibrium.34

We first describe the directional electron transmission ()
and reflection () in a generalized chiral component using
spin-space matrices introduced in ref 22. For right-moving
(subscript ▷) electrons coming from the left-hand side of the
component
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where the matrix elements are probabilities of an electron
being transmitted (t) or reflected (r) from an initial spin state
(first subscript) to a final spin state (second subscript). For
left-moving electrons, the corresponding matrices are the time-
reversed forms of the above (see SI.D).
We extend the above coupled charge and spin transport by

converting the spin-space matrices to transport matrices that

link the thermodynamic drives and responses in terms of
charge and spin. Following the symbols introduced in Figure 1,
we define (charge) electrochemical potential μ = (μ→ + μ←)/2
and spin accumulation μs = (μ→ − μ←)/2, as well as charge
current I = I→ + I← and spin current Is = I→ − I←. A subscript R
or L is added when describing the quantities on a specific side
of the component. With these, for a generalized case of Figure
1, we derive (see SI.D)
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where N is the number of (spin-degenerate) channels, e is
elemental charge (positive value), and h is the Planck’s
constant. An electrochemical potential difference μL − μR =
−eV is provided by a bias voltage V. We name the 3 × 3 matrix
the charge−spin transport matrix . All its elements are linear
combinations of the spin-space  and  matrix elements and
represent key transport properties of the chiral component. For
example, t is the (averaged) transmission probability, r is the
reflection probability (note that t + r = 2 because we have
treated the two spins separately), Pt and Pr are the CISS-
induced spin polarizations of the transmitted and reflected
electrons, respectively, γt and γr describe spin relaxation and
spin transport generated by spin accumulations, and s is the
charge current generated by the spin accumulations due to the
spin−charge conversion via CISS.
We are particularly interested in the symmetry of .

Equation 2 fully describes the coupled charge and collinear
spin transport through a (nonmagnetic) chiral component,
which is subject to Onsager reciprocity in the linear response
regime. This requires = − −H M H M( , ) ( , )ij ji , where H is
the magnetic field and M is the magnetization.19 This then
gives Ptt = Prr = s. In later discussions we will connect the R-
side of the chiral component to an electrode (reservoir), where
μsR = 0 and IsR is irrelevant. The matrix then reduces to a 2
× 2 form (see SI.D)
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Note that t and γr do not depend on the (sign of) chirality,
while Pt changes sign when the chirality is reversed.

Spin−Charge Conversion in an FMTJ. To calculate the
coupled charge and spin transport in a generic 2T circuit where
an (achiral) ferromagnet is also present, we need to derive a
similar matrix for an FMTJ. An FM breaks time-reversal
symmetry and provides a spin-polarization PFM to any
outflowing charge current. Based on this, we obtain for the
R-side of the FMTJ (see SI.E)
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where N′ is the number of (spin-degenerate) channels and T is
the electron transmission probability accounting for both spins.
The matrix here also satisfies the requirement

= − −H M H M( , ) ( , )ij ji , where a reversal of M corre-
sponds to a sign change of PFM.

Origin of MR: Energy-Dependent Transport and
Energy Relaxation. We model a generic 2T MR measure-

Figure 1. Illustration of CISS (ideal case). The directional electron
transmission is spin-selective, and the unfavored spin is flipped and
reflected. The chiral component is indicated by the blue helix and is
assumed to favor the transmission of electrons with spin parallel to
momentum. The electrons on both sides (L and R) of the chiral
component are labeled with their spin-specific (→ or ←) electro-
chemical potentials μL(R)→(←). At thermodynamic equilibrium, any net
charge or spin current in and out of electrodes is forbidden, but when
biased, the chiral structure supports a charge current I and collinear
spin currents on both sides IsL and IsR. The positive currents are
defined as right-to-left, i.e. when the (spin-polarized) electrons flow
from left to right.
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ment geometry using Figure 2a. An FM and a chiral
component are connected in series between two spin-

unpolarized electrodes (L and R), and the difference between
their electrochemical potentials μL − μR = −eV drives charge
and spin transport. We introduce a node between the FM and
the chiral component, which is characterized by an electro-
chemical potential μ and a spin accumulation μs. It preserves
the spin but relaxes the energy of electrons to a Fermi−Dirac
distribution due to inelastic processes (e.g. electron−phonon
interaction). Physically, the node represents the effect of all
inelastic processes that could happen during electron transport
in actual nanodevices.
No MR in the Linear Response Regime. The 2T

conductance G2T of this geometry in the linear response

regime can be derived by applying a continuity condition in the
node for both charge and spin currents, which gives (see SI.F)

=G G P P P P( , ), no termT T FM t FM t2 2
2 2

(5)

It depends on the polarizations PFM and Pt only to second
order, and does not depend on their product PFMPt. Therefore,
the 2T conductance remains unchanged when the sign of PFM
or Pt is reversed by magnetization or chirality reversal. This
result confirms the vanishing MR in the linear response regime,
as strictly required by Onsager reciprocity.22

This vanishing MR can be understood as a result of two
simultaneous processes. First, by the conventional description,
the charge current through the chiral component drives a
collinear spin current and creates a spin accumulation in the
node (spin injection by CISS), which is then detected as a
charge voltage by the FM (spin detection by FM). This charge
voltage indeed changes upon the FM magnetization reversal.
However, this is always accompanied by the second process,
where it is the FM that injects a spin current, and the Onsager
reciprocal of CISS detects it as a charge voltage. This voltage
also changes upon the FM magnetization reversal. In the linear
regime, the two processes compensate each other, and the net
result is a zero MR.

Emergence of MR in Nonlinear Regime and Its Sign. The
key to inducing MR is to break the balance between the two
processes, which can be done by using electrons at different
energies for spin injection and spin detection. This requires the
presence of energy relaxation inside the device, and it also
needs the transport to be energy-dependent in at least one of
the spin−charge converters. Note that the energy relaxation is
crucial for generating MR, because Onsager reciprocity, which
holds at each energy level, would otherwise prevent an MR
even for nonlinear response despite the energy-dependent
transport. We illustrate the emergence of MR using two
examples of energy dependence, (a) quantum tunneling
through the FMTJ and (b) thermally activated conduction
through molecular orbitals. These two elementary examples
reveal key factors that codetermine the sign of the nonlinear
MR.

Example (a). The asymmetric spin injection and detection
in an FMTJ was previously discussed by Jansen et al. for an FM
coupled to a semiconductor,35 and here we generalize it for our
system. The energy diagrams for this tunneling process are
sketched in Figure 2b and c for opposite biases. The bias opens
up an energy window Δμ = μL − μ, and electrons within this
window can contribute to the total tunnel current I. The
energy distribution of these tunneling electrons follows the
energy dependence of the tunnel transmission probability T(ϵ)
(blue curve). Therefore, electrons that contribute the most to
the tunnel current I are those at the highest available energy,
which are at μL (in the FM) under forward bias, and are at the
spin-split electrochemical potentials μ ± μs (in the node)
under reverse bias.
The spin injection process concerns the spin current Is

induced by the total charge current I through the FMTJ with
spin polarization PFM (assuming energy-independent PFM). It is
determined by the energy integral of T(ϵ) over the entire bias-
induced window Δμ and is symmetric for opposite biases
(assuming μs ≪ Δμ). In contrast, the spin detection process,
which concerns the spin accumulation μs in the node at its
highest energy μ (Fermi level), is not symmetric for opposite
biases. Effectively, the spin accumulation describes the deficit
of one spin and the surplus of the other, as illustrated by the

Figure 2. Origin of MR in a generic 2T circuit. (a). A 2T circuit
containing an FM and a chiral component, connected by a node. The
chiral component is assumed to favor the transmission of electrons
with spin parallel to momentum. (b, c). Schematic energy diagrams of
tunneling at the FMTJ under forward (b) and reverse (c) biases. The
energy-dependent tunnel transmission T(ϵ) is sketched in blue, and
the tunnel current affected by the spin accumulation μs is illustrated
by the color-shaded areas (cyan and orange). (d). Example I−V
curves considering the nonlinear mechanism of (b) and (c), while
keeping the transmission through the chiral component constant (see
SI.G). Note that positive bias voltage corresponds to the reverse bias
scenario depicted in panel (c). The MR ratio, defined as (I+ − I−)/(I+
+ I−), is plotted in inset. Here the subscript + or − denotes the
corresponding sign of PFM, with PFM > 0 corresponding to a spin-right
polarization for the injected electrons. The dashed line marks zero
MR.
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orange- and blue-shaded regions under the T(ϵ) curve in
Figure 2b and c, and therefore drives an (additional) charge
current proportional to the area difference between the two
regions. This detected charge current depends on the
transmission probability at energy μ and increases monotoni-
cally as the bias becomes more reverse.
The different bias dependences for spin injection and

detection break Onsager reciprocity for nonlinear response.
This is also shown by the different off-diagonal terms in the
nonlinear transport equation (see SI.G)
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where ∫μ μ̅ | = [ − ] ϵ ϵμ
μ

μ

μ
T T1/( ) ( ) dL

L L is the averaged trans-

mission over the energy window Δμ = μL − μ, and T|ϵ=μ is the
transmission evaluated at the Fermi level of the node ϵ = μ. In
the linear response regime, when μL ≈ μ, this equation returns
to eq 4.
The tunnel I−V and the MR due to this mechanism are

illustrated in Figure 2d using realistic circuit parameters (see
SI.I). The MR ratio reaches nearly 10% at large biases, but
strictly vanishes at zero bias. Notably, the MR is positive under
positive bias voltage (corresponds to reverse bias as in Figure
2c), and it reverses sign as the bias changes sign.
Example (b). The nonreciprocal spin injection and

detection can also arise from the nonlinear transport through
the chiral component. In principle, this could also be due to
tunneling, but we focus here on another aspect, the Fermi−
Dirac distribution of electrons. This is negligible when the
transmission function T(ϵ) is smooth, as for the case of
tunneling (thus we have assumed zero temperature for deriving
eq 6), but it becomes dominant when electron (or hole)
transmission is only allowed at certain discrete energy levels or
energy bands that are away from Fermi level, as for the case of
conduction through molecular orbitals or through energy
bands in semiconductors. We illustrate this in Figure 3a
considering the resonant transmission through the LUMO
(lowest unoccupied molecular orbital) and the HOMO
(highest occupied molecular orbital) of a chiral molecule
(see SI.H). For spin injection, the generated spin current is
proportional to the total charge current, which depends on the
(bias-induced) electrochemical potential difference between
the node and the right electrode, and is symmetric for opposite
biases. In comparison, for spin detection, the spin-split
electrochemical potentials in the node μ ± μs induce unequal
occupations of opposite spins at each MO (depending on the
MO position with respect to the node Fermi level μ), and it is
not symmetric for opposite biases. This different bias
dependence breaks Onsager reciprocity for nonlinear response
and gives rise to MR.
We consider the transmission through either only the

LUMO or only the HOMO, and their example I−V curves and
MR ratios are plotted in Figure 3b−c, respectively (see SI.I).
The MR is able to reach tens of percent even at relatively small
biases, and changes sign as the bias reverses. Remarkably, the
bias dependence of the MR is opposite for LUMO and
HOMO, implying that the charge carrier type, i.e. electrons or
holes, codetermines the sign of the MR. Again, the MR strictly
vanishes as the bias returns to zero (linear response regime).
An overview of the sign of MR is given in SI.J.

Chiral Spin Valve. In the linear response regime, our
formalism uses an antisymmetric transport matrix (opposite
off-diagonal terms) to describe the coupled charge and spin
transport through the FMTJ and uses a symmetric one for the
chiral component. The symmetries of these transport matrices
are directly required by Onsager reciprocity and have
consequences when considering 2T circuits containing two
generic spin−charge converting components, as illustrated in
Figure 4. If the two components are described by transport
matrices with opposite symmetries, a 2T MR signal is
forbidden in the linear response regime (Figure 4a). This
restriction is lifted if both components are described by
matrices with the same symmetry. For example, in a
conventional spin valve (Figure 4b), the two FMs are both
described by antisymmetric transport matrices, and the
magnetization reversal of one FM indeed changes the 2T
conductance even in the linear response regime.

Figure 3. Generating MR by thermally activated conduction through
molecular orbitals. (a) Schematic energy diagram of resonant
transmission through molecular orbitals in a chiral component
(molecule). The LUMO and HOMO levels and the bias-dependent
electrochemical potentials are labeled, and the energy- and bias-
dependent Fermi−Dirac function F(ϵ,μ) is sketched in blue. (b and c)
Example I−V curves and MR (inset) due to the resonant transmission
through the LUMO (b) and the HOMO (c), for the same device
geometry as in Figure 2a but with the transmission of the FMTJ set
constant. The chiral molecule is assumed to favor the transmission of
electrons with spin parallel to momentum.
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A less obvious outcome of this symmetry consideration is
that a combination of two chiral components (both described
by symmetric matrices) can also form a spin valve, provided
that at least one of them can reverse chirality, like a molecular
rotor.36 This is illustrated in Figure 4c−d, with example I−V
curves in Figure 4f. In the linear response regime, this
geometry already produces a nonzero chirality-reversal
resistance (CRR, see figure caption for definition) signal,
which is further enhanced to tens of percent as the bias
increases.
Finally, we introduce a 2T geometry that can detect the

spin−charge conversion due to a single chiral component, as
shown in Figure 4e. Here, a charge current through the chiral
component can create a spin accumulation in the node (even
in the linear response regime), which can then be suppressed
using a perpendicular magnetic field due to Hanle spin
precession. This results in a magnetic-field-dependent 2T
conductance, and Figure 4g shows the I−V curves for zero
magnetic field (blue solid curve) and for when the field fully
suppresses the spin accumulation (black dashed curve). The
corresponding MR (inset) is nonzero even in the linear
response regime and can be enhanced by increasing bias.
Discussion. We explained that energy-dependent transport

combined with energy relaxation can give rise to MR signals in
2T electronic nanodevices containing an FM and a chiral
component. We analyzed the (sign of) MR using two
elementary examples: energy-dependent tunneling through
FMTJ (plus a chiral component at linear response) and
energy-dependent Fermi−Dirac distribution for thermally
activated resonant transmission through the chiral component

(plus an FMTJ at linear response). Here, we note that other
mechanisms such as electron−electron interaction may also
play a role in electron transport through chiral molecules.37,38

This however does not affect our (qualitative) conclusions
regarding the onset and the sign of MR, and can be
quantitatively accounted for by deriving the transport matrix
of the chiral component accordingly39,40 (see SI.K).
We also assumed that the overall conduction through the

circuit components is (phase) incoherent. In practice, coherent
conduction mechanisms, such as direct tunneling from the FM
into an MO of the chiral molecule, may also be present. For
fully incoherent conduction, the chirality-based spin valve
(Figure 4c−d) resembles a conventional CPP GMR device,41

while if coherent tunneling dominates, it is comparable to a
TMR device.42

Finally, we draw attention to the sign of the nonlinear MR,
which depends on the dominating nonlinear element, the bias
direction, the charge carrier type, and the (sign of) chirality, as
summarized in SI.J. We plotted the MR as a function of bias
while assuming the chirality and the charge carrier type remain
unchanged. However, in experimental conditions, it is possible
that the charge carrier type switches when the bias is reversed,
and consequently the MR can have the same sign for opposite
biases. Such a bias-even MR is indeed in agreement with most
experimental observations.5,6,8−12 The experimental conditions
concerning the vanishing MR in the linear response regime are
however unclear, since sometimes the currents are too low to
be measured.5,6,9 For experiments where a linear response
regime can be identified, some do show a strongly suppressed

Figure 4. Generic 2T spin-valve device geometries with the symmetry of the charge−spin transport matrix labeled for each component. (a) The
aforementioned FM−chiral geometry where MR signals are strictly forbidden in the linear response regime. (b) An FM−FM geometry, as in a
conventional spin valve, where MR signals are allowed in the linear response regime. (c, d) A chiral−chiral geometry for using the same (c) and
opposite (d) chiralities, as marked by color and labeled with D or L (here we assume the D-chiral component favors the transmission of electrons
with spin parallel to momentum, and the L-chiral component favors the antiparallel ones). The spin-valve effect can be achieved, even in the linear
response regime, by reversing the chirality of one component. (e) Geometry for directly probing the spin accumulation generated by a single chiral
component, which is connected to a nonmagnetic barrier via a node. A perpendicular magnetic field B suppresses spin accumulation in the node via
Hanle spin precession. (f) Example I−V curves for a chiral−chiral spin valve, with the two curves representing the geometries in panel (c) and (d),
respectively. The corresponding chirality-reversal resistance (CRR) ratio, as defined by CRR = (IDD − ILD)/(IDD + ILD) (the two subscripts refer to the
chiralities of the two chiral components), is plotted in the inset. (g) Example I−V for the geometry in panel (e), calculated for cases with μs either
fully or not-at-all suppressed by Hanle precession. The corresponding MR is shown in inset, which is defined as the difference of the two curves
divided by their sum.
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or vanishing MR,8,12 while some do not.10,11 This incon-
sistency thus requires further investigation.
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(14) Medina, E.; Gonzaĺez-Arraga, L. A.; Finkelstein-Shapiro, D.;
Berche, B.; Mujica, V. Continuum model for chiral induced spin
selectivity in helical molecules. J. Chem. Phys. 2015, 142, 194308.
(15) Guo, A.-M.; Sun, Q.-F. Spin-selective transport of electrons in
DNA double helix. Phys. Rev. Lett. 2012, 108, 218102.
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(31) Büttiker, M. Four-terminal phase-coherent conductance. Phys.
Rev. Lett. 1986, 57, 1761.
(32) Bardarson, J. H. A proof of the Kramers degeneracy of
transmission eigenvalues from antisymmetry of the scattering matrix.
J. Phys. A: Math. Theor. 2008, 41, 405203.
(33) Matityahu, S.; Utsumi, Y.; Aharony, A.; Entin-Wohlman, O.;
Balseiro, C. A. Spin-dependent transport through a chiral molecule in
the presence of spin-orbit interaction and nonunitary effects. Phys.
Rev. B: Condens. Matter Mater. Phys. 2016, 93, No. 075407.
(34) Kiselev, A. A.; Kim, K. W. Prohibition of equilibrium spin
currents in multiterminal ballistic devices. Phys. Rev. B: Condens.
Matter Mater. Phys. 2005, 71, 153315.
(35) Jansen, R.; Spiesser, A.; Saito, H.; Fujita, Y.; Yamada, S.;
Hamaya, K.; Yuasa, S. Nonlinear Electrical Spin Conversion in a
Biased Ferromagnetic Tunnel Contact. Phys. Rev. Appl. 2018, 10,
No. 064050.
(36) Koumura, N.; Zijlstra, R. W.; van Delden, R. A.; Harada, N.;
Feringa, B. L. Light-driven monodirectional molecular rotor. Nature
1999, 401, 152−155.
(37) Díaz, E.; Contreras, A.; Hernańdez, J.; Domínguez-Adame, F.
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