
PHYSICAL REVIEW B 98, 165304 (2018)

Two-laser dynamic nuclear polarization with semiconductor electrons: Feedback, suppressed
fluctuations, and bistability near two-photon resonance
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Feedback control is a powerful tool to stabilize systems for which precision control is difficult to impose
directly, such as the environment of an open quantum system. Reduction of noise from the environment is a
major challenge on the road to harnessing delicate quantum effects such as superposition and entanglement. In
particular, spin states of defects and quantum dots in semiconductors display promising coherence properties
for future applications, often being limited by disturbance from disordered nuclear spins in their environment.
Here we show how optical coherent population trapping (CPT) of the spin of localized semiconductor electrons
stabilizes the surrounding nuclear spins via feedback control. We find distinct control regimes for different signs
of laser detuning and examine the transition from an unpolarized, narrowed state to a polarized state possessing a
bistability. The narrowing of the state protects the electron spin against dephasing and yields self-improving CPT.
Our analysis is relevant for a variety of solid-state systems where hyperfine-induced dephasing is a limitation for
using electron spin coherence.
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I. INTRODUCTION

A localized electron spin coupled to nuclear spins in a solid
allows for studying the dynamics of mesoscopic spin ensem-
bles. It forms a realization of the Gaudin (central spin) model
[1] with the number of spins ranging from ∼10–106. From an
application perspective the isolated dynamics of the electron
spin is interesting as it can be used for quantum information
processing. In thermal equilibrium the nuclear spins act as a
source of dephasing for the electron spin. Optical orientation
of the electron spin can be used to prepare out-of-equilibrium
nuclear spin states via dynamic nuclear polarization (DNP)
[2–4]. In turn, polarized nuclear spins induce an energy shift
for the electron spin states, which can be described as an
effective magnetic (Overhauser) field. DNP can also reduce
thermal fluctuations in the nuclear spin polarization, which
increases the electron spin dephasing time. This can be done
either by creating a large nuclear spin polarization or by
squeezing the polarization into a narrowed distribution [5,6].
Significant achievements have been made for both cases via
electron transport, electron spin resonance, and optical prepa-
ration techniques [4,7–17]. We present here how optical co-
herent population trapping (CPT) of localized semiconductor
electrons [18] stabilizes the surrounding nuclear spin bath in a
state which is more ordered than the thermal equilibrium state.

CPT is the phenomenon where two-laser driving from
the electron spin states to a common optically excited state
displays—on exact two-photon resonance—a suppression of
optical excitation due to destructive quantum interference in
the dynamics [19], and is a key effect in quantum information
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processing [20]. Its sharp spectral feature allows for highly
selective control over absorption and spontaneous emission of
light. With atoms this has been applied in selective Doppler
and sideband cooling [21–23]. Similarly, in semiconductors
the CPT resonance can selectively address localized electrons
that experience a particular Overhauser field [24–26]. This can
lead to trapping of the combined electron-nuclear spin system
in a dark state which was demonstrated as a measurement-
based technique for reducing uncertainty of the nuclear spin
state around a nitrogen vacancy center [15].

The CPT-based control scheme we propose relies on
an autonomous feedback loop, existing for detuned lasers
only, and does not require measurement or adaptation of
control lasers [24]. Earlier work found such a feedback loop
in an effective two-level description of a driven three-level
� system [26]. We use a full description of the � system
dynamics, uncover distinct control regimes for different
signs of the detuning, and examine the transition from an
unpolarized, narrowed state for blue-detuned lasers to a
polarized state possessing a bistability for red-detuned lasers.
With a stochastic approach that was previously used in the
context of electron spin resonance experiments [11,27] we
analyze the evolution of thermalized nuclear spins to a state
of reduced entropy. Our method thus expands the established
CPT technique for coherent electron spin preparation and
manipulation [28] to one that can also improve the electron
spin dephasing time by nuclear spin preparation.

The model applies to a class of localized systems that
are characterized by low strain and spherical symmetry of
the confining potential. For these the hyperfine interaction
between the nuclear spins and the hole of the optically excited
state is an order of magnitude smaller than the electron [29]
and we consider it negligible. The stabilization of the nuclear
spin bath purely arises from DNP mediated by the hyperfine
interaction for the ground-state electron [30,31]. Prerequisites
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are a high nuclear spin temperature and a nonzero electron
spin temperature (ensuring bidirectional DNP). We focus our
analysis on the case of the donor-bound electron in GaAs,
which has these properties, and in our example calculations
use parameters that approach (in order of magnitude) values
that apply to this system [4]. We expect this work to also be
applicable to strain-free quantum dots [32] and other solid-
state spin defects where the hyperfine contact interaction for
the electron is dominant. Our analysis differs from nuclear
spin stabilization demonstrated in self-assembled quantum
dots [12,33] where hole-mediated DNP does contribute due
to the design of these structures: a noncollinear hole-nuclear
spin coupling [34,35] arises due to anisotropy [36], and lattice
strain results in a noncollinear interaction between the elec-
tron and nuclear spin [37]. We predict different features than
[12] and discuss how these are distinguishable in experiment.
In parallel with this theoretical work, our team explored
the validity of our model with experiments on donor-bound
electrons in GaAs, and observed its key fingerprints [38].

II. CPT WITH LASER AND OVERHAUSER DETUNINGS

Figure 1(a) presents the electronic part of our model: a
� system with spin states |1〉 and |2〉 that each have an
optical transition to state |3〉. Nuclear spin polarization gives
an Overhauser shift −(+)h̄δ of the state |1〉 (|2〉), and we
assume the Overhauser shift of |3〉 to be negligible. The values
of energy differences h̄ω13 and h̄ω23 and Zeeman splitting
h̄ωz between these states are defined for δ = 0. Two laser
fields with frequencies ω1 and ω2 (and Rabi frequencies �1

and �2) selectively drive the two transitions.
The decay and decoherence rates of the system are the

spin flip rate �s , excited-state decay rate �3, spin decoherence
rate γs , and excited-state decoherence rate γ3. We take all
decay rates symmetric for the two electron spin states (for
�s this implies temperature kBT � h̄ωz), to avoid needless
complication of the discussion, but our conclusions remain
valid for the nonsymmetric case. For modeling the CPT ef-
fects we directly follow Ref. [20]. Appendix A 1 specifies this
in our notation. For this system, CPT occurs for driving at two-
photon resonance (TPR; i.e., for δ = 0, ω1 = ω2 + ωz). In the
conventional picture of CPT, one laser is fixed at single laser
detuning � while the other is scanned across the resonance. At
the TPR point the system shows reduced absorption, getting
trapped in a dark state that equals (for ideal spin coherence)
|�〉 ∝ �2 |1〉 − �1 |2〉. Figure 1(b) presents this for differ-
ent � in terms of the system’s steady-state density-matrix
element ρ13.

For our DNP analysis, however, we study CPT as a func-
tion of δ while the two lasers are fixed to exact TPR for δ = 0.
This is the electron’s point of view on how a finite Overhauser
shift breaks the ideal CPT condition, and the dependence
on δ reflects the sharp spectral CPT feature. Figure 1(c)
presents how this works out for the electron spin polarization,
(ρ22 − ρ11)/2, in terms of the steady-state density matrix. The
effect of a nonzero Overhauser shift is to break the TPR setting
of the lasers [the detuning of laser 1 (2) from its corresponding
transition is then � − (+) δ]. For � = 0 this has no effect
on the spin polarization since δ drives both lasers away from
resonance by an equal amount. For finite �, however, the
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FIG. 1. Electronic level scheme and response under two-laser
driving. (a) Schematic of energies and shifts of the electronic three-
level system (for brevity the figure omits factors h̄). Thick black lines
are the (not Overhauser shifted) spin states |1〉, |2〉 and optically
excited state |3〉, with energy splittings ω13, ω23, and ωz. �s , γs

and �3, γ3 are spin- and excited-state decay and decoherence rates,
respectively. Two lasers (frequencies ω1 and ω2) couple to the system
with Rabi frequencies �1 and �2, excited-state detuning �, and
Overhauser shift δ (see further main text). (b) Conventional depiction
of CPT (here for δ = 0 Overhauser shift) showing the narrow CPT
resonance within a broader absorption line. Laser 1 scans over the
resonance while laser 2 is held fixed at ω2 = ω23 + �, for detunings
� as labeled. (c) Electron spin polarization as a function of Over-
hauser shift δ, with lasers fixed at ω1 = ω13 + � and ω2 = ω23 + �.
Inset: Excited-state population as a function of Overhauser shift
(same parameters as main panel). In (b) and (c) results are presented
as elements ρij of the steady-state density matrix. All parameters
are normalized with respect to �3 ≡ 1: γ3 = 10, �s = 10−4, γs =
10−3, �1 = �2 = 0.5.

Overhauser shift leads to uneven detunings from the excited
state, resulting in the electron spin polarization changing
rapidly as a function of δ near TPR. Moreover, the electron
spin polarization acquires a sign change as the sign of �

is reversed. Notably, the excited-state population (ρ33, inset) is
symmetric with respect to the sign of �, which distinguishes
the feedback mechanism that we discuss from mechanisms
that depend on the excited-state population (as described in
[12]). It is also interesting to observe that for |δ| � 0.4 the
spin polarization has the sign which is expected for standard
optical pumping (the population is transferred out of the spin
state associated with the more resonant laser), while close to
TPR it has the opposite sign (see Appendix B).

III. STABLE POINTS OF THE DRIVEN
ELECTRON-NUCLEAR SPIN SYSTEM

How this electron spin polarization as a function of δ drives
DNP (which in turn will influence δ) is the core of our further
analysis. To this end, we consider the � system to be em-
bedded in the crystal lattice where it couples to nuclear spins
within the electron wave function. We study the combined
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FIG. 2. Open system schematic, response function, and transi-
tion between distinct control regimes. (a) Overview of components
and interactions of the laser-driven electron–nuclear-spin-ensemble
system, with for each component its relaxation bath. Competition
between the interactions and relaxation mechanisms govern the
dynamics of the full system; see main text for details. (b) The rate
δ̇ as a function of the Overhauser shift δ [Eq. (2)] that is experienced
by the electron near CPT conditions, for detunings � as labeled and
�h/�d = 0.01. (c) Thick solid (dashed) lines display the one or two
(un)stable stationary δ values (δ̇ = 0) as a function of laser detuning
�. The relaxation parameters and laser powers for (b) and (c) equal
those of Fig. 1.

dynamics of the driven � system and its surrounding nuclear
spin bath, and also take into account that this nuclear spin bath
in turn couples to other nuclear spins of the crystal that are not
in contact with the electron, leading to leakage of nuclear spin
polarization by spin diffusion [Fig. 2(a)].

We first introduce relevant aspects of this hyperfine inter-
action. We concentrate on the common scenario where an
external magnetic field is applied which defines a quantiza-
tion axis for the spins, which we label ẑ. This suppresses
nonsecular (not energy conserving) terms in the nuclear spin
dipole-dipole interaction and we can approximate the nuclear
spins to be frozen on the timescale of electron spin dynamics
[39–41]. The hyperfine Hamiltonian has electron-nuclear flip-
flop terms that describe the transfer of spin angular mo-
mentum along ẑ between the two systems (Appendix A 2
provides a summary in our notation). For a single nuclear spin
coupled to an electron, treated perturbatively, this results in
the relaxation equation [42]

˙〈Iz〉 = −�h

(
〈Iz〉 − 〈Iz〉 − I 2 + I

S2 + S
[〈Sz〉 − 〈Sz〉]

)
. (1)

Here I and Iz are the nuclear spin quantum number and spin
component along ẑ, and similarly for electron spin S. The
overbar indicates that the expectation value is taken at thermal
equilibrium. The effective hyperfine relaxation rate �h is
proportional to τc/(1 + ω2

zτ
2
c ), which reflects how the electron

spin correlation time τc determines the spectral density of
the fluctuating hyperfine coupling [43]. The nuclear spin flips
along ẑ are allowed due to fluctuations in the electron spin
component perpendicular to ẑ. These happen on the order of
the intrinsic electron spin coherence time T2 due to coupling
to the crystal lattice. Additionally it is influenced by laser
excitation because the repeated absorption and spontaneous
emission also randomize the in-plane component of the elec-
tron spin. Thus the quenching of optical excitation due to CPT
near δ = 0 has an influence on �h. In our model we take this
into account by modulating the equilibrium hyperfine inter-
action rate �h with the optical excitation rate obtained from
the driven �-system dynamics of Fig. 1 (see Appendix A 3).
Equation (1) shows that 〈Iz〉 can be controlled by bringing
the electron spin out of thermal equilibrium. By summing
Eq. (1) over all nuclei we can express the rate of change of
δ as a function of δ, forming a closed-loop system, which
includes the dependence on the out-of-equilibrium electron
spin polarization,

δ̇ = −�h[δ − K 〈Sz〉] − �dδ, (2)

where K is a constant determined by the strength of the
hyperfine coupling (see Appendix A 2) and we used again
the high-temperature approximation 〈Sz〉 = 〈δ〉 = 0. The last
term of Eq. (2) incorporates the loss of nuclear spin polariza-
tion by diffusion to the environment at a rate �d which we
assume constant.

The polarization of the nuclear spin system is governed
by the control dynamics of Eq. (2). It is an autonomous
differential equation, which has equilibria at δ̇ = 0. The
equilibria constitute stable points when ∂δ̇

∂δ
< 0. These are

points of interest since, as we will show in the next section,
they constitute attractors for the nuclear spin polarization as
it evolves over time. The dominant factor that determines
the behavior near the stable points is the sign change of the
electron spin population; this can be such that DNP drives
the system either towards or away from the equilibrium point.
The sign of the hyperfine coupling, incorporated through
Eq. (1), and the asymmetry introduced by the detuning �

determine which equilibrium points are stable. The depen-
dence of this control on driving CPT for the electron is
shown in Fig. 2(b). Inclusion of the hyperfine relaxation and
spin diffusion rates make that the graphs becomes tilted and
distorted as compared to Fig. 1(c). The deformation reflects
the dependence of �h on the optical excitation rate and that
the DNP is in competition with the nuclear spin diffusion that
tends to relax the nuclear spin bath towards thermal equilib-
rium. Equilibrium points for which ∂δ̇

∂δ
> 0 are unstable since

the DNP acts in a way to drive nuclear polarization away from
these points. The dashed line represents the system driven by
two lasers with � = 0, and has strong similarity with thermal
equilibrium (no laser driving) because the Overhauser shift
δ does not lead to a change in the electron spin polarization
[see also the dashed line in Fig. 1(c)]. The position of the
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stable point is at 〈δ〉, which we assumed zero. When the lasers
are tuned to TPR for δ = 0, while having a finite detuning
�, two qualitatively different control regimes emerge. For
the red-detuned case � = −1 there are two stable points at
δ ≈ ±0.3, and the nuclear spin system will thus display a
bistability. For the blue-detuned case � = +1, however, there
is again one stable point at δ = 0. The transition between
these two control regimes is shown in Fig. 2(c) where the
thick black lines represent the stable point(s) for a range of
detunings �. Even though the blue-detuned case displays the
same stable point as the equilibrium case there is an enhanced
response towards δ = 0 for a region around this point. The
effect of this gain becomes apparent when we study the
stochastics of the nuclear spin polarization. Notably, the small
plateaus in the traces of Fig. 2(b) at δ = 0 are due to the CPT
suppression of �h.

IV. SUPPRESSION OF NUCLEAR SPIN FLUCTUATIONS

The stochastics of the nuclear spin polarization gives rise
to the electron spin dephasing time that is observed in mea-
surements, whether on an ensemble of � systems [38,44] or
by repeated measurements on a single system [4]. In such
cases each system experiences a different Overhauser shift,
sampled from a probability distribution P (δ), and this directly
translates into a distribution for the electron precession fre-
quencies. This can be used to calculate the dephasing time
T ∗

2 , indicating when information on the electron spin state
has decayed to 1/e of its initial value (see Appendix A 5).
The evolution of P (δ) under the control dynamics of Eq. (2)
can be described by a Fokker-Planck equation [27,45], in the
continuum limit where the number of nuclear spins N � 1,

Ṗ = 2

N

∂

∂δ

(
−δ̇P + δ2

max

N

∂

∂δ
[�d + �h]P

)
. (3)

(Note: The derivation of a Fokker Planck equation for the nu-
clear spin polarization can be found in chapter 3 of Ref. [45].
Our Eq. (3) is identical to their Eq. (3.7), with Ṗ expressed
in terms of δ, �d , and �h.) Here N is the number of system
nuclear spins and δmax is the Overhauser shift for complete
nuclear spin polarization (for simplicity, we describe the
dynamics in the approximation where N spins with I = 1

2
couple to the electron with equal strength [4]). Without laser
driving Eq. (2) gives δ̇ = −(�d + �h)δ and the steady-state
solution to Eq. (3) is a Gaussian with standard deviation σδ =
δmax/

√
N , as expected in thermal equilibrium. With laser

driving the control gain becomes nonlinear, as in Fig. 2(b), and
we evaluate the steady-state solution Pss (δ) numerically (see
Appendix A 4). With Eq. (3) we can study the evolution of
the initial thermalized distribution P (δ) while laser control is
imposed via Eq. (2). The initial distribution depends on N and
δmax. For our example calculations we take N = 105, δmax =
16.3, and K = 10δmax/3 (see Appendix A 2), representing the
donor-bound electron in GaAs [44] which has �3 ≈ 1 GHz.

The evolution of P (δ) corresponding to the response func-
tions from Fig. 2(b) is depicted in Figs. 3(a) and 3(b). For
the blue-detuned case P (δ) gets narrowed and focuses around
the single stable point δ = 0. This distribution results in a
prolonged electron spin dephasing time. For the red-detuned
case P (δ) splits apart and in the steady state it is divided
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FIG. 3. Evolution of the nuclear spin polarization probability
distribution. Time evolution of P (δ) for a nuclear spin bath with
N = 105, for cases that correspond to the curves in Fig. 2(b), with
�1 = �2 = 0.5 and �h/�d = 0.01. In (a) and (b) the dashed lines
show the same initial (Gaussian) distribution at thermal equilibrium
(before laser driving is switched on); black lines show the final
steady-state distribution. The sign of the detuning � determines
whether the driven system has mono- or bistable behavior. Panel (c)
shows the improvement in electron spin dephasing time correspond-
ing to the sequence of curves in (a).

between two stable points, each displaying a narrowed dis-
tribution with respect to the initial state. During evolution the
rate of change of P (δ) is at first lagging at δ = 0, causing
the central dip in the gray lines of Fig. 3(a) and the central
peak in Fig. 3(b). This is due to the suppressed hyperfine
relaxation rate �h at CPT resonance. At long timescales this
effect smooths out.

A thermodynamic interpretation of the narrowing effect is
that when the driven � system is detuned from TPR, optical
excitation converts low-entropy laser light to higher-entropy
fluorescence light, resulting in an entropy flux away from the
electron system. In turn, the electron acts as a controller on
the nuclear spins, removing entropy from the spin bath and
providing increased state information of the nuclear spins.
Because of the slow dynamics of the nuclei this effect is
sustained after laser control is turned off, giving an enhanced
dephasing time for subsequent electron spin manipulation.
The evolution of T ∗

2 calculated from P (δ) as in Fig. 3(a) is
presented in Fig. 3(c), where the evolution time is expressed
in units of the nuclear spin diffusion time τn = 1/�d (on the
order of seconds to minutes). The nuclear spin bath attains
a stable state with an increase in T ∗

2 of a factor of ∼3.7 in
0.2τn. While this increase is moderate for the GaAs param-
eters used, it can be much more significant for systems with
weaker nuclear spin diffusion (which can also be the case for
GaAs when this is suppressed due to a Knight shift [38,46]).
Notably, the resulting Pss (δ) does not change with variation of
�h and �d provided their ratio remains fixed. For the system
nuclear spins this represents the ratio of coupling strength to
the controller (electron spin) and the environment [Fig. 2(a)].
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FIG. 4. Optimization of the T ∗
2 improvement factor and depen-

dence on nuclear spin relaxation rates. Traces of driving rate δ̇

as a function of δ [black lines in panels (a) and (b)] and their
respective effect on the nuclear spin distributions [(c) and (d)] for
Rabi frequencies � = 2 [(a) and (c)] and � = 0.1 [(b) and (d)].
In (a) and (b) the dashed line is �dδ, representing the nuclear spin
flip rate due to spin diffusion. In (c) and (d) the dashed line is
the same (note different scale) nuclear spin probability distribution
function at thermal equilibrium for N = 105 and �h/�d = 0.01.
The black line is the steady-state distribution under laser driving at
detuning � = +1 and Rabi frequencies � = 2 (c) and � = 0.1 (d).
The gray area in (b) and (d) highlights the narrowing range. For
low laser powers the driving curve (b) shows a steep response at
δ = 0 that acts as a strong force towards 0 for δ values around
this point, and causes strong narrowing. The range over which
narrowing takes place, however, is too small to cover the initial
distribution. (e) Optimal T ∗

2 improvement as a function of �h/�d .
The simulated values (dots) reveal a dependence that scales with
[1/(1 + �d/�h)]1/2. Inset: Improvement factor in T ∗

2 for a range of
detunings and laser powers at �h/�d = 0.01. The white dot marks
the optimum where T ∗

2 /T
∗
2 = 6.75.

V. OPTIMAL DRIVING AND DEPENDENCE ON
SYSTEM PARAMETERS

Figure 4 presents how the narrowing mechanism performs
for different laser powers. At high power [Figs. 4(a) and
4(c); �1 = �2 ≡ � = 2] the power broadening of the CPT
resonance quenches the hyperfine rate �h over a wide range
around δ = 0. This results in a weak response and the nar-
rowing is only effective at the tails of the initial P (δ). At
lower power [Figs. 4(b) and 4(d); � = 0.1] there is a strong
response around δ = 0, indicating strong narrowing. However
this does not extend far enough to include the tails of the initial
P (δ). The T ∗

2 improvement factor in both cases is minor,
only 1.38 and 1.63, respectively. Optimal T ∗

2 enhancement
is found at moderate laser powers. Figure 4(e) depicts the
optimum values as a function of �h/�d . The inset shows
how such an optimum is found from a map of T ∗

2 /T
∗
2 for

a range of laser powers and detunings, for �h/�d = 0.01
(open circle in main figure). These numerical results show that
the optimal enhancement closely agrees with the square root
dependence T ∗

2 /T
∗
2 ∝ [1/(1 + �d/�h)]1/2. This reflects how,

for the system nuclear spins, the ratio between the coupling
to the electron and to the environment nuclear spins (giving
rise to �h and �d , respectively) governs the optimal narrowing
that can be achieved. This allows for estimating the maximal
T ∗

2 enhancement in real solid-state spin systems, where spin
diffusion always plays a role.

VI. DISCUSSION

In Ref. [12] a similar narrowing effect has been described
and demonstrated for a quantum dot. The authors attribute
it to the noncollinear hyperfine coupling for the hole spin
in the optically excited state, while our result is based on
electron-nuclear spin coupling. For paramagnetic defects, in
general, either type of hyperfine coupling may dominate. To
distinguish the two in experiment we point out two char-
acteristics that are different and readily measurable. First,
the transition from narrowing to a regime of bistability with
changing sign of the detuning only occurs for our model.
Second, the narrowing in Ref. [12] improves with increasing
power while for our model there is a particular laser power
that gives the optimal narrowing [Fig. 4(e)].

The effects we have discussed are readily measurable
since, for blue detuning, the transmission of the laser beams
tuned centrally on a narrow CPT line increases when the
electron spin dephasing time increases. Hence, the narrowing
of the nuclear spin polarization distribution directly translates
to enhanced laser transmission over time (or equivalently, in a
reduced signal when detecting fluorescence) and as such com-
prises a self-improving CPT effect. During the preparation of
this paper our group has observed the bistability in the nuclear
spin bath at silicon donors in GaAs [38]. Furthermore, in
Ref. [47] it was demonstrated that the CPT-driven nuclear spin
narrowing, and hence improvement of T ∗

2 , can be achieved
in a single InGaAs quantum dot. These authors reported a
10-fold increase in T ∗

2 , which is slightly higher than our calcu-
lated optimum value of 6.75 based on parameters for Si-doped
GaAs. A difference between dots and impurities can arise
from the fact that the former have a material boundary, which
suppresses spin diffusion. Also interestingly, they attribute the
effect in their system to hyperfine interaction mediated by
quadrupolar moments of the nuclei (which couple to electric
field gradients present in the strained environment of the dot),
whereas we took the Fermi contact hyperfine coupling as a
starting point for our analysis, which we expect to dominate at
strain-free impurities (and as already mentioned Ref. [12] at-
tribute a similar effect to a hole spin-mediated hyperfine cou-
pling). From such demonstrations we expect that the method
described here is widely applicable to single-electron systems
coupled by hyperfine interaction to a nuclear spin bath. And
with each system having unique parameters for hyperfine
coupling strength and spin diffusion, it would be interesting
to see the technique applied to a wider range of impurities and
quantum dots. Besides improving the coherence time of spin
qubits for quantum information processing, the capability to
prepare well-defined out-of-equilibrium states of the nuclear
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spin bath in this way can give new insights into the nature of
the electron-nuclear spin coupling and nuclear spin relaxation
in these systems.
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APPENDIX A: COMPUTATIONAL METHODS

Below we present in detail the methods used to perform
the computations that give rise to the figures in the results
section.

1. Lindblad master equation for the driven three-level system

For our notation and approach for modeling the CPT
physics in a driven three-level system, we directly follow
Ref. [20]. The dynamics of the � system in Fig. 1(a) is
governed by the Hamiltonian (in the rotating frame)

H� = h̄

2

⎛
⎜⎝

−2δ 0 −�∗
1

0 2δ −�∗
2

−�1 −�2 −2�

⎞
⎟⎠. (A1)

The equation of motion for the density matrix ρ� that de-
scribes this electronic system as an open system with relax-
ation and decoherence is

ρ̇� = −i

h̄
[H�, ρ�] +

∑
i,j

(
Lijρ�L

†
ij − 1

2

{
L
†
ijLij , ρ�

})

(A2)

(elements ρij are density matrix elements of ρ�). Here, the
Lindblad operators are defined by

Lij = αij |i〉 〈j | , (A3)

α = 1

2

⎛
⎜⎝

γs 2�s 2�3

2�s γs 2�3

0 0 γ3

⎞
⎟⎠. (A4)

The matrix α contains all decay and decoherence rates
of the system: spin flip rate �s , excited-state decay rate
�3, spin decoherence rate γs , and excited-state decoherence
rate γ3.

2. Fermi contact hyperfine interaction

We consider the case where the hyperfine interaction be-
tween the � system and the nuclear spin is dominated by the
Fermi contact interaction for the ground-state electron. This
interaction is described by the Hamiltonian

Hf = 4

3
μ0μB

∑
i

Ai I i · S, (A5)

where Ai = h̄γi |ψe(r i )|2. The gyromagnetic factor, γi , and
the electron wave function at the position of a nucleus, ψe(r i ),
characterize the interaction strength with the ith nuclear spin.
The spin operators are defined to have eigenvalues mJ =
−J, . . . , J for any spin quantum number J . This interaction
term may be viewed in the form of a Zeeman interaction,
H = −μ · Bn, with μ = −gμB S the electron spin magnetic
moment. The effective magnetic field due to the nuclei acting
on the electron is then

Bn = 4

3g
μ0

∑
i

Ai I i . (A6)

In an external magnetic field it is convenient to expand the
I · S product using ladder operators. The total Hamiltonian
becomes

H = Hz + Hf , (A7)

Hz = h̄ωzSz +
∑

i

h̄ωiIi,z, (A8)

Hf = 2

3
μ0μB

∑
i

Ai (2Ii,zSz + Ii,+S− + Ii,−S+). (A9)

Equation (A8) represents the Zeeman energy of the electron
spin and the nuclear spins in an external magnetic field applied
along ẑ. The first term within the summation in Eq. (A9) adds
to the external field an effective magnetic (Overhauser) field
Bn,z. To calculate its expectation value 〈Bn,z〉 = Tr(Bn,zρn),
where ρn is the reduced density matrix comprising the nuclear
spin state, it is in principle required to know the interaction
strengths for all nuclei. In the case of GaAs this is well studied
and 〈Bn,z〉 ≈ 〈Iz〉 × 3.53 T [41], and the maximum field is
Bmax = 5.30 T. The Overhauser field Bn,z translates to the
Overhauser shift δ used in the results section according to
δ = 1

2gμBBn,z/h̄. This yields δmax = 16.3 GHz. To describe
DNP we use a so-called box model [4] where the electron
couples equally to a number of N nuclear spins. This amounts
to the change

∑
i Ai → A

∑N
i=1 with A the average interac-

tion strength per nucleus. In our calculations we approximate
GaAs by choosing N = 105.

The constant K in Eq. (2) is

K = 4μ0μB

3h̄

∑
i

Ai

I 2
i + Ii

S2 + S
. (A10)

For GaAs, Ii = 3/2 for all nuclei. So K = 10δmax/3 =
54.3 GHz.

3. Hyperfine relaxation rate

The cross relaxation between the electron spin and the
nuclear spins is facilitated by a modulation of the hyper-
fine coupling due to random jumps in the electron spin
state. These jumps occur on average after a correlation time
τc. The relaxation rate is then the product of the aver-
age hyperfine coupling, the fraction of time the electron is
present (fe), and the spectral density of the electron spin
fluctuations [4,42],

�h =
(

A

Nh̄

)2

2fe

τc

1 + (ωz + δ)2τ 2
c

. (A11)
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h 
h

FIG. 5. Modulation of the hyperfine relaxation rate �h by the
Overhauser shift δ under conditions of two-laser driving. Detuning
� = 1; parameters �1,2, �s , γs , �3, γ3 are as in Fig. 1. This graph
has been used for the calculations for Figs. 2–4.

The relaxation process of the ẑ projection of the nuclear
spin is allowed due to jumps in the perpendicular component
of S. For the undriven electron spin τc equals T2 = 1/γs , i.e.,
the intrinsic decoherence time of the electron spin. Under
conditions of laser driving τc is reduced when the laser driving
leads to repeated excitation and spontaneous emission. The
sharp variation of absorption around CPT has to be taken into
account in our model. To deal with this we assume that we
operate under conditions where ωz � δ and ωz � 1/τc so
that the spectral density is approximately proportional to the
inverse correlation time:

τc

1 + (ωz + δ)2τ 2
c

≈ 1

ω2
z τc

. (A12)

In addition, we take the inverse correlation time to be en-
hanced by the amount of optical transitions that disturb the
electron spin state, i.e., 1/τc = (ρ11 + ρ22)γs + ρ33�e, where
we obtain the ρii from the � system model. For the undriven
spin ρ33 is zero and 1/τc = γs , whereas for the driven electron
spin the last term ρ33�e represents the interruption of coher-
ent spin dynamics by absorption and spontaneous emission.
Around δ = 0, ρ33 varies strongly with δ.

In our simulations we specify a value for �h/�d (this
value is reported in the captions of Figs. 2–4) where �h

is the hyperfine relaxation rate of the equilibrium system
(no laser driving). This provides the basis for the effective
value of �h, for which we can calculate its dependence on δ

through τc. How this dependence controls a modulation of the
effective value for �h/�h near CPT conditions is presented
in Fig. 5 for a specific set of optical driving parameters (see
caption).

4. Steady-state solution to the Fokker-Planck equation

A steady-state (Ṗ = 0) solution to Eq. (3) is

Pss (δ) = η exp

[
−

∫ δ

0
f1(x)/f2(x)dx

]
,

where

f1(x) = −δ̇(x) + δ2
max

∂

∂x
[�d + �h(x)]/N,

f2(x) = δ2
max[�d + �h(x)]/N,

and η is a number that is fixed by the normalization con-
dition

∫
P (δ)dδ = 1. A special solution arises in the case

when f1(x) = ax and f2(x) = b with a, b constant. Then the
steady-state distribution is Gaussian with standard deviation
σ = (b/a)1/2.

5. Electron spin dephasing from hyperfine interaction
with a nuclear spin bath

Because of the slow dynamics of the nuclear spins
compared to the electron spin, each measurement on the
electron spin is subject to an Overhauser field Bn,z sampled
from a distribution. For example, at thermal equilibrium at the
high temperatures that we consider (for nuclear spins), this
is a Gaussian distribution with mean 〈Bn,z〉 = 0 and standard
deviation σB . For a measurement on an ensemble of electron
spins (or many separate single-spin measurements), one will
observe inhomogeneous dephasing as a function of time t .
This can be parametrized with a function C(t ) that evolves
from no dephasing to complete dephasing on a scale from
1 to 0:

C(t ) =
∣∣∣∣
∫ +∞

−∞
P (B ) exp

(
− igμBBt

h̄

)
dB

∣∣∣∣. (A13)

Here P (B ) is the probability distribution for the total
field B = Bext + Bn,z (where Bext is the externally applied
magnetic field), taken over an ensemble of electrons. This
expression captures the gradual loss of information about Sx

and Sy as a function of time. For the Gaussian distribution at
thermal equilibrium

P (B ) = 1√
2πσ 2

B

exp

(
− B2

2σ 2
B

)
. (A14)

The dephasing timescale T ∗
2 is defined as the time where

Eq. (A13) reduces to 1/e. For the Gaussian distribution
P (B ), Eq. (A13) yields C(t ) in the form exp [−(t/T ∗

2 )2] with
the inhomogeneous dephasing time

T ∗
2 =

√
2h̄

|g|μBσB

. (A15)

The steady-state distributions obtained from the feedback
model with nonlinear response are not Gaussian; for those
no simple expression for T ∗

2 is available. We define T ∗
2 as

the time at which C(t ) has dropped to 1/e of its initial value,
which is obtained by numerical evaluation of Eq. (A13).
Further, it is straightforward to calculate with this definition a
value for T ∗

2 for any of the distributions P (δ) that is presented
in the results section (using δ = 1

2gμBBn,z/h̄).

APPENDIX B: SIGN OF ELECTRON SPIN POLARIZATION
NEAR THE CPT RESONANCE

To understand the sign changes in the spin population, as
depicted in Fig. 1(c) of the main text, we revert to a model of
minimum complexity that retains the essential physics for the
electron spin polarization: As in the main text, we consider
equal Rabi frequencies, �, and additionally we let the only
coupling to the environment take place via �3 (spontaneous
decay from |3〉 to |1〉 and |2〉). All other rates in Eq. (7) are set
to zero. This reduces the expression for the steady-state spin
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(a)

(c) (d)

(b)

FIG. 6. (a) Optical pumping for the case � > 0. Depending on the sign of δ the population is transferred to either of the spin states,
indicated by the red dot, by the near-resonant laser (red arrow). (b)–(d) Eigenstates of H�. Dashed lines represent the bare eigenstates (lasers
off) and solid blue lines represent the dressed eigenstates (lasers on at �1 = �2 = 1). The thickness of the solid lines in (b)–(d) is proportional
to the corresponding projection on |3〉. Dots indicate where the population resides. Red dots in (c) indicate the optical pumping configuration
as do the red dots in (a). The blue dots show the counterintuitive population transfer near two-photon resonance. Red lines in (c) and (d) result
from a two-level approximation of the � system.

population to

〈Sz〉 = ρ22 − ρ11

2

= δ�(2δ2 + �2)

2[�4 + (�2 + �2 + �3
2 + δ2)δ2]

, (B1)

which has zeros at δ = 0 and δ = ±�/
√

2. (Incidentally,
these δ = ±�/

√
2 provide an approximation for the sta-

ble points depicted in Fig. 2 where � = 0.5 and hence
δ ≈ ±0.35.) These points separate the optical orientation
process into two regimes, which can each be intuitively
understood.

For |δ| > �/
√

2 the system experiences optical pumping,
as depicted in Fig. 6(a). Both lasers couple their corresponding
spin state to the excited state |3〉, but in the presence of
nonzero � their detunings are not equal. The spin state that
is addressed with the near-resonant laser is pumped empty, as
expected. Another way to look at this, which paves the way for
the explanation in the next paragraph, is as follows: Coupling
mediated by the laser fields has the effect that the otherwise
stable states |1〉 and |2〉 become contaminated by the decaying
state |3〉, rendering them instable. This effect is stronger for
the laser closest to resonance. Generally the steady state
of the system tends to avoid the states that suffer stronger
dissipation [48]. Hence one of the lasers coupling stronger
(depicted in red) leads to transfer of spin population to the

opposite spin state (where the red dot indicates the majority
population).

For |δ| < �/
√

2 the sign of the spin population is opposite
to the former case and its explanation more subtle. In order
to explain we examine visually (the analytical expressions are
quite involved and therefore not suited to give insight in the
physics) the eigenstates of the Hamiltonian in Eq. (A1). Its
characteristic equation is

λ3 + �λ2 −
(

δ2 + |�|2
2

)
λ − δ2� = 0, (B2)

whose solutions are the energy eigenstates of the system
coupled to the fields, depicted in Figs. 6(b)–6(d) (blue lines)
as functions of δ. The corresponding eigenvectors are the
dressed states of the system, which are linear combinations
of {|1〉 , |2〉 , |3〉}. The thickness of each line indicates the
projection of the state on |3〉. It is a measure for the dissipative
character of the dressed states, since dissipation only occurs
from |3〉. Again, in the steady state (after an initial transient
response of a few optical cycles) population predominantly
resides in the most stable (i.e., least dissipative) state. The
dark state, which is free of dissipation, is in each graph at
the point (0,0) (narrow portion of the middle eigenstate). The
dashed lines indicate the energy of the bare states; actually
they are |1, n,m〉, |3, n − 1,m〉, and |2, n − 1,m + 1〉 where
the last two variables indicate the number of laser photons of
frequency ω1 and ω2, respectively. We chose the zero energy
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to be at the midpoint of |1〉 and |2〉, such that |1〉 (|2〉) has
a slope of −1 (+1) in the diagram. As |δ| increases beyond
� both lasers detune far from resonance and the dressed
states asymptotically approach the bare energy levels. By
inspection we can now see how the spin population evolves
with the detunings. First, we recognize the optical pumping
as described in panel (a): In panel (c) (� > 0) the red dots
indicate that for |δ| � �/

√
2 the population resides in the

upper energy eigenstate, which approaches |1〉 for δ < 0
and |2〉 for δ > 0; hence these dots correspond to those in
panel (a). In panel (d) (� < 0) this situation is inverted and in
panel (b) the effect is absent (the smaller red dots indicate an
equal division over states |1〉 and |2〉) because of the symmet-
ric detuning. Focusing on panel (c) we study the situation near
two-photon resonance: for δ < �/

√
2 the middle eigenstate

is still the least dissipative, even though it is not a perfect
dark state for nonzero δ. The population resides in this state
(as indicated by the blue dots) which bends towards |1〉 for
δ > 0 and towards |2〉 for δ < 0; in panels (b) and (d) it can
be seen that this effect is inverted for � < 0 and absent for
� = 0. The counterintuitive spin population thus arises from
a combination of dark-state trapping by destructive quantum
interference and the light shifts of the system.

More information on how these light shifts due to the
laser fields lead to population transfer in this regime can be
gained by making a two-level approximation via the method

of adiabatic elimination [49]. This neglects any excitation to
|3〉 and allows the system to be described by the Hamiltonian

Htwo−level = h̄

(
−δ + |�|2

4�

|�|2
4�

|�|2
4�

δ + |�|2
4�

)
. (B3)

This two-level approximation can be viewed as follows: In the
absence of absorption, the ground-state levels acquire a Stark
shift of |�|2/4� from the lasers, in the same direction. As
a second-order effect, there is a coupling between |1〉 and |2〉
with effective Rabi frequency |�|2/4�. This Raman coupling,
corresponding to absorption and stimulated emission of the
laser photons, causes an additional Autler-Townes type of
splitting. The levels repel each other and the eigenstates
are symmetric and antisymmetric linear combinations of |1〉
and |2〉, resulting in the energy eigenvalues λ± = (|�|2 ±√

16�2δ2 + |�|4)/4�. Out of these λ− is the antisymmetric,
dark state. (The symmetric state λ+ is not a dark state and
hence is not a good approximation to the other eigenstate of
the three-level system; unless � is very low or � very large,
we disregard it here.) This approximation is plotted as the red
line and agrees well with the three-level description for small
δ. Additionally, it can be insightful to treat the spin-selective
light shifts as an effective magnetic field acting on the system;
such a description can be found in [26].
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