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Chapter 1

Introduction

1.1 Coherence and polarization of electron spins

and photons

For a physical description of the interaction of light and matter, electron spin
and polarization of light are of profound importance. Although these concepts
have been thoroughly investigated, our understanding of their interaction is far
from complete. Common text book examples are e.g. the optical selection rules
for the hydrogen atom and GaAs, which are well understood and widely applied
for the orientation and probing of spin in these systems. On the other hand, the
electronic spin and optical properties of more complex atomic structures such as
molecules and crystal defects (with lower symmetry) have not been fully explored.
Consequently, modern technology does not fully exploit their potential. The aim
of this thesis is to advance the understanding of how optical fields can control
and probe electronic spin coherence in molecules and crystal defects.

In 1808, Malus introduced the name polarization for light, while in 1669 al-
ready an effect due to light polarization (double refraction) had been reported
by Bartholin[1]. The concept of light polarization is used in many applications.
Optical communication, however, is mainly based on the detection of light inten-
sity, such that each photon carries at most one bit of information. A polarized
photon is said to be in a coherent superposition of polarization states. When
information is encoded in the polarization of a photon, each photon can contain
a much higher information density, where the practical limitation is set by the
ability to discriminate between different polarization states.

In 1925, Uhlenbeck and Goudsmit proposed the concept of spin[2], based
on the observation of anisotropic magnetoresistance in 1857[3], and the Stern-

1



2 Chapter 1. Introduction

Gerlach experiment in 1922[4]. The most common manifestation of electron spins
is in the form of magnetism, for which more and more technological applications
are found. Still, within electronic information processing, a bit of information
is usually based on the absence or presence of charge. Analogous to polarized
photons, spin polarized electrons allow for a larger information density. Also,
they are believed to allow for information processing at much lower energy cost.
Electron spin polarization occurs when there is a surplus of a certain spin sub-
state, i.e. an imbalance in the (spin-up and spin-down) populations (diagonal
elements of the density matrix[5]). For an electron spin brought in a coherent
superposition of spin states, the coherences (off-diagonal elements of the density
matrix) and spin expectation value oscillate with the so-called Bohr frequencies
of the system[5]. Measuring such spin precession instead of merely spin orien-
tation has the experimental advantage that it is much easier to trace back the
origin of a small signal when it oscillates. Moreover, one can learn about de-
coherence and dephasing mechanisms in addition to population relaxation. The
electron spin seems very promising to revolutionize electronics[6], particularly
through exploiting new (quantum mechanical) concepts like superposition[7] and
entanglement|[8].

In material systems with selective coupling of photons to electronic spin, they
form an attractive pair for opto-electronic functionalities and the transfer of
quantum information. This introductory chapter will review different ways to
all-optically induce spin coherence (and probe spin dynamics) in various mate-
rials, and introduce main concepts that will be used in this thesis. The chapter
ends with introducing the specific questions that were addressed in this PhD

research, and providing a thesis outline.

1.2 Optical orientation

In many materials, there is naturally an equal amount of both up and down spins.
However, in the field of spintronics, which aims to exploit the electron spin, it is
important to be able to manipulate the population of spin (or in general total
angular momentum) sublevels. More advanced quantum technologies also rely on
controlling quantum coherence between spin sublevels. Spin polarization implies
an excess of up or down spin, which might e.g. be obtained by applying a strong
magnetic field. Alternatively, it can be obtained with a technique called optical
orientation (also known as optical spin injection)[9, 10]. Here, an imbalance in the

population of spin sublevels is based on different transition strengths for sublevel
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CB(I=0) -1/2

ol

VB(l=1)  -3/2 -1/2

Figure 1.1: Optical selection rules for interband transitions in GaAs for
circularly polarized light. The valence band (VB) levels resemble p;_3/, levels of
the hydrogen atom, whereas the conduction band (CB) resembles s;_;/, levels. The
levels are labeled with mj-values. The oscillator strengths f of the allowed circular
transitions have ratio 1 : 3, where the strong transitions are indicated by thick arrows.

transitions.

Let us as an example consider a direct gap III-V semiconductor like GaAs
(with the energy level scheme given in Fig. 1.1). The conduction band (CB)
consists of s-like atomic states (I = 0), while the valence band (VB) consists
of p-like states (I = 1). Since electrons and holes have spin s = 1/2, the CB
consists of a j = 1/2 level, while the VB consists of j = 1/2 and j = 3/2. Due to
spin-orbit coupling (SOC) the VB splits, with the j = 3/2 level becoming higher
in energy.

The VB levels resemble p;_3/, levels of the hydrogen atom, whereas the CB
resembles s;_;/; levels. The oscillator strengths f of the allowed circular transi-
tions have ratio 1 : 3, thereby resembling the optical selection rules of hydrogen
(Section 2.10, Table 2.5). As illustrated in Fig. 1.1, o* light generates three times
more electrons with m;_+1/o than with m;_./, (when all ground state sublevels
are originally equally occupied), thereby inducing spin polarization.

1.3 Spin precession

The Time-Resolved Kerr Readout (TRKR) and Time-Resolved Faraday Rotation
(TRFR) technique are techniques (based on the magneto-optical Kerr effect) used
to detect spin dynamics and to measure the corresponding lifetime[12, 13]. The
difference between TRKR and TRFR is the use of reflected and transmitted light,
respectively. These techniques have been applied to many solid state systems like
e.g. GaAs. The techniques are optical pump-probe methods with picosecond laser
pulses tuned near resonance with transitions across the band gap.
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Figure 1.2: Typical result of a Time-Resolved Kerr Rotation (TRKR) ex-
periment, with the Kerr rotation angle as a function of pump-probe delay. The
oscillatory character reflects spin precession about the magnetic field. Figure adapted
from [11].

Spin polarization is induced with a polarized pump pulse. Let us assume that
at time ¢ = t,ump the system of Fig. 1.1 is excited with a ¢ pump pulse prop-
agating along x (with originally the ground state sublevels equally populated),
causing population imbalance of the m; sublevels (in the z-basis) of the excited
state, i.e. spin polarization (along the z-axis). With a magnetic field in the z-
direction, Larmor spin precession occurs during the interval (¢,ump, tprove ), Where
the system is in the dark. The spin precesses around the z-axis implying that
the expectation value (S,) (t) oscillates. The same holds for (S,) (¢), but usually
spin precession is measured in one direction only. The precession corresponds to
population transfer between the m; sublevels (in the z-basis).

To detect the spin dynamics, a polarized probe pulse is used. A linearly
polarized (denoted as 7; here referring to the polarization and not the duration
of a pulse) probe pulse propagating in the z-direction arrives at delay time At =
tprobe —tpump- 1f the system at time ¢, has a net spin polarization, an interesting
phenomenon occurs. The unequal filling of the up and down spin sublevels of the
conduction band gives rise to a difference in the absorption coefficient for ot
and o7, resulting in a different refractive index through the Kramers-Kronig
relation. Given that 7 is a superposition of o™ and o, a polarization rotation
of the linearly polarized probe is induced after interaction with the sample. This
rotation angle is called the Kerr or Faraday rotation angle, depending on whether
TRKR or TRFR is applied. A typical measurement result of the TRKR technique
is depicted in Fig. 1.2, where each data point is obtained from a seperate TRKR
measurement[11, 14].
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1.4 Coherent population trapping

An alternative way to optically induce spin coherence is via a phenomenon known
as coherent population trapping (CPT)[15], which is of great significance in
quantum-optical operations that use ground-state spin coherence. This phe-
nomenon occurs when two lasers address a so-called A system (with its name
derived from the arrows in Fig. 1.3 forming the shape of a A) at exact two-photon
resonance, i.e. when the two-laser detuning matches the ground-state splitting,
as in Fig. 1.3. The ground-state spin system is then driven towards a superpo-
sition state that approaches |Wepr) o< Qs ]g1) — Q1 |g2) for ideal spin coherence.
Here (2, is the Rabi frequency for the driven transition from the |g,) state to the
common excited state. Since the system is now coherently trapped in the ground
state, the photoluminescence decreases.

|€2)

|9:)

Figure 1.3: Two-laser A scheme with optical transitions between S = 1/2

ground and excited state sublevels. Two lasers are resonant with transitions from
both ground state sublevels |g1) (red arrow) and |g2) (blue arrow) to a common excited
state sublevel |e2). This is achieved when the detuning equals the ground-state splitting
Ag4. The gray arrows indicate a secondary A scheme via |eq).

1.5 Jones calculus

To describe how polarized light is affected by interaction with an optical element
(or a sample), it is often convenient to use Jones calculus[16] (see also Supplemen-
tary Information Section 2.12 (p. 41)). Within this method, light is represented
by a Jones vector and the optical element by a Jones matrix. The Jones vector

contains the amplitude and phase of the electric field components of the beam
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Figure 1.4: The polarization ellipse. The main parameters that define the polar-
ization ellipse are the azimuth 6 of the semi-major axis a with respect to the z-axis,
and the ellipticity angle €, which is defined through the ellipticity e = g (with b the
semi-minor axis) such that e = +tane, where the + and - signs correspond to right-
and left-handed polarization respectively. The total amplitude of the electric field is
given by A = v/a2 + b2. For convenience, one usually takes A = 1. Tt is also common
to assume a global phase factor § = 0.

orthogonal to its propagation direction. Commonly, the amplitudes are normal-
ized, such that their intensities add up to 1. Any elliptical polarization can be
described, including the special cases of linear and circular polarization.

A convenient way to visualize the Jones vector is the polarization ellipse, which
is mainly described by the azimuth # and the ellipticity angle €, as illustrated in
Fig. 1.4. Here, the azimuth 6 is the angle between the semi-major axis a and
the horizontal x-axis, where —%7T <0 < %7?. The ellipticity angle € is defined
through the ellipticity e = 2 (with b the semi-minor axis) such that e = +tane,
where —}17? <e< }ﬂr. The + and — signs correspond to right- and left-handed
polarization respectively. In Fig. 1.4 the indicated polarization is left-handed.

Within the {X’,y'}-basis, the corresponding Cartesian Jones vector of a light
beam with azimuth 6’ = 0 with respect to the x’-axis is given by the unit vector

E{x,y'} = [COS(E)] (1.1)

isin(e)

with amplitude A = 1 and global phase § = 0. This Jones vector can be trans-
formed through a counter-clockwise rotation ¢/ = —6 to

cos(e)] _ [COS(G) cos(€) — isin(6) sin(e) (1.2)

E{x,y} =T(-0) [Z sin(e) sin(f) cos(€) + i cos(h) sin(e)

with azimuth §# = —6' (w.r.t the z-axis) and ellipticity angle e. A convenient
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method to visualize the Jones vector is via the Poincaré-sphere representation.
Within this method, the longitude 26 and latitude 2¢ determine a point represent-
ing the ellipse of polarization with azimuth 6 and ellipticity angle e (Fig. 2.4a).

When light crosses an optical element the resulting polarization of the emerg-
ing light is found by taking the product of the Jones matrix J of the optical
element and the Jones vector E;;, of the incident light, which in the {x,y}-basis
implies

Ein,a:

Eou{x, ¥} = %, y}Eun{x, 3} = J{x, ¥} (1.3)

in,y

To build J{x,y} we first build J{x',y'}, which describes how light defined in the
{x', ¥'}-basis is affected, i.e.

Eou{x ¥} = J{X, ¥} Eiu{x, ¥} (1.4)

The Jones matrix is given by

z’AnI/ 0
Ty = |° | 1.5
{X’y} [ 0 ezAny/] ( )

which expresses the retardation of (light polarized along) principal axis j by An;
where A = 2nd/\, with d the thickness of the sample and A the wavelength of
the light[16].

1.6 Theoretical chemistry methods

The elegance of theoretical chemistry (and physics) calculations and predictions
is that properties of matter can be revealed independent of experiments. In this
section the theoretical chemistry methods are introduced that are used through-
out this work. The methods belong to the realm of quantum chemistry (also
known as molecular quantum mechanics), which is a branch of theoretical chem-
istry aimed to apply quantum mechanics in physical models of chemical systems.
As with real experiments, calculations become usually increasingly complicated
and expensive with increasing size of the system. To gain better insight into and
intuition for chemical and physical properties, it is convenient to first apply theo-
retical chemistry calculations to a small model system, often allowing for general
predictions about more complex matter. For that reason we consider in Chapter 2

the hydrogen atom as a model system. The knowledge obtained here serves as a
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theoretical basis for Chapter 3, where several metal-organic molecules are investi-
gated. The main theoretical chemistry method for both chapters is the so-called
CASSCF/CASPT2/RASSI-SO method[17, 18], which is an expensive though ac-
curate method for chemical systems to study effects related to spin-orbit coupling
(SOC). Additionally, in the Supplementary Information of Chapter 3 also several
calculations have been performed based on the density-functional theory (DFT)
method, which is one of the most popular quantum chemistry methods due to its
versatility and relatively low computational cost.

It is well-known that relativistic effects affect atomic and molecular prop-
erties[19-22], particularly when heavy atoms are involved. To account in an
accurate way for such effects on excited state properties of molecular systems, the
CASSCF/CASPT2/RASSI-SO method was introduced by Roos and Malmqvist[17,
18] (within the quantum chemistry software package MOLCAS[23]). This is a
multiconfigurational approach where relativistic effects are treated in two steps,
both based on the Douglas-Kroll Hamiltonian[18]. Scalar terms are included in
the basis set generation and used to determine wave functions and energies, which
include static (through the use of the CASSCF method[24]) and dynamic corre-
lation effects (using multiconfigurational perturbation theory, CASPT2[25, 26]).
SOC is added a posteriori by means of the RASSCF state interaction (RASSI[27])
method.

Density functional theory (DFT) is a quantum chemistry method based on
the Hohenberg-Kohn (HK) theorem|[28], which investigates the electronic struc-
ture of many-body systems. Electronic properties can be determined using the
spatially dependent electron density functional (i.e. it is a function of another
function). The main disadvantage of DFT is the lack of a systematic approach
to improve results towards an exact solution[24]. To investigate electronic prop-
erties in the presence of time-dependent potentials like electromagnetic waves,
time-dependent DFT (TDDFT) is a convenient method, based on the Runge-
Gross theorem[29], which is the time-dependent analogue of the HK theorem.
In our TDDFT calculations SOC was included perturbatively[30]. For the DET
calculations in this work, we used the Amsterdam Density Functional (ADF)
program|31, 32].

1.7 Scope of this research and thesis outline

This thesis focuses on theoretical and experimental studies of optical preparation

and detection of spin coherence in molecules and crystal defects. The scientific
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progress of this work expands the range of material systems that can have func-
tionalities based on the selective coupling of photons to electronic spin states.
Also, it allows for a better opto-electronic characterization of these materials by
providing new probing tools. The work consists of a theoretical investigation
of underlying fundamentals and forthcoming requirements (Chapter 2-4), and
experimental work on a crystal defect in silicon carbide, demonstrating optical
characterization of its spin properties and optically induced electron spin coher-
ence (Chapter 5).

Chapter 2 presents a theoretical study of how charged items in the envi-
ronment of a hydrogen atom perturb its polarization selection rules. We focus
on the optical transitions between 1s and 2p sublevels of the hydrogen atom.
We investigate the effect of a gradual distortion of the symmetry by surrounding
charges, which provides insight in the gradual evolution of the polarization se-
lection rules. This ability to manipulate optical selection rules allows for better
control of the interaction between photons and electrons, which potentially allows
for new mechanisms to control the flow of quantum information. Also, this study
provides a useful theoretical framework for the more complex systems of later
chapters focusing on molecules and crystal defects.

The enormous variety of molecules and their ease of processing make them
interesting candidates for many applications. Metal-organic molecules can have
large spin-orbit coupling (SOC), which may facilitate mechanisms for optical spin
manipulation. The Time-Resolved Faraday Rotation technique (TRFR, already
widely applied to conventional semiconductors) is here of interest, since it is an all-
optical technique that can induce and probe the quantum dynamics of spin with
ultra-fast time resolution. However, whether (and how) TRFR can be applied
to study spin dynamics of triplet (spin S = 1) states in molecules was an open
question. We explore in Chapter 3 how TRFR can be applied to molecules with
strong SOC, exploiting the optical selection rules for transitions between singlet
and triplet states in such molecules. We define how one can study polarization and
quantum dynamics of spin after excitation to a superposition of triplet sublevels,
using an ultrashort pump pulse. We use the polarization rotation of an ultrashort
probe pulse as a measure for the coherent spin dynamics. Besides using this in
fundamental studies of the spin properties of such molecules, these results are of
value for advancing opto-electronic and spintronic applications.

Until now, all cases where the TRFR technique was used for studying coher-
ent spin dynamics concerned materials systems with strong SOC. Strong SOC

may seem a requirement, since it facilitates optical selection rules with allowed
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transitions that alter the spin state (otherwise only spin-conserving transitions
seem allowed). However, Chapter 4 defines how the TRFR technique can also
be applied to certain material systems with negligible SOC. In our derivations we
focus on the characterization of spin-active color centers in materials like silicon
carbide and diamond. Such color centers are recognized as promising systems
for quantum technologies since they can combine long-coherent electronic spin
and bright optical properties. We introduce the theory of a TRFR experiment
applied to divacancies in silicon carbide, based on non-spin-conserving optical
selection rules that can emerge due to the anisotropic spin S = 1 Hamiltonian
for the electronic ground and excited state of this system.

Finally, Chapter 5 presents an experimental investigation of the molybdenum-
impurity in silicon carbide. We demonstrate an all-optical technique for charac-
terizing the spin Hamiltonians for the ground and excited state, and find that
these are S = 1/2 systems with highly anisotropic spin properties. In turn,
we exploit these properties for tuning control schemes where two-laser driving
addresses transitions of a A system, and observe coherent population trapping
for the ground-state spin. These results demonstrate that the Mo defect and
similar transition-metal impurities in silicon carbide may be relevant for advanc-
ing quantum communication and quantum sensing technology. In particular,
these systems have optical transitions at near-infrared wavelengths (in or close
to telecom communication bands), and the device technology for silicon carbide
is already available at a high level in industry.
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Supplementary Information (SI)

1.8 SI: Change of basis

A choice of a basis is not unique. Let us perform a change of orthonormal
bases, from the (old) basis {X’, 3’} to the (new) basis {X, ¥}, through a counter-
clockwise rotation with angle @', as depicted in Fig. 1.5. Consider the vector E

(which e.g. can be considered as the electric field component of a light beam),

y
yl
E,
E
YK 3 E
//l/el
— E . cos(6")
' y
, I‘:'X. cos(6') E,
9' v - X
- E,.sin(6')
El

o
., sin(6')
Sy

Figure 1.5: Illustration of a change of orthonormal bases. The transformation
is from the (old) basis {X’,9’} to the (new) basis {X, ¥}, through a counter-clockwise
rotation with angle . To derive the transformation matrix T'ts 33—{%,3}» the change
of basis is applied to the vector E, which e.g. can be considered as the electric field

component of a light beam.
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which in the old basis is given by

E{)A(/, S/’l} = Ex/)A(/ —+ Ey/y, =

Ey

E“"’] (1.6)

In the new basis, we have instead

E{x,y} =E.x+ E)y = (1.7)

E, cos(0) + Ey sin(')
E, cos(0') — E, sin(¢)

The vector E can be easily transformed from the old basis to the new one through

the matrix transformation

E{)A(, y} — T{ﬁ/7yl}_){ﬁ’y}E{f(,, y,} (18)

which corresponds to

_ cos(6') sin(@)
—sin(#') cos(#)

E,
E

Y

B,
E,,

Y

(1.9)

where the transformation matrix 7'(¢') has as its columns the old unit vectors as
written in the new basis, i.e.

/ 6/
(%9} = ei%+ oy = H - [ ost) ] (1.10)
Y

o ea , s " sin(0’
y{x.y} =y X +y,y = [y,] = [ ( )] (1.11)

where e.g. 7/, denotes the z-component of X', i.e. the projection of X’ onto %.
Any matrix M defined in the old basis can be described by the new basis
through the following unitary similarity transformation

M{x, ¥} =Tz gy iy MK, ¥} (1.12)

with T the Hermitian adjoint (conjugate transpose) of T, which has the proper-
ties T7(0') = T=(0') = T(—0'), and it has the unit vectors x{x’, ¥'} and y{x', 3’}

as its columns, i.e.

NPV N N Tyt cos(6’
Xy} =aoX +ayy = [ ] = [sin((ﬁ’il (1.13)

NEPN AN A/ A~/ x! —sin(¢’
VX, ¥} =yuX +yyy = [y ] = [ ( )] (1.14)
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1.9 SI: Jones calculus applied to a waveplate

To get familiar with Jones calculus, we take here waveplates as an example. We
will show that an optical element can be described by a Jones matrix, which
transforms the electric vector of an incoming beam via a matrix multiplication.
We also illustrate the transformation of one coordinate system to another via a
matrix transformation.

Usually, a waveplate has real-valued principal axes (often denoted as |H) and
|V')), which we denote as X" and y'. Consequently, the corresponding Jones matrix
is diagonal in the {X’, y'}-basis, and given by Eq. (1.5).

Let us consider two special cases of the waveplate, namely the half-waveplate
(HWP) and the quarter-waveplate (QWP). A HWP has its thickness such that
the phase difference between the components is given by An,, — An, = m. Also,
only the vertical component y' (slow axis) gets retarded by the HWP, whereas
the horizontal component X" (fast axis) is not affected, such that the Jones matrix
is given by

Y 1 0
Juwp{X, ¥} = [O _1] (1.15)

The effect of a HWP on an incident linearly polarized beam is that its azimuth
(w.r.t. the fast axis z’) gets reflected in the fast axis, as illustrated in Fig. 1.6.
This follows from substituting Eq. (1.15) into Eq. (1.4) and taking real-valued E,.
and E,/, which yields E,, — —E,/, i.e. § — —6'. Alternatively, one could apply
Eq. (1.3), which requires the transformation J{x',y'} — J{x,y} via Eq. (1.12).
For a HWP with its fast axis at angle § = —6’ (w.r.t. the x-axis) this requires a
counter-clockwise rotation with angle 6’ (w.r.t. the z’-axis), which gives according
to Eq. (1.12)
Jawpl%, 9} = co§(9’), sin(@’/)] [1 0 ] [C?S(Q:) - sin(IQ’)
—sin(f') cos(@')| [0 —1]| |sin(0") cos(0')
[ cos(20')  —sin(20")
—sin(20") — cos(20")

] (1.16)

Substituting into Eq. (1.3) gives for an incident beam with Jones vector E;, = %

~ o oo | cos(20')  —sin(20')| (1| | cos(20')
Bou{%,3} = [— sin(26) —cos(20’)] [0] B [— sin(?@’)] (1.17)
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Figure 1.6: The effect of a half-waveplate (HWP) on an incident linearly
polarized beam. For a beam polarized along X, the azimuth 6’ (w.r.t. the fast axis

x') gets reflected in the fast axis.

which corresponds to an azimuth of § = —26’ (w.r.t. the z-axis), as it should.

A QWP has its thickness such that the phase difference between the compo-
nents is given by An, — An, = m/2. Also, only the vertical component (slow
axis) gets retarded by the QWP, whereas the horizontal component (fast axis) is
not affected, such that the Jones matrix is given by

Jowp{&, 3} = lé ?] (1.18)

which e.g. makes a linear beam with azimuth 6’ = 45° (w.r.t. the fast z’-axis)
circularly polarized. For a QWP with its fast axis at angle § = —" w.r.t. the z-
axis (i.e. the x-axis is at #’ w.r.t. the 2'-axis), one obtains in analogy to Eq. (1.16)

cos?(0') +isin®(0') (=14 1i)sin(d) cos(d)

(—1+1)sin(0") cos(d')  sin?(#') + i cos?(0") (1.19)

Jowp{X, ¥} =




Chapter 2

Evolution of atomic optical selection

rules upon gradual symmetry lowering

Abstract

For atoms and crystals with a high symmetry, the optical selection
rules for electronic transitions are well covered in physics textbooks.
However, in studies of material systems one often encounters systems
with a weakly distorted symmetry. Insight and intuition for how op-
tical selection rules change when the high symmetry is gradually dis-
torted is, nevertheless, little addressed in literature. We present here
a detailed analysis of how a gradual symmetry distortion leads to a
complete alteration of optical selection rules. As a model system, we
consider the transitions between 1s and 2p sublevels of the hydrogen
atom, which get distorted by placing charged particles in its environ-
ment. Upon increasing the distortion, part of the optical selection
rules evolve from circular via elliptical to linear character, with an
associated evolution between allowed and forbidden transitions. Our
presentation combines an analytical approach with quantitative re-
sults from numerical simulations, thus providing insight in how the
evolution occurs as a function of the strength of the distortion.

This chapter is based on Ref. 1 on p. 177.
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2.1 Introduction

A physical system is never completely isolated. Even in atomic clocks[33], which
use quantum oscillations in atoms that are relatively insensitive to surrounding
matter and fields, the symmetry and dynamics of the quantum system of interest
are affected by the environment. In practice, systems with high symmetry nev-
ertheless seem to exist since the distortions due to an asymmetric environment
can be so weak that their influence is not significant.

The symmetry of a system dictates its optical selection rules for electronic
transitions. Well-known behavior of such optical selection rules is that absorbing
circularly polarized light can orient the spin (or, more generally, electronic angular
momentum) of an electron that gets excited[5, 34, 35]. This occurs in systems
of high symmetry, and is widely applied. A key example is the use of alkali
atoms (with spherical symmetry) such as hydrogen, rubidium and cesium, for
quantum optical studies and technologies. A second important example is the
optoelectronic control in semiconductors with the tetrahedral zincblende lattice
structure (with GaAs as key example), where spintronic applications use spin
orientation by circularly polarized light[10].

For other material systems, with a lower symmetry, optical transitions couple
more frequently purely to linearly polarized light. This holds for excitonic tran-
sitions in most organic molecules[35, 36|, and transitions of molecule-like color
centers in crystals, such as the strongest transitions of the nitrogen-vacancy defect
in diamond[37] (a widely-studied system for quantum technologies).

There exist also many material systems which have a high but still weakly dis-
torted symmetry. For these cases it is much harder to assess the optical selection
rules with analytical methods, and this topic is little covered in textbooks. Here
detailed numerical calculations can provide predictions, but it is much harder to
obtain intuitive insight from the output of such calculations. Still, the elegance
of computational physics and chemistry calculations is that they can relatively
easily reveal how the properties of matter vary in dependence of parameter values.

In this work we provide a detailed theoretical analysis of how a gradual sym-
metry distortion leads to a complete alteration of optical selection rules. As a
model system we use the hydrogen atom, and our results give insight in how its
optical selection rules (for transitions between a 1s and 2p sublevel) change gradu-
ally for a gradual symmetry change due to a disturbing environment. The optical
selection rules of the bare hydrogen atom can be described analytically, and are
well-known[5]. We use this as a starting point. We include in the discussion how
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they behave in a weak magnetic field, since this is of interest for highlighting the
properties of the selection rules. We model the symmetry lowering due to an
environment by placing the hydrogen atom in a Cy,-symmetry arrangement of
four negative point charges, where the magnitude of the charges is varied. For
this situation the analytical calculations are too complicated, and we link the
analysis to numerical calculations of this system. Our work thus also provides an
interesting example of how modern methods for numerically simulating matter
can give insight in its properties at a quantum mechanical level.

This manuscript is organized as follows. In Section 2.2, we will introduce the
bare hydrogen atom, first without considering spin, and we focus on the electronic
transitions between the 1s and 2p states. This serves as a summary of how
this is treated in many textbooks on atomic physics[5], and for introducing the
notations we use. We also shortly summarize how a magnetic field affects these
transitions (summarized in more detail in Supplementary Information Section 2.7
and 2.8). Next, we expand this model in the usual manner by also considering
the electron spin and the effect of spin-orbit coupling (SOC). This is presented in
Section 2.3 and Supplementary Information Section 2.10. In Section 2.4, we add
the symmetry disturbance to the modeling, by considering the hydrogen atom
in a Cy, arrangement of negative point charges. For the analysis of this case we
use numerical simulation methods, that are also introduced in this section (we
use the CASSCF/RASSI-SO method[17, 18]). We focus on calculating energy
eigenstates and transition dipole moments, and study how a gradual symmetry
lowering affects the optical selection rules. For describing the polarizations of
light associated with atomic electric dipole oscillations we use the Jones-vector

formulation, which is introduced in Supplementary Information Section 2.12.

2.2 The resonance lines of the hydrogen atom

without spin

2.2.1 The hydrogen atom in the absence of a magnetic
field

The resonance lines of electronic transitions between the 1s and 2p levels of the
hydrogen atom occur around a wavelength of 120 nm. We use the notation |1s)
(n=1;1=0) and |2p) (n = 2; [ = 1), for the ground and excited states re-
spectively, as adopted from the book of Cohen-Tannoudji, Diu and Lalog[5]. At
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zero magnetic field, the Hamiltonian H (containing the kinetic and electrostatic
interaction energy) of the hydrogen atom has energy eigenvalues E,, = —FE;/n?,
with E} the ionization energy. Note that we will often omit the quantum number
n, i.e. |s) = |1s) and |p) = |2p). Without considering spin, the hydrogen atom
has a single 1s level and three degenerate 2p levels. Because of this degener-
acy, a single resonance line occurs, and any linear combination of orthonormal
|p) eigenstates is a suitable eigenbasis for the Hamiltonian. A possible choice
would be the basis {|s), |pz), [py), |P-)}. The three p orbitals are real-valued and
have the same double-lobed shape, but are aligned along the x-, y-, and z-axes,
respectively[35].

A convenient measure for the strength of a transition is the real-valued oscil-
lator strength f (Supplementary Information Eq. (2.26) (p. 41)), which is pro-
portional to the absolute square of the transition dipole moment (which is a vec-
tor, with Cartesian components defined in Supplementary Information Eq. (2.25)
(p. 40)). In general, the total oscillator strength f;,; is dimensionless and for
all possible transitions it adds up to the number of electrons (known as the
Kuhn-Thomas sum rule[35]). Since we consider only a small subset of all transi-
tions within the hydrogen atom (having f;,; = 1), the total oscillator strength of
our subset will be smaller than 1. However, we will consider relative values f,,
for which the sum (fre10¢) Will exceed 1 (see below).

The corresponding matrix elements of the transition dipole moment between
the |s) and |p;) states, with i € {x,y, 2z}, are[5]

elp

(pi| Dils) = Nei (2.1)
where D; is the i-component of D = eR, with e the elementary charge and R
the position operator, and the constant value I is a radial integral independent
of 7. For an electron in the 1s orbital there are three possible transitions to
a 2p sublevel, each with a single nonzero transition dipole moment (Eq. (2.1))
and relative oscillator strength f,..; = 3 (according to Supplementary Information
Eq. (2.27) (p. 41)). The corresponding total relative oscillator strength (3x3 = 9)
follows from Supplementary Information Eq. (2.28) (p. 41), which for this case
can be simplified to frer 1510t = (L ST ps| Dils)|? = 9. Note that when only

elr)?
1=x,Y,2
the 1s orbital is occupied, the absorption strength is equal for all normalized
linear (complex) combinations of D,, D, and D, (due to the degeneracy of the
2p sublevels), i.e. the probability of a transition to 2p does not depend on the

polarization.
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2.2.2 The hydrogen atom in the presence of a magnetic
field

In the presence of a static magnetic field B along z, the resonance line of the
hydrogen atom is modified. A detailed description of how a magnetic field affects
the transitions is treated in Supplementary Information Section 2.7 and 2.8. The
field does not only change the resonance frequencies, but also the polarization of
the atomic lines, which is called the Zeeman effect. The Hamiltonian is given by
H = Hy+ Hy, with H; the paramagnetic coupling term (here only acting on the

orbital, since we still neglect spin). Now, the eigenbasis in which H is diagonal

is {|s), [p-1), [po), |p1) }, where

_ Ipe) —ilpy)
|p—1> - \/5
_pe) +ilpy)

‘p1> = \/5

with the indices —1,0, 1 corresponding to the m; quantum number along z.

2.2.3 Electric dipole radiation

In Supplementary Information Section 2.8 (p. 34) we present a calculation of
how the expectation value of the electric dipole (D), (t) of a hydrogen atom
oscillates when it is in a superposition of the ground state |s) and an excited
state |pm,), again following [5]. For all three cases m; = —1,0,1 the mean value
of the electric dipole oscillates as a function of time, corresponding to the emission
of electromagnetic energy. The type of electric dipole oscillation determines the
type of polarization of the emitted radiation. Still, the polarization of light
that an observer sees depends on its orientation with respect to the source (see
Supplementary Information Section 2.8).

For convenience, we will name a polarization after (the complex linear combi-
nation of) the components of D for which (the absolute value of) the transition
dipole moment is maximized. A convenient way to find this complex linear com-
bination is the application of the Jones-vector formalism (Supplementary Infor-
mation Section 2.12 (p. 41)). For the hydrogen atom in the presence of a magnetic
field (without considering spin), the matrix elements are maximized when we take

the operators ot = ”ﬁ (right circular), o= = z:/;;y (left circular) and 7, = z

(linear along z), respectively. As such, the only nonzero matrix elements related
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to transitions between 1s and 2p levels are

oy Pe= Dy _ eln
_ —_— S = —
V) 3
GIR
D,|s) = — 2.3
<p0’ ’ > \/g ( )
Dot iDy .\ _eln
5) = —

<p1|T ﬁ

Hence, the polarization of the radiation is o=, 7, or ¢*, depending on whether

. . Dy—iD Dy+iD .
the nonzero matrix element is that of \/% L. D, or ””:;% Y respectively.

2.3 The resonance lines of the hydrogen atom
including spin

Due to the electron and proton spins, the resonance lines of the hydrogen atom
are also affected by the fine- and hyperfine structure. In this work we will
only consider the electron spin, which can be either up ({S.) = A/2) or down
((S.) = —h/2), to which we will refer as a and f, respectively. Hence, the
orbitals 1s, 2p_;, 2py and 2p; allow for eight possible spinorbitals[35], which
are products of a spatial and spin function. These spinorbitals form the basis
{IsB), |sa), [p—18), |p—1a), |pofB), [poct), |p15), [p1c) } to which we refer as the un-
coupled representation[5]. Alternatively, these basis functions are often labeled
with the quantum numbers [, s, m; and m,, as tabulated in Supplementary In-
formation Table 2.3 (p. 38).

The Hamiltonian H, (containing the kinetic and electrostatic interaction en-
ergy) is diagonal in this basis and the eigenvalues on the diagonal resemble the
2- and 6-fold degeneracies in energy. When the spin-orbit coupling (SOC) term
Hso = L - S is added to the Hamiltonian, the 6-fold degeneracy of the 2p levels
is lifted into sublevels with quantum number j = 1/2 and j = 3/2, i.e. 2p1),
(2-fold degenerate) and 2ps/, (4-fold)[5]. Here, j is the total angular momentum
quantum number related to J? (with eigenvalues h%j(j + 1)) for the total an-
gular momentum J = L + S (Supplementary Information Section 2.9 (p. 36)).
The degeneracy can be further lifted by e.g. a magnetic field (which introduces
an additional term to H). Also, the magnetic field induces a quantization axis.
It is now convenient to use an approach based on time-independent degenerate
perturbation theory[5]. Since the field is applied in the z-direction, we define a
basis formed by the eigenstates of the total angular momentum J,. Constructing
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Figure 2.1: Evolution of the polarization selection rules for the hydrogen

atom upon symmetry lowering due to a (5, arrangement of negative point
charges, in the presence of a weak magnetic field. a, A hydrogen atom (in
red, positioned at the origin) in a C9, arrangement (Cj rotation axis along z and two
vertical mirror planes) of four negative point charges (in blue, positioned at (2,3,-1),
(2,-3,-1), (-2,3,-1), (-2,-3,-1) in Bohrs). Each point charge has the value —¢q, where ¢
is gradually varied from 107% to 1072 in atomic units. The weak magnetic field points
in the z-direction. b, Energy levels with Zeeman splitting for the ground (g) state 1s
(9,) and excited (e) state 2p (e, ) sublevels of the hydrogen atom in the presence of
a weak magnetic field and absence of point charges (qo). Supplementary Information
Section 2.10 gives a detailed analysis of the polarizations and the relative oscillator
strengths f.; (given in red). Spin-orbit coupling (SOC) has been included. c, In the
limit of very strong charge (qF(u”) D(istortion)s 1-€. the perturbation due to the charges is
much larger than that of the magnetic field), the excited states converge to one of the
basis functions of the set {|p.5),|p-), |pz8), |[p=), |pyB), |py)} and arrange in three
doublets (split by the magnetic field). Only six transitions between the 1s and 2p levels
remain allowed (equal f), and their polarizations are linear. Note that the different
ordering of v for the excited states affected by charge (as indicated by the two red

boxes).
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the matrix J, = L, + S, in the basis in which H is diagonal, one finds that .J,
is block-diagonal, i.e. the basis does not necessarily consist of eigenstates of J,.
We determine the eigenfunctions of J, via diagonalization of the 2- and 4-fold
degenerate subspaces, which provide the basis to which we refer as the coupled
representation (where H remains diagonal), which is the convenient one for the
case with SOC. Good quantum numbers are now j, m;, [ and s. The basis can
be expressed as a linear combination of the basis functions of the uncoupled rep-
resentation (Supplementary Information Table 2.4 (p. 38)), where the prefactors
are the so-called Clebsch-Gordan coefficients[5].

A transition (via excitation or emission) between a 1s and 2p sublevel is possi-
ble if a nonzero value is obtained for the transition dipole moment (p; ., |D|sm,),
%,l =0, = %> and [pjm;) = |7,m;,l = 1,5 = %>
The corresponding matrix elements and polarizations are presented in Supple-

with |s,,,) = |7 = 3,m; = £

mentary Information Table 2.5 (p. 39). The relative oscillator strength f,¢ is
given by Supplementary Information Eq. (2.27) (p. 41), which directly depends
on the Clebsch-Gordan coefficients. Now ten of the twelve possible transitions
between a 1s and 2p sublevel have nonzero oscillator strength (Fig. 2.1b). In con-
trast, only six transitions are allowed when SOC is not taken into account (three
for either up or down spin). We will determine the polarizations and f,-values
also numerically in Section 2.4, where the 1s and 2p sublevels will be denoted as
ground and excited states |g,) and |e,) (see also Fig. 2.1b).

2.4 Evolution of optical selection rules for the
hydrogen atom in a (5, arrangement of point

charges

In this section, we report on ab initio calculations that study the evolution of
the optical selection rules for transitions between the 1s and 2p sublevels of the
hydrogen atom upon gradual symmetry lowering due to a Cy, arrangement of
negative point charges (each with charge —¢), in the presence of a weak magnetic
field (Fig. 2.1a). Such a relatively simple system is already too complicated to
solve in an analytical way, such that we have to use numerical methods. First,
we numerically calculate functions that are relatively good approximations for
the eigenstates of the Hamiltonian. Strictly speaking, these functions are not
eigenstates because a numerical calculation uses a finite basis set. They are

nevertheless good approximations, and we will often refer to these functions as
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eigenstates (or eigenfunctions). Secondly, we numerically calculate the Cartesian
components of the corresponding transition dipole moments (with the relevant
ones defined in Supplementary Information Eq. (2.25) (p. 40)). An accurate way
to calculate these is the use of the CASSCF/RASSI-SO method (which combines
the Complete Active Space Self Consistent Field (CASSCF) and Restricted Ac-
tive Space State Interaction (RASSI) method with the inclusion of SOC), as
introduced by Roos and Malmqvist[17, 18]. We perform such calculations using
the MOLCAS|23] software. To approximate the 1s and 2p orbital we use the
large ANO basis set[38], which for the excited states of the hydrogen atom does
actually not very accurately approximate the energies. Our purpose, however, is
to illustrate how the mixing of sublevels affects transition dipole moments. In
this regard, the quality of the orbitals is expected to be sufficient, since they have
the required symmetry.

Including a magnetic field within ab initio calculations is not straightforward.
We will therefore mimic the field by inducing a quantization axis z (Fig. 2.1a),
through diagonalization of J, within degenerate subspaces (see Section 2.3). This
provides the required eigenbasis to which the calculated transition dipole mo-
ments are transformed. From the transition dipole moments, we can calculate
the relative oscillator strength f,.; for each transition between a 1s and 2p sub-
level, according to Supplementary Information Eq. (2.27) (p. 41). The evolution
of f.e; as a function of ¢ is depicted in Fig. 2.3.

We will use the Jones-vector formulation (see also Supplementary Informa-
tion Section 2.12 (p. 41)) to investigate how the polarization selection rules are
affected as a function of q. The Jones-vector formulation assigns a polariza-
tion ellipse (Fig. 1.4) with azimuth 6 (—37 < 6 < ) and ellipticity angle
€ (—3m < e < 1m) to the oscillation of an electric vector[16]. Normally, this

1
electric vector is the electric field component of a light wave. Instead, we will
assign such a polarization ellipse to the oscillation of an atomic electric dipole
related to an electronic transition, with the components of the electric vector
given by the (normalized) components of the corresponding transition dipole mo-
ment (Supplementary Information Eq. (2.32) (p. 42)). A convenient method to
visualize the Jones vector is via the Poincaré-sphere representation[16]. Within
this method, the longitude 26 and latitude 2¢ determine a point (labeled P in
Fig. 2.4a) representing the ellipse of polarization with azimuth 6 and ellipticity

angle € (Fig. 1.4).
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Figure 2.2: Evolution of the excited states for the hydrogen atom upon
gradual symmetry lowering due to a (5, arrangement of negative point
charges, in the presence of a weak magnetic field. Weights (absolute squares
of the coefficients) for the excited states |e,(q)) with —q the value of the point charges
in atomic units and v € {1, ...,6} as written in the basis as used for the bare H atom,
Le. {|sB),[sa), [p:B), [p=), [P«B), IPzt), [PyB), [Pycr) }. The left plots (v € {1,4,6}) have
in common that |e,(q)) is a superposition of the states [p.f), |[pzc) and |py«), whereas
for the right plots |e,(q)) is a superposition of |p.c), |p.5) and |py3). Furthermore, the
plots are ordered in rows based on the fact that the weights as a function of ¢ are the
same within each row. In the limit of very strong charge (¢rp, i.e. the perturbation
due to the charges is much larger than due to the magnetic field), the excited states
converge to one of the basis states of the set [{p.f), |p-), |p=5), P2, [PyB), |[Pyr) }.
For the first row, there is convergence towards |p.), towards |p,) for the second, and
|py) for the third. Data points are connected to guide the eye.
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2.4.1 The hydrogen atom in the presence of a weak mag-
netic field

As a proof of principle calculation, we will first perform numerical calculations
on the pure atom (i.e. ¢ = go = 0), to see whether we obtain the same optical
selection rules as the analytical solution. Fig. 2.1b considers a hydrogen atom in
the presence of a magnetic field in the z-direction (without point charges), where
we label the 1s and 2p sublevels as the ground and excited state sublevels |g,,)
(u e {1,2}) and |e, (g = qo)) (v € {1,...,6}), respectively. For |e,(q)) a notation
with dependence on ¢ is already introduced for later use (and we omit this for
|g,) since we found no significant dependence on ¢ for these states in our results).
For the case of qq, the numbering of ;1 and v increases with increasing energy for
both ground and excited states.

From the CASSCF/RASSI-SO calculations, the eigenfunctions of the Hamil-
tonian are obtained. As introduced before, we mimic the magnetic field by diago-
nalization of J, within the 2- and 4-fold degenerate subspaces. As such, we obtain
the states |g,) and |e,(qo)) (Table 2.1), which are the same states (apart from a
global phase factor) as those obtained from the analytical solution, i.e. the cou-
pled representation (Supplementary Information Table 2.4 (p. 38)). The weights
(i.e. the absolute squares of the coefficients) of the excited states (when decom-
posing as in Eq. (2.4) and (2.5)) are presented in Fig. 2.2 (first data point of each
subplot corresponds to ¢ = 0).

The CASSCF /RASSI-SO calculations also provide transition dipole moments.
We transform the matrix elements to the basis obtained after diagonalization of
J, within the degenerate subspaces. Now we have obtained the i-components
(ev(qo)|Dilgu) (i € {z,y,z}) of the transition dipole moment related to the
|9,) <> leu(qo)) transitions. From Supplementary Information Eq. (2.27) (p. 41),
the corresponding relative oscillator strengths (f,.;) are obtained, which are the
first data points (¢ = 0) of each series in Fig. 2.3. Since the numerical f,.;-values
are exactly the same as the analytical ones (Supplementary Information Table 2.5
(p. 39)), i.e. frer €{0,1,2,3}, we conclude that our method is accurate.

Using the Jones-vector formalism (see also Supplementary Information Sec-
tion 2.12), our numerical calculations also provide the same polarization selection
rules as in Supplementary Information Table 2.5 (p. 39). The evolution of the
optical selection rules as a function of ¢ for the six transitions having their electric
dipole oscillating in the xy-plane has been visualized in Fig. 2.4a and b, where

the first data point of each series corresponds to ¢ = 0, for which the transitions
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are circular.

Charge ¢ (atomic units)

Figure 2.3: Evolution of the relative oscillator strengths for transitions be-
tween 1s (g,) and 2p (e,) sublevels of the hydrogen atom upon gradual
symmetry lowering due to a (5, arrangement of negative point charges, in
the presence of a weak magnetic field. The relative oscillator strength f,.¢ .
for a transition between |g,) and |e,) has been defined in Supplementary Informa-
tion Eq. (2.27) (p. 41). Interestingly, the two originally forbidden transitions become
slightly allowed (7, polarization) for small g-values (forbidden for zero charge gy and
very strong charge grp). Note that the sum of the relative f-values does not vary as a
function of q, i.e. frei1sa,tot = frei, 158,00t = 9. This becomes particularly clear from the
fact that the plot has a horizontal mirror plane (dashed line) at f = 1.5. Data points
are connected to guide the eye. See Table 2.2 for the ¢-dependent optical selection
rules.
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2.4.2 The hydrogen atom in the presence of a (;, arrange-
ment of point charges and a weak magnetic field

To study the dependence of the atomic electric dipole oscillation on a charged en-
vironment, we consider the hydrogen atom in a (5, arrangement of four negative
point charges —q (positioned at (2,3,-1), (2,-3,-1), (-2,3,-1), (-2,-3,-1) in Bohrs
with respect to the hydrogen atom), as depicted in Fig. 2.1a. The symmetry of
the hydrogen atom is gradually distorted by increasing ¢, and this will gradually
affect the Hamiltonian and its eigenstates.

Again, from the CASSCF/RASSI-SO calculations, the eigenfunctions of the
Hamiltonian and the transition dipole moments are obtained. In the absence
of a magnetic field and in the presence of charges, the six excited states form
three doublets. A magnetic field will further lift these degeneracies and impose
additional optical selection rules. As before, we mimic a magnetic field by di-
agonalizing J,, now within the 2-fold degenerate subspaces. We thus obtain the
states |g,) and |e, (¢ # 0)) for the case that the perturbation due to the magnetic
field is weaker than that due to the charges (i.e. the magnetic field affects the
energies only by slightly lifting the degeneracies).

The excited states depend on the magnitude of the surrounding charges and
are denoted as |e,(q)), with v € {1,...,6}. The labeling of v is based on the
evolution of these coefficients: with each gradual increase of charge (¢ — ¢),
the states are slightly affected and the new state |e,/(¢")) is labeled with the
v-value that most resembles |e,(q)) (i.e. v/ = v for the v/ with largest overlap
(ev(q)]es(q'))). Accordingly, we find a different order of v for the excited states
affected by charge (compare Fig. 2.1b,c). Whereas ¢y (Fig. 2.1b) denotes the
absence of charge, grp (Fig. 2.1c) denotes the limit of a very strong charge that
saturates in fully distorting the symmetry (but small enough to not ionize the
hydrogen atom).

It turns out that we can write the excited states always as a linear combination
of at most three basis functions of the set {|p.), [p.), |p=5), |p.), [pyB), [Py }.
We find the following relations (where the coefficients are the projections onto
each of the basis functions)

lev=1,46(9)) = (p=Blen(0))[p=5) + (pzrlen(9))Ipz) + (pylen(9))|pye) (2.4)

lev=253(q)) = (p=t|e (@) |p-c) + (P2 Blen(0))peB) + (pyBles(a))|pyB) (2.5)

of which the weights (absolute squares of the coefficients) are presented in Fig. 2.2.
For each of the doublets (first row in Fig. 2.2: v = 1,2; second row: v = 4,5;
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Table 2.1: The excited states of the hydrogen atom upon symmetry lowering
due to a (s, arrangement of negative point charges. The excited states |e,(q))
are tabulated for the case of zero charge (¢p) and very strong charge (¢rp). In the
latter case the final excited states converge to one of the basis functions of the set

{lp=8), |p=c), |p=B), |P2), [Py ), [pycr) }. The ground states |g,) (|sf) and |sa)) are not
significantly affected for the range of ¢ values that we consider.

v l€.(go)) lev(qrD))
[ Z(pB) —lmee) +ilpya)) | 1peh)
2 Z(lpza) + [p.B) +ilp,5)) p-cv)
3 —75(ilpsB) + |py ) Py )
4 5lp=B) + ( o) +ilpye)) | |pac)
5| —\2lpea) + SpeB) +ilnB) | IpeB)
6 2( ‘px ) + |pya)) pycx)

third row: v = 6, 3) the weights of the two different sublevels are the same.

In the limit of very strong charge (¢rp), the excited states converge to one of
the basis functions of the set {|p.5), |p.), [p.f5), |p=), |pyB), |pya)} (see Fig. 2.2
and Table 2.1). Consequently, a nonzero value for the transition dipole moment is
only obtained for transitions between sublevels with equal spin, e.g. (p,a|D,|sa) =
(pe| De|8) () = eITI; (see also Eq. (2.1)). As such, only six of the twelve transi-
tions are allowed (ten for ¢ = 0), with linear polarization m,, m, or 7., depending
on whether the excited state is |p,), |p,) or |p.), respectively (see Fig. 2.1c). Ap-
parently, the interaction with the surrounding charges outweighs the contribution

from SOC, such that only spin-conserving transitions are allowed.

To study the optical selection rules for intermediate ¢-values, we use the tran-
sition dipole moments as obtained from our CASSCF/RASSI-SO calculations.
Again, we transform the transition dipole moments to the basis obtained after
diagonalization of J, within the degenerate subspaces, such that we obtain the
i-components (e, (q)|D;|g,) (i € {x,y, z}) of the transition dipole moment related
to the |g,) <> |e,(q)) transitions. Interestingly, we can divide the twelve possi-
ble transitions into two groups (Table 2.2), based on the direction in which the
electric dipole oscillates. For Group XY (red) it oscillates in the xy-plane (the
z-component of the transition dipole moment remains zero for increasing ¢). For

Group Z (blue) it oscillates in the z-direction (zero x- and y-components).

Fig. 2.3 depicts the gradual evolution of the relative oscillator strength (f,e;)
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Table 2.2: Evolution of the polarization selection rules of [g,) < |e,(q))
transitions for the hydrogen atom upon symmetry lowering due to a Csy,
arrangement of negative point charges. The twelve possible |g,) <> |e,(¢)) tran-
sitions are divided into two groups (both containing six transitions), based on the
direction in which the electric dipole oscillates: for Group XY (red) it oscillates in
the zy-plane (the z-component of the transition dipole moment remains zero for in-
creasing q), whereas for Group Z (blue) it oscillates in the z-direction (zero z- and
y-components). Cells with an arrow denote how the polarization changes from zero
charge qo (left value) to very strong charge gpp (right), where a zero denotes a tran-
sition with zero oscillator strength f. Two cells contain only 7., implying that the
polarization is unaffected (although f increases with ¢). The values 0(7;) denote a

polarization change towards 7, whereas lim f(q) = 0. The two originally forbidden
9—q4FD
transitions become slightly allowed (7,-polarized) for nonzero ¢, but lim f(q) = 0,
9—4qFD

which is denoted as 0(7).

1 2 3 4 5 6
1 T2 ot —=0(m,) | 00 =y | 7me—>0 | ot =7, | 0—0(r,)
o~ — 0(my) T, 0—=0(m) |0 —=m | T.—0 | o =7,

as a function of ¢ for all twelve |g,) <+ |e,(q)) transitions, as obtained from Sup-
plementary Information Eq. (2.27) (p. 41). Although certain transitions become
even forbidden with increasing charge magntitudes ¢, the total emission and
absorption remain the same, because the sum of the oscillator strengths of all
transitions from or to |lsa) or |1s3) is unaffected, i.e. frer1sator = fret1s8.t0t = 9
(compare Section 2.2 for the orbitals and f,.-values for the grp-case, and Sup-
plementary Information Table 2.5 (p. 39) for the f,.-values when ¢ = 0). This
becomes also clear from the fact that the plot has a horizontal mirror plane
(dashed line) at f = 1.5. Since the transitions have different polarizations, the
dependence of the oscillator strengths of each transition on g implies that the
amount of light emitted in a specific direction depends on ¢ as well. However,
when light would be collected from all directions simultaneously, no variation
would be observed in the intensity. Particularly interesting is the fact that the
two originally forbidden transitions (¢ = 0 and SOC included, see Supplementary
Information Table 2.5) become slightly allowed (7, polarization) for 0 < ¢ < grp,
which results from the fact that |es(q)) and |eg(q)) gain some contribution from
|p.a) and |p.[3), respectively (Fig. 2.2).
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Figure 2.4: Evolution of the ellipticity angle ¢ and azimuth 6 for the hydro-
gen atom upon gradual symmetry lowering. We consider the six transitions (see
legend) that have the electric dipole oscillating in the zy-plane (Group XY in Table 2.2).
a, For these six transitions, the polarization change as a function of ¢ is represented on
a Poincaré sphere[16]. The longitude —7 < 20 < 7 and latitude —%71’ <2 < %71’ de-
termine a point P, that represents a polarization ellipse with azimuth 6 and ellipticity
angle € (Fig. 1.4). For the green (squares) and black (diamond) series the y-axis is the
major axis, hence § = w/2. For the other four (red and blue) series the z-axis is the
major axis of the polarization ellipse, hence # = 0. The four arrows outside the sphere
indicate for the data points the direction of increasing ¢. b, Ellipticity angle values ¢
from a as a function of charge magnitude ¢ for the six different transitions, changing
all from circular (e = £7/4) towards linear (¢ = 0). Data points are connected to guide

the eye.

To study the gradual evolution of the optical selection rules as a function
of ¢, we use the Jones-vector formalism (see also Supplementary Information
Section 2.12). For the six transitions having the electric dipole oscillating in
the xy-plane (Group XY, red in Table 2.2), the Jones vectors are visualized in
Fig. 2.4a via the Poincaré-sphere representation[16], and the ellipticity angles €
are plotted as a function of ¢ in Fiig. 2.4b. We find for all six Group XY transitions
that the polarization of the atomic electric dipoles changes gradually upon a
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gradual increase of the point charges. More specific, the polarization changes from
circular (o) via elliptical towards linear (7). The change to linear goes most rapid
for the transitions where |e4) and |es) are involved, a bit slower for the transitions
with |e3) and |eg), and slowest for the transitions with |e;) and |es) (which actually
become forbidden for large ¢). This corresponds, respectively, to excited states
that evolve towards |p,), |p,) and |p,) character (see also Fig. 2.2). The fact that
the evolution towards linear polarization goes faster for the transitions associated
with |p,) than for the ones associated with |p,) is related to the particular design
of the distortion used in our study: the charges —¢ are in z-direction closer to
the atom than in y-direction (see Fig. 2.1a).

For the six allowed transitions at qgpp, the m,-transitions originate from m,
(for qo), whereas 7, and m, originate from o (and are elliptical for intermediate
g-values). An observer at the +z-direction will (with gradually increasing charge)
see that the polarization of emitted light changes gradually from circular to linear.
Similarly, absorption of light becomes with increasing ¢ ultimately most efficient
for linearly polarized light.

A final observation to discuss is the fact that the character of the eigen-
states and the selection rules have their strongest evolution in the range between
q=10"%and ¢ = 1072 (see the traces in Fig. 2.2, Fig. 2.3 and Fig. 2.4b). In Sup-
plementary Information Section 2.13 (p. 43) we present a perturbation-theory
approach aimed at analyzing why the transition occurs most strongly in this
range. This confirms the notion that the transition occurs when the energy scale
associated with the Coulomb distortion by the point charges starts to dominate
over the spin-orbit coupling of the hydrogen atom.

2.5 Summary and Outlook

Studying the electronic transitions of the 1s and 2p levels of the hydrogen atom
in the presence of negative point charges (and a weak magnetic field) provided
a better understanding of the relation between the electronic wavefunctions and
the polarizations of the interacting light. By external lowering of the symmetry
of the hydrogen atom by gradually changing the magnitude of negative point
charges in a (5, arrangement, it was found that the polarization selection rules
were affected gradually as well (both oscillator strength and polarization). Only
six transitions (equal oscillator strength and linear polarization) remain allowed
between 1s and 2p sublevels in the limit of very strong charge.

This study has provided a simple model system to show the principle of sym-
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metry dependent optical selection rules. We have shown for the hydrogen atom
that varying the magnitude of the negative point charges allows to switch the
optical selection rules of certain transitions between circular and linear (elliptical
in between) and to switch other transitions between allowed (on) and forbid-
den (off). Such switching could be interesting for the storage and transfer of
(quantum) information. The study also provides a better intuition for polariza-
tion selection rules of systems with (relatively) low symmetry (like molecules or
crystal defects).

2.6 Author contributions

This chapter is based on Ref. 1 on p. 177. The project was initiated by all authors.
Calculations and data analysis were performed by G.J.J.L. and he had the lead
on writing the manuscript. All authors contributed to improving the manuscript.
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Supplementary Information (SI)

In the main text we have considered the resonance lines of the hydrogen atom
around 120 nm, corresponding to an atomic transition between the ground state
|1s) (n = 1; I = my = 0) and the excited state [2p) (n = 2; [ = 1; m; =
—1,0,1). We have investigated the modification of the optical selection rules
in the presence of surrounding negative point charges. Relevant fundamentals
are given for reference in the Supplementary Information below. Analogous to
the book of Cohen-Tannoudji, Diu and Laloé[5] (which gives a derivation for the
spinless case), the optical selection rules are derived for electronic transitions
between 1s and 2p levels in the presence of a magnetic field while considering
spin-orbit coupling, with the result tabulated in Table 2.5. With these optical
selection rules as a starting point (Fig. 2.1b), we introduce point charges in the
main text and study how the optical selection rules are modified.

2.7 SI: Energy levels of the hydrogen atom in a

magnetic field

For the hydrogen atom at zero magnetic field, the Hamiltonian Hy (containing the
kinetic and electrostatic interaction energy) has energy eigenvalues E,, = —E;/n?,
with E; the ionization energy. In the presence of a static magnetic field B along
z, the resonance line is modified. This field does not only change the frequency,
but also the polarization of the atomic lines, which is called the Zeeman effect.
In addition, due to the electron and proton spins, the resonance line is affected
by the fine- and hyperfine structure. However, let us neglect spin for the moment
(in Section 2.7 and 2.8), following [5]. As such, the Hamiltonian is given by
H = Hy + H,, with H; the paramagnetic coupling term. The corresponding
eigenvalue equation becomes

(Ho + H1)|bnpm,) = (En — mupipB))|On,1m,) (2.6)
with ug = zfvh{.j the Bohr magneton, e the elementary charge, h the reduced Planck

constant, and m, the electron mass. For the states involved in the resonance line,

we obtain

(Ho + H1)|¢p100) = —Er|d100) (2.7)
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(Ho + H1)|¢2,1.m) = (=Er + MQ + muwr))[é21,m) (2.8)

with the Larmor angular velocity given by w; = ;fe. At zero field this gives the

angular frequency of the resonance line

_ Ey—E 3K
Q= T (2.9)
2.8 SI: Electric dipole oscillations
The electric dipole operator is given by
D =¢R (2.10)

with R the position operator. Hence, D is a three-dimensional vector, with
components D,, D,, D,. Considering the |1s) and |2p) states of the hydrogen
atom, the only nonzero matrix components of D are[5]

el
<¢271a1’DI|¢1,U,0> == _<¢271,71‘D$’¢17070> — —72
.GIR
<¢271,1|Dy|¢1,0,0> - <¢2717_1|Dy|¢17070> = ]— (211)

V6
BIR
$210/Dz:|P100) = —=
(6210D-J6100) = 72
where the constant value I is a radial integral. If a system is in a stationary
state, the mean value of the operator D is zero, i.e. the system cannot emit any
light. Let us therefore assume that the system is in a linear superposition of the

ground state |1s) and one of the |2p) excited state sublevels

[Ym, (t = 0)) = cos(a)[dr0,0) + sin(a)|da.1m) (2.12)

with « real. As a function of time, this state evolves as

|, (t)) = cos(a)|é100) + Sin(a>e_im+me)t‘¢2,1,ml> (2.13)

—iE;t/h

where the global phase factor e has been omitted. The mean value of the

electric dipole is given by

(D), (8) = (W, () D]3m, (1)) (2.14)
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For m; = 1, we obtain

€IR

(Dy), = 7 sin(2a) cos((2 4 wr)t)
__¢=r sin(2a) sin w (2.15)
(Dy)y = g S ) sin((€2 +wp)t)

<Dz>1 =0

which implies that (D), () rotates in the xy-plane in the counter-clockwise di-
rection, with angular velocity Q + wry..
For m; = 0, we obtain

<Dr>o = <Dy>o =0

elp .
(D)o = i sin(2a) cos(2t)

which implies that (D), (¢) oscillates linearly along z, with angular frequency (.

(2.16)

For m; = —1, we obtain
elp .
(Dy) | = 7 sin(2a) cos((2 — wp)t)
(D) = — 28 Gn(2a) sin((Q — wi)t) (2.17)

V6
<Dz>—1 = 0

which implies that (D) | (¢) rotates in the zy-plane in the clockwise direction,
with angular velocity 2 — wy,.

For all three cases (m; = —1,0,1) the mean value of the electric dipole os-
cillates as a function of time, corresponding to the emission of electromagnetic
energy. The type of electric dipole oscillation determines the type of polarization
of the emitted radiation. Still, the polarization of light that an observer sees
depends on its orientation with respect to the source. For the m; = 1 case, the
electric dipole oscillates in the counter-clockwise direction with respect to the
z-axis. An observer will at the positive (negative) side of the z-axis therefore

+ _ atiy

detect o™ (07) radiation, where o= = 5 However, if the observer detects in

the xy-plane, the radiation will be linearly polarized, perpendicular to B. In any

other direction, the radiation is elliptically polarized. For the m; = —1 case, an
observer will detect the opposite direction for circular and elliptical polarization.
For the m; = 0 case, an observer in the z-direction will not observe any radi-
ation, since an oscillating linear dipole does not radiate along its axis. In any

other direction the detected radiation will be linearly polarized, parallel to B.
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If one is interested in excitation by means of polarized light, the process
just takes place in the reverse direction. Upon excitation, the electric dipole
oscillation will become resonant to the oscillation of the electromagnetic field of
a photon, where the polarization of the electric dipole oscillation is determined
by the polarization of the photon. The type of dipole oscillation that is induced
will be exactly the same as the type of oscillation that would be responsible for
emission of this light. For example, if at +2 you observe o~ light induced by a
clockwise rotation of the dipole (as seen from +z), you should excite the system
with ¢~ with the source of light being positioned at —z, in order to induce the

same oscillation (now counter-clockwise as seen from the origin).

2.9 SI: Spin-orbit coupling

According to special relativity, an electron moving in the electrostatic field of a
proton experiences this field in its reference frame as a magnetic field[35]. The
intrinsic magnetic moment due to the electron spin can interact with this mag-
netic field. The corresponding interaction energy is found to be proportional to
the inner product of L and S, i.e.

Including this spin-orbit coupling (SOC), one obtains the total Hamiltonian
H = Hy+ Hgo (2.19)

with Hy the original Hamiltonian without the spin-orbit interaction.

It is useful to define the total angular momentum operator
JP=L*+S*+2L-S (2.20)
which allows to write
L-S= %(JQ — L* - S?) (2.21)

where the corresponding energies are determined from

(L-S) = %(<J2> —(L*) = (S%)) = %2(3'(]' +1) = 1(14+1) —s(s+1)) (2.22)

which implies that the spin-orbit interaction induces an energy splitting
AE xj(j+1)—1(l+1)—s(s+1) (2.23)

For atoms, the proportionality constant is proportional to Z4, with Z the atomic
number[35]. Hence, spin-orbit interaction is strong for (systems consisting of)

heavy atoms.
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2.10 SI: The resonance line of the hydrogen atom
including spin

The electron spin can be either up ((S,) = h/2) or down ((S,) = —h/2), to which
we refer as « and [, respectively. The orbitals 1s, 2p_1, 2py and 2p; allow for
eight possible spinorbitals. These spinorbitals span a basis to which we refer as
the uncoupled representation[5]. It is convenient to label the basis states with
the quantum numbers [, s, m; and my, as tabulated in Table 2.3.

SOC lifts the 6-fold degeneracy of the 2p levels into sublevels with quan-
tum number j, i.e. 2p;/ (2-fold degenerate) and 2ps/, (4-fold degenerate). The
degeneracy can be further lifted by e.g. a magnetic field (which introduces an
additional term to H, which we neglect for the moment though), which induces
a quantization axis. When the field is applied in the z-direction, it is convenient
to define a basis spanned by the eigenstates of the total angular momentum J,.
Constructing the matrix J, = L, + S, in the basis in which H is diagonal, one
finds that J, is block-diagonal, i.e. the basis does not consist of eigenstates of J,.
Diagonalization of the 2- and 4-fold degenerate subspaces provides the basis to
which we refer as the coupled representation (where H remains diagonal).

When the spin and orbital angular momentum are coupled, it is convenient
to work in the coupled representation (Table 2.4). Good quantum numbers are
now j, m;, [ and s. The basis can still be expressed as a linear combination
of the basis states of the uncoupled representation, where the prefactors are the
so-called Clebsch-Gordan coefficients.

Excitation or emission between a 1s and 2p sublevel is possible if a nonzero
value is obtained for the transition dipole moment (¢.|D|t,), with |¢,) = |j =
%,mj = :l:%,l =0, = %> and [¢.) = [j,m;,l = 1,5 = %> As tabulated in
Table 2.5, we see that now ten of the twelve possible transitions from the 1s to
2p sublevels have nonzero oscillator strength. Instead, in the case without SOC
only six transitions are possible (three for either up or down spin).
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Table 2.3: Uncoupled representation for the spinorbitals originating from
the 1s, 2p_1, 2pg and 2p; orbitals.

Spinorbital | |, s, m;, ms)
|s83) 0, ;70 - >
|SC¥> |07 29 _>

[p—15) |1727—1 —3)
1) |1> 27— §>
[po3) ’17 27 _§>
’p0a> |17 27 >
|P15> ’1,;17—9
’p1a> |17é7172>

Table 2.4: Coupled representation for the spinorbitals originating from the
1s, 2p_1, 2pp and 2p; orbitals. The left column contains the basis states of the
coupled representation. The middle column gives the same states in the basis of the
uncoupled representation, where the prefactors are the so-called Clebsch-Gordan coef-
ficients. The right column gives the notation as used in the main text, (for the excited

state) corresponding to the case where no surrounding charges are present.

l7,m;,1,s) > Crymi|l, 8, my, myg)

L-10.5) 0.5.0.-3) 92
5:5:0,%) 10,5,0,3) |92)
518 | iLdo-3) - ﬂlm—,p ex(q0))
LLLD | LE LD - 5500 | lelw)
$-31.0) 1,3,-1,-1) es(a))
5 -5 13 | HIL5 -1+ /211,5,0,-5) | lealao))
$LLE | VALLO D+ LI L1 =Y | fes(ao))
!%%J;%) \L;L%) \66(610»
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Table 2.5: Transition dipole moments, polarizations (pol.) and transition

strengths for transitions between 1s and 2p sublevels, in the presence of a

magnetic field. See main text Fig. 2.1 for definitions of |g,) and |e,). The relative

oscillator strengths f,.o; (Eq. (2.27)) for all transitions from either |s_% ) or |s 1 ) add up

to freitor = 9, equal to the case without SOC (main text Section 2.2).

|Sm;) > |Djm,) (ey|D|g,) in the uncoupled representation. Pol. | fre
= lg.) & ley) Vanishing terms are omitted.
s_y) e lpyoa) | (G0L5.0,-3 - 3(L3 -1 3Dl s0,-b | = | 1
= |g1) < lew) = \%( 2,1,0\D |1.0,0) = % R
[s_1) ¢ |ps 1) (\/g (13,1, ~3 - 2(1,1,0,4) |0, 1,0,~%) | oF | 2
= lg1) > le2) % ¢2,1,1‘DI\J;%DI“’|¢1,0 0) = —?2613
sy el p|  (Lh-L-tDpLo b | 3
= |g1) < |es) = <¢2,1,71|Dm_my $100) = zelr
[s_1) & Ips 1) (%(1,%,—1,5“[(1,;,0 ~1)DI0, 3,04 | 7 | 2
=lg1) ¢ lea) = %( 2,10/ Dz[¢100) = iefR
5o lpga) | (V3L 0.3+ (131, -3)DI0.3,0.-4) | o* | 1
= |g1) < les) = 13<¢2,1,1|D e tiDy |¢100> = _%GIR
|s_1) <> [z 3) (1,5,1,51D[0,3,0,—3) = 0
= [g1) < |es)
sy lpyog) | (Z5(05,0,-3 = 2L L -1 1) D0, L,04) | o | 2
i ) | = omra| Pl — Ty
sy o lpyy) | (VELL L4 - B 50.4)D0304) | x| 1
= |92> A |€2> = %(Qbm > = —-GIR
51 6 Ipy_2) (1,3 ~1,-3D]0,1,0,5) =0 0
= |g2) < |es)
ls1) ¢ [ps 1) %u,%,— Al [u,;,o ——r)D\o,Q, e
Sl e lend | = Lol 200 00) = Lol
sy erlpey) | (2003 0,21+ <1,;,1,— )DI0.3,0.4) | 7 | 2
= l92) 4> les) \/g (P2.10|Dz[¢100) = —6I
51) ¢ Ipy.a) TR ;|D|o, Lo, 3y Rk
= |g2) < |e6) = (11| 2= |¢100> \/geIR
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2.11 SI: Transition dipole moment and oscilla-

tor strength

For a system with N states, the transition dipole moment related to a transition
from the initial state |¢;) to the final state | ) is given by ppr, where I € {1...N}
and F' € {1..N}. Within a Cartesian coordinate system (i = {z,y,z}), the

corresponding components of this complex vector are given by

prri = (Yr|Dilr) (2.24)

where D; is the i-component of the electric dipole operator D = eR, with e the
elementary charge and R the position operator. The transition dipole moment
is Hermitian, implying that u;p; = (¢¥r|Di|tbr) = pir;, where the * denotes the
complex conjugate.

When we consider spinorbitals, the 1s and 2p contain 2 and 6 sublevels,
respectively. The total basis set contains thus 8 spinorbitals, for which one can
write down the matrix elements of the transition dipole moment. For each i-
component, we obtain an 8 x 8 matrix. Since we are only interested in |1s) <>
|2p) transitions, the lower left 6 x 2 submatrix contains all the information we
need, i.e. the ones with I € {1,2} (1s sublevels) and F' € {3,8} (2p sublevels).
This submatrix contains the elements of the transition dipole moment related to
transitions from a 1s to a 2p sublevel. The upper right 2 x 6 submatrix is related
to transitions from a 2p to a 1s sublevel and contains the complex conjugates.

Let us from now on merely focus on the 6 x 2 lower left submatrix of pip;; and
relabel the states (according to main text Fig. 2.1b and c¢). We denote p,,, as the
transition dipole moment related to a transition from a ground state sublevel |g,,)
(u € {1,2}) to an excited state sublevel |e,) (v € {1,6}). Within a Cartesian
coordinate system (i = {z,y, z}), the corresponding components of this complex

vector are given by

fopi = (€| Dilgu) (2.25)

where D; is the i-component of D = eR, with e the elementary charge and R
the position operator. For each i-component, the transition dipole moments are
conveniently put into a 6 x 2 matrix with values given by Eq. (2.25).

A convenient measure for the strength of a transition is the real-valued oscil-
lator strength f, which is proportional to the absolute square of the transition
dipole moment[35]. In this work, we will consider only a small subset of all pos-

sible transitions in the hydrogen atom, i.e. the |1s) <+ |2p) transitions, where we
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refer to the sublevel transitions as |g,) <+ |e,). The oscillator strength related to
such a transition is therefore proportional to the absolute square of the transition
dipole moment g,,, (which is a vector, such that we have to take the sum of the
absolute squares of the components), i.e

Fur o< M = D gl (2.26)
1=T,Y,2
where f,, = f,,. For our work it is convenient to define the relative oscillator
strength related to a transition between a ground state |g,) and an excited state
le,) as

9
frel, v = |/«l'zz |2
12 ( ) w

‘ 2

) > el Dilga)l® (2:27)

1=,Y,% 1=x,Y,2

For an electron occupying the ground state sublevel |g,), we define the total
relative oscillator strength as

9
frel,gu,tot = Zfrel,,uy = W Z ‘<€V|Di|gu>|2 (228>

2.12 SI: Jones calculus applied to the oscillation

of an atomic electric dipole

To describe how polarized light is affected by interaction with an optical element
(or a sample), it is often convenient to use Jones calculus. Within this method,
light is represented by a Jones vector and the optical element by a Jones matrix.
Within the Jones-vector formulation, a Jones vector contains the amplitude and
phase of the electric field components of a light beam (orthogonal to its prop-
agation direction). Commonly, the amplitudes are normalized, such that their
intensities add up to 1. Any elliptical polarization can be described, including
the special cases of linear and circular polarization.

The polarization ellipse is described by the azimuth 6 and the ellipticity angle
€, as illustrated in main text Fig. 1.4. The azimuth 6 is the angle between the
semi-major axis a and the horizontal axis, where —%71’ << %W. Note that ¢ and
6 are ill-defined for circularly polarized light. The ellipticity angle € is defined
through the ellipticity e = 2 (with b the semi-minor axis) such that e = +tane,
where —iﬂ' <e< }ﬁr (where the + and — signs correspond to right- and left-

handed polarization respectively).
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The general definition of the Jones vector representing an electric vector os-
cillating in the zy-plane is given by[16]

cos(¢) cos(f) cos(e) — isin(f) sin(e)

— Ao
=4 sin(#) cos(e) + i cos(6) sin(e)

E{x,y} = Ae”R(-0) [ (2.29)

isin(e)

where we will take for convenience the amplitude A = 1 and the global phase
d = 0. The transformation matrix R(—#) rotates the primed basis with an angle
—6 (to the unprimed basis) in main text Fig. 1.4. It turns out that we have
to distinguish only two cases in this work, i.e. # = 0 (the z-axis is the major
axis) and 6§ = 7/2 (the y-axis is the major axis). Within the {x,y}-basis, the
corresponding Cartesian Jones vectors follow from Eq. (2.29) by substituting for
0, from which we can easily find e, i.e.

0=0: B{xy) = [;;?8] . e=sin}(—iE,) (2.30)
b—n/2: B{X§}— _Ci;i?e(;)] e—sinl(iE,) (2.31)

which for both cases corresponds to a clockwise rotation (right-handed polariza-
tion) for € > 0. Note that |E,| > |E,| when § = 0, whereas |E,| > |E,| when
0=m/2.

We find it convenient to assign a Jones vector to the oscillation of an atomic
electric dipole related to an electronic transition, with the components of the
electric vector E given by the (normalized) components of the corresponding
transition dipole moment. As such, an electric dipole oscillating in the zy-plane
is represented by the Jones vector

<¢f’Dr|¢z>

E{x,y} =N
=N 1D, 6

(2.32)

with N a normalization constant and |¢;)) the initial (final) state. We will
always take the ground state |¢s) = |g12) for the initial state.

For the 1s <> 2s transitions of the hydrogen atom, it turns out that for six
of the twelve possible transitions the transition dipole moment has only nonzero
z-components for increasing charge ¢, i.e. the electric dipole oscillates only in the
z-direction (these six have been named Group Z (blue) in main text Table 2.2).
For this Group Z, only the oscillator strength varies as a function of ¢ (i.e. the

polarization selection rules vary only in the sense of varying between forbidden
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and allowed). For the other six transitions (Group XY (red) in main text Ta-
ble 2.2), the transition dipole moment has only nonzero x- and y-components,
i.e. the electric dipole oscillates in the xy-plane. For these transitions the polar-
ization seletion rules are also affected in the sense of a change of the ellipticity
(actually, only the ellipticity angle € turns out to be affected). We find for this
Group XY for increasing charge ¢ that of the components £, and E, always one
is purely real and the other imaginary (or zero). This implies that we have either
6 =0 or § = /2. More specific, for increasing g the polarization selection rules
for each of the Group XY series change from circular to linear, without affecting
. Therefore, we can for each series always write the Jones vector in the form of
either Eq. (2.30) or (2.31), where we multiply with a global phase factor e’ with
the phase ¢’ taken such that E, becomes real when |E,| > |E,| and E, becomes
real when |E,| > |E,|. Subsequently, we can easily determine the ellipticity angle

€.

2.13 SI: Perturbation-theory description of dis-

tortion by extra charges

In this section we present a perturbation-theory approach for analyzing why the
character of the eigenstates and the selection rules have their strongest evolution
in the range between ¢ = 107* and ¢ = 1073 (see the traces in Fig. 2.2, Fig. 2.3
and Fig. 2.4b). This confirms that this occurs at the value for ¢ where the
perturbation due to the charges becomes stronger than the spin-orbit coupling in
the bare hydrogen atom.

The notation used for this perturbation-theory description mostly follows[5].
However, for consistency with the main text we introduce Hy,, as notation for the
unperturbed Hamiltonian of the hydrogen atom with spin-orbit coupling already
included,

Hoso = Ho + Hso (233>
The Hamiltonian with the perturbation due to the extra charges —¢q is then
H=Hy,+V (2.34)

where V is

q; - €
_ 2.
1% Z R 1) (2.35)
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The summation runs here over the set of extra charges put in the environment,
each labeled by a value for i. Further, e is the elementary charge, R is the position
operator for the electron, and r; are the positions of the extra charges. We will
restrict ourselves to the case with identical magnitude for all charges ¢;, that is,
for all 7 we use ¢; = q.

The unperturbed Hy,, has degenerate eigenstates for the states that belong
to the 2p; /o and 2p3/, manifolds. We therefore work out degenerate perturbation
theory by rotating the degenerate orbitals[5] in such a way that in each degenerate
set (pr| V' |pi) = 0, for all cases k # [ and k,[ an index for labeling the p states.
The perturbation theory then gives for the first-order energy shift (with |¢,),
|6p), En, E, eigenstates and eigenvalues of Hs,)

1
; IR —

The first order correction to the wave function has probability amplitudes

_ (D V |0n) __q9-e <¢p Zm+r| ¢n> (2.37)

where (given the above remark on degeneracies) we only need to consider terms

¢n> (2.36)

“r="p,—E, E,-E,

that combine 1s and 2p states. The last expression shows that the effect strongly
depends on the particular geometry of the perturbation with charges: the state
mixing is proportional to ¢ and to a spatial integral that only concerns the oper-
ators 1/|R —r;|. For our particular geometry, we find via numerical evaluation of
the integral that the sum of the amplitudes ¢,, is of order 0.01 - ¢ - ¢/(E, — E,).
That is, the state mixing is governed by matrix elements (¢,| V' |¢,) = 0.01-¢q-e.
In the atomic units we use, the strength of the spin-orbit coupling is about 10~°
Hartree[5]. Hence, the perturbation by the charges will dominate over the spin-
orbit coupling for values of ¢ > 10~*. This is in agreement with the trends in
traces in Fig. 2.2, Fig. 2.3 and Fig. 2.4b.

Notably, for describing the effective strength of the distortion, the above anal-
ysis shows how a spatial integral over the volume that is occupied by the electron
wave function is an important factor. When comparing two situations with the
extra charges either inside or outside the volume where the wave function has sig-
nificant amplitude, but with otherwise identical symmetry and identical Coulomb
distortion at the hydrogen nucleus, the effective strength of the distortion is there-
fore very different. That is, a distortion with charges —q at a distance a (with a of
order the Bohr radius) has a stronger influence than placing charges of magnitude
—(C' - ¢ moved out radially to a distance C' - a.



Chapter 3

Proposal for time-resolved optical
preparation and detection of
triplet-exciton spin coherence in organic
molecules

Abstract

Changes in optical polarization upon light-matter interaction can
probe chirality, magnetization and non-equilibrium spin orientation
of matter, and this underlies fundamental optical phenomena such as
circular dichroism and Faraday and Kerr rotation. With fast opti-
cal pulses electronic spin dynamics in materials can be initiated and
detected in a time-resolved manner. This has been applied to mate-
rial systems with high order and symmetry (giving distinct optical
selection rules), such as clouds of alkali atoms and direct-band-gap
semiconductor systems, also in relation to proposals for spintronic
and quantum technologies. For material systems with lower sym-
metry, however, the potential of these phenomena for studying and
controlling spin is not well established. We present here how pulsed
optical techniques give access to preparing and detecting the dy-
namics of triplet spin coherence in a broad range of (metal-)organic
molecules that have significant spin-orbit coupling. We establish how
the time-resolved Faraday rotation technique can prepare and detect
spin coherence in flat molecules with Cs, symmetry, and extrapo-
late that the effects persist upon deviations from this ideal case,
and upon ensemble averaging over fully randomized molecular ori-
entations. For assessing the strength and feasibility of the effects in
reality, we present detailed theoretical-chemistry calculations.

45



46 Chapter 3. Proposal for time-resolved ... in organic molecules

3.1 Introduction

Organic molecules are increasingly used for opto-electronic devices, because of
their chemical tunability, low-cost, and ease of processing. In such devices, the
ratio of singlet to triplet excitons can be an important performance parameter|[39].
Moreover, because of the many interesting spin-related phenomena discovered in
organic semiconductors and molecules[40-45], further exploration of spintronic
applications in these materials is of interest. Both for organic opto-electronics
and spintronics, being able to control and probe triplet-exciton spin coherence
will be of great value for better material studies and improving the functionalities.
A handle for this may rely on the optical polarization of the interacting light.
Correlations between electronic spin states and optical polarization are well es-
tablished for inorganic semiconductors with strong spin-orbit coupling (SOC)[9],
and a particular example for using such correlations is the Time-Resolved Fara-
day Rotation (TRFR) technique[12, 13, 46]. This is a pump-probe technique
based on measuring the polarization rotation (optical rotation angle) of a probe
pulse upon transmission through a sample, as a measure for the (precessing) spin
orientation induced by a pump pulse. The oscillation of the polarization rotation
as a function of the delay time between pump and probe then directly reflects
coherent spin dynamics. The aim of the theoretical work in this chapter is to
study how this pump-probe technique also allows for optical control and probing

of coherent triplet-exciton spin dynamics in organic molecules.

3.2 Theoretical proof of principle for a molecu-

lar TRFR experiment

To realize a molecular TRFR experiment (Fig. 3.1), we suggest to use an ul-
trashort polarized pump pulse that excites a molecular system from the singlet
ground state into a coherent superposition of two sublevels of the lowest triplet
excited state (Fig. 3.2a), for the zero-phonon optical transition. This energy level
scheme differs from the most common TRFR scenario, which focuses on electron
spin coherence (with spin S = 1/2) in inorganic semiconductors[12, 13]. For

This chapter is based on Ref. 2 on p. 177.
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Figure 3.1: Schematic of a molecular Time-Resolved Faraday Rotation
(TRFR) experiment. The pump and probe pulse propagate in the z-direction,
whereas the molecule lies in the yz-plane. Depending on the state of the molecule, the
probe pulse experiences optical rotation upon transmission, where the optical Faraday
rotation angle Af (in the yz-plane) is a measure for the spin orientation induced by the
pump pulse. Coherent spin dynamics occurs along the z-axis and is revealed by varying
the delay time between pump and probe, involving an oscillation of Af. In view of
this work, the metal-organic molecule (2,6-bis(aminomethyl)phenyl)(hydrido)platinum
is depicted, which is referred to as PtNoCgH1s. This molecule has Cs, symmetry. The
Jones vectors E with corresponding (in general complex) prefactors («, 3, § and €) are
in general not normalized, unless representing polarizations (i.e. normalized electric
vectors which we denote with a hat, in which case we call the prefactors polarization

parameters).

these systems optical transitions can be described as excitations of single elec-
trons, from valence-band to conduction-band states. For the relevant electrons
in chemically stable organic molecules the typical situation is very different: the
ground state has two localized electrons in a spin singlet S = 0 configuration.
Without SOC effects, optical transitions are only allowed to excited states that
are also singlet states. Spin coherence can be carried out by excited states with
the electrons in a triplet spin S = 1 configuration, and these states have ener-
gies that are typically ~200 meV lower in energy than their singlet equivalents.
Optical transitions directly into the triplet excited states are only possible when
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Figure 3.2: Energy level scheme and laser (de)tuning for the pump and
probe pulse in a molecular Time-Resolved Faraday Rotation (TRFR) ex-
periment. a, For PtNoCgHyo all three (x,y, 2z, as defined in Fig. 3.1) components
of (12| r|1)g) are zero, wherefore we neglect |1p2). When the pump pulse (red arrow)
arrives at t = 0, only |1,) is populated, as indicated with the dot. Full absorption of a
photon out of a short (thus spectrally broad) optical pump pulse polarized in both the
y and z-direction induces a superposition of [¢)1) and [¢3). b, Directly after excitation
with the pump, |¢(t)) (being a superposition of |¢)1) and |i¢3)) is populated, as indi-
cated with the dot. A linearly polarized probe pulse (blue arrow) with detuning A,
experiences a polarization rotation A#, which oscillates as a function of the delay time
At. This oscillation is a measure for the coherent spin dynamics (J) (¢), related to the
evolution [t¢(t)).

the system has significant SOC, with more oscillator strength for the transitions
as the SOC strength increases. Typical molecular systems with large SOC are
metal-organic complexes containing a heavy metal atom[47, 48], and molecules
with strong curvature at carbon-carbon bonds[49]. Such molecules are particu-
larly used in organic light-emitting diodes (OLEDs) for efficient triplet-exciton
harvesting.

For our analysis we will assume that the pump pulse exactly transfers all
population from the singlet to the triplet state (i.e. and exact optical w-pulse for
this transition). In practice this will often not be the case, but for the essential
aspects in our analysis this does not compromise its validity. Instead, an ultrafast
pump pulse will in general bring the system in a quantum superposition of |¢,)
and [¢.(t = 0)). However, the quantum coherence between these two states
will typically decohere very fast, and this will bring the system in an incoherent
mixture of [¢,) and [¢.(t =~ 0)). Then, the population in |¢,;) will not contribute
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to the TRFR signal (for our probing scheme, see below). At the same time,
the population in [i.(t ~ 0)) will contribute to the TRFR signal in the same
manner as a system that is purely in this state. The main reason to still aim for
excitation with an optical m-pulse is that this maximizes the TRFR signal, and

our estimates below here assume this case.

We thus assume that the pump pulse brings the molecules in a state that
is purely a superposition of triplet sublevels (|i.(t)) in Fig. 3.2b). This state
will show coherent spin dynamics as a function of time (also at zero magnetic
field the triplet sublevels are typically not degenerate[50]). We will study this
by calculating both (S) (¢) and (J) (¢), where J = L + S is the total electronic
angular momentum in conventional notation, and ¢ is the time after the arrival of
the pump pulse (to be clear, we use ¢ for time in the system’s free evolution, and
At for the pump-probe delay). As commonly done in literature on spintronics[51],
we will use the word spin for well-defined states of J. The discussion will clarify

whether a net spin orientation refers to a nonzero expectation value for J or S.

For our calculations we focus on a molecule that contains a heavy-metal atom
in order to have large SOC. In literature, usually density-functional theory (DFT)
calculations are used to study such complexes theoretically, like e.g. for plat-
inum porphyrins[45] and iridium complexes[52]. We use the more accurate com-
bined CASSCF/CASPT2/RASSI-SO method instead, as introduced by Roos and
Malmqvist[17, 18] in MOLCAS|23], in order to have a better basis for extract-
ing physically relevant wave functions and spin expectation values. Since this is
computationally a very expensive method, we chose the relatively small metal-
organic complex (2,6-bis(aminomethyl)phenyl)(hydrido)platinum (to which we
refer in this work as PtNoCgH;o (Fig. 3.1)). Note that this molecule is (possibly)
not chemically stable, in contrast to the related molecule[53] with Cl substituted
for the H bound to Pt and N(CHj), for NHy. However, it is computationally much

less demanding and therefore more suitable for our proof of principle calculation.

The sublevels of the lowest triplet (including SOC) of PtNoCgHj, are labeled
as |11), |¢2) and |ips) (Fig. 3.2 and Supplementary Information Fig. 3.9 (p. 84)).
The energies of these levels with respect to |1),) are 3.544, 3.558 and 3.564 eV re-
spectively, as obtained from the CASPT2 calculation. The corresponding nonzero
components of the transition dipole moments are (¢1|y |1),) ~ 0.0003 —i0.0112
and (i3] 2 |1,) =~ 0.0063 in atomic units (where the conversion factor to SI-units
is 8.47836 - 1073 Cm). In other words, a transition from |¢,) is allowed only
with y and z polarized light to state |¢1) and [¢)3), respectively, but forbidden
to state [19). Having this type of selection rules for singlet-triplet transitions is
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a generic property of systems with Cy, symmetry (for details see Supplementary
Information Sec. 3.12 (p. 83)), and introduces a way to selectively excite to (a
specific superposition of) triplet sublevels. Such an imbalance in populating the
triplet sublevels is essential for inducing spin orientation (see also below).

A spectrally broad pump pulse with polarization in both the y and z-direction
can thus bring the system into a superposition of [¢;) and |¢3). From the
CASPT?2 calculations, an energy splitting F3 — E; = 20 meV (30 THz angu-
lar frequency) has been obtained (Supplementary Information Table 3.3 (p. 83)).
To simultaneously address |¢)1) and [i3), we thus need to use ultrashort laser
pulses with an uncertainty in the photon energy given by og, > E3 — Ey. This
requires that the time duration of the pulses does not exceed 16 fs (defined as the
standard deviation of the envelope), as follows from the time—energy uncertainty
relation.
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Figure 3.3: Calculation of (J;) (t), (L;)(t) and (S;)(t) for a superposition
of two triplet sublevels of a single PtN,CsH 2 molecule. This calculation
originates from a superposition of triplet sublevels |11) and [¢3) (which interact with y
and z polarized light respectively, Fig. 3.2), induced by an ultrashort pump pulse having
electric unit vector Epump = Z\J/%y Spin oscillation occurs in the = direction only. More
specific, (Jg) (t), (Lz) () and (Sy) (¢) oscillate with frequency ws; = (E3 — E1)/h, while
the y and z components remain zero.
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For the pure triplet spin states T, T, and T, (defined in Supplementary
Information Eq. (3.77-3.79) (p. 84)), all (z,y,z) components of (S) are zero.
Instead, for a superposition of these sublevels the net spin can be nonzero. More
specifically, for a superposition of two of these spin states (say, 7; and T}), the
spin expectation value oscillates with only a nonzero component in the direction
perpendicular to ¢ and j, and with a frequency corresponding to the energy
difference between the sublevels. To induce nonzero spin and subsequent spin
dynamics for PtNyCgHjs, we therefore propose a direct excitation from |t,) to
the state [i.(t = 0)), being a superposition of |[¢1) and [¢5) (Fig. 3.2a, for
details see Supplementary Information Eq. (3.26) (p. 67)). As a function of time,
this superposition evolves as |¢.(t)) (Fig. 3.2b and Supplementary Information
Eq. (3.28) (p. 67)), for which (J,) (t), (L) (t) and (S,) (¢) oscillate with frequency
w31 = (E3 — Ey)/h, while the y and z components remain zero. Fig. 3.3 shows
the result of a calculation of such an oscillation, for the case where the electric

unit vector of the pump pulse is Epump = Z\J/%y

We aim to probe this oscillating spin (orientation) via Faraday rotation, which
can be realized my measuring the polarization rotation Af (as introduced in
Fig. 3.1). The optical transitions and selection rules that we have introduced
in the above can be used for calculating Af (for details see Supplementary In-
formation Sec. 3.7 (p. 64) and Sec. 3.8 (p. 66)). Fig. 3.4 shows results of such
a calculation, for an ensemble of isolated and identically oriented PtNoCgHyo
molecules (e.g. realized by using a crystal host). We have assumed a detuned
linearly polarized probe pulse, and present A# as a function of the delay time At
between an ultrashort polarized pump and probe pulse. Taking a detuned probe
(Fig. 3.2) limits probe-pulse induced population transfer back to the ground state,
which allows to consider dispersion only[54]. We take a detuning where dispersion
is near maximal, while probe absorption is strongly suppressed.

While we do not present the full equations for the above calculation in the
main text (but in the Supplementary Information), we will discuss here some
notable aspects. The polarization of the probe pulse after transmission E,,; is
affected when its components experience a different real part of the refractive in-
dex[16] (birefringence). A generic description of light-matter interaction in such
a medium requires formulating the linear susceptibility and relative permittivity
as a tensor. However, the refractive index does not have a tensor representation
due to its square-root relation with these parameters[55]. Speaking about refrac-
tive indices only makes sense when a transformation is performed to the basis of

the principal axes, which are the eigenvectors of the linear susceptibility tensor
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Figure 3.4: Calculation of the polarization rotation Af = 0,,; — 0;, as a func-
tion of At for an ensemble of isolated and identically oriented PtN,CgHjo
molecules. The curve was calculated with Supplementary Information Eq. (3.61)
(p. 73) with the following parameter values: Polarization parameters a = =0 =¢ =
1/v/2, i.e. electric unit vectors Epump —E;, = Z\J/%y (where E;, is the initial polariza-
tion of the probe); Transition dipole moments d; = 0.0003 — ¢0.0112 and ds = 0.0063
a.u.; Triplet sublevel splitting F3 — E1 = 20 meV; Probe wavelength A = 349 nm;

Detuning A, = —60 meV, which is assumed to satisfy the requirements |Ap| >> v and
|A,| >> |E3 — E1|/h; Thickness d = 100 nm; Number density N = 10** m™.

x" (Eq. (3.31) in the Supplementary Information (p. 68)). For our system, the
oscillating dynamics of |¢)(t)) yields that the principal axes oscillate with time
(see Eq. (3.38) and (3.41)). While accounting for this, the electric-field compo-
nents of the probe after transmission (Eq. (3.56)), and in turn the corresponding
azimuth 6,,; (Eq. (3.59)), and polarization rotation A0 = 6,,; — 6;,, (Eq. (3.61))
can be calculated, for results as in Fig. 3.4.

Comparing Fig. 3.3 with Fig. 3.4, we conclude that AG(At) is an appropriate
measure for (J) (¢), since both oscillate in phase with frequency ws;. The ex-
perimental advantage of measuring oscillating coherent spin dynamics instead of
merely spin orientation is that it is much easier to trace back the origin of a small
signal when it oscillates, and it gives access to observing the dephasing time of
the dynamics.
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3.3 Feasibility analysis

The experimental feasibility of a molecular TRFR experiment particularly de-
pends on the amplitude of the oscillation of the polarization rotation Af as a
function of the delay time At. Typically, the accuracy of a TRFR experiment is
in the order of nrads[56]. Fig. 3.4 gives a value of 23 nrad for this amplitude, well
within the required range. In Supplementary Information Sec. 3.10 (p. 75) we
discuss how this signal can be enhanced by several orders of magnitude. In the
remainder of this section we address other aspects of the feasibility of a molecular
TRFR experiment.

3.3.1 TRFR experiment with an ensemble of randomly

oriented molecules

In Supplementary Information Sec. 3.15 (p. 91) we show for an ensemble of ran-
domly oriented PtN,CgHi5 molecules that the TRFR signal is only reduced by
a factor 2 as compared to the case with all molecules oriented such that the
maximum signal is obtained (i.e. perpendicular to the incoming light). Hence,
optically induced spin orientation does not necessarily require the same orienta-
tion for the molecules of interest when put in a crystal host. Moreover, this shows
that a nonzero TRFR signal can be obtained for molecules in the gas phase and
in solution. In these cases it can be satisfied that the molecules of interest are
well isolated from each other. Still, the spin lifetime might be affected by several
effects.

The spin dynamics might be affected by thermal fluctuations within the
molecule. Although this is usually hardly the case for pure spins, the effect
might be nonnegligible in our case due to the orbital part being mixed in via
SOC. As long as this orbital contribution is small, these effects will not be severe.
The strength of the SOC effect drives in fact a trade off between positive and
negative effects for observing long-coherent spin oscillations with TRFR. Strong
SOC makes the direct singlet-triplet transition stronger. However, it will also
shorten the effective triplet-spin dephasing time because it shortens the optical
life time of the triplet state, and since it enhances the mentioned coupling to
thermal fluctuations. In addition, rapid tumbling of molecules in solution might
limit for how long coherent spin oscillations can be observed. This effect might
be suppressed by e.g. taking a high viscosity of the solvent, large molecules or a

low temperature (for details see Supplementary Information Sec. 3.15). Another
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trade off lies in the triplet sublevel splitting for the system of choice. A larger
splitting gives faster spin oscillations, but is thus more demanding on the need for
ultrashort laser pulses. A larger energy scale for the splitting probably increases
to what extent the spin dynamics couples to other dynamics of the system.

3.3.2 Single molecule TRFR experiment

In earlier work, the optically detected magnetic resonance (ODMR) technique
has been used to study triplet spin polarization in molecular ensembles[57] and
single molecules[58]. Within this technique, a microwave field drives the spin
dynamics. An advantage of our TRFR technique may lie in that it is an all-optical
technique, and fast laser pulses give access to a much higher time resolution.
Other advantages are the absence of a magnetic field and the applicability to
ensembles of randomly oriented molecules.

It would be very interesting to be able to also apply the TRFR experiment to
a single molecule. Hence, we qualitatively determine whether such an experiment
is possible. As an approximation for the signal obtained with a single molecule
experiment, we can take the thickness d equal to the separation between two
molecules (determined by N). In our calculation for PtNoCgHjs, we have d =
100 nm and N corresponding to a separation of 10 nm. Our approximation
thus implies only one order of magnitude loss of Af signal when taking a single
molecule into account. We thus conclude that the signal of a TRFR experiment
applied to a single PtNoCgHjs molecule lies within the measurable range (> nrad)
which offers a strong indication that the TRFR technique can be used to probe
the spin of single molecules as well. Likewise, the TRFR technique has already
been applied successfully to probing of a single spin in a semiconductor quantum
dot[59].

3.3.3 Franck-Condon suppression of optical transitions

Although our proof-of-principle calculation was performed for (2,6-bis(amino-
methyl)phenyl) (hydrido)platinum, this particular molecule seems unfavorable for
an actual demonstration of a molecular TRFR experiment since the Franck-
Condon (FC) factor for the zero-phonon transition is extremely small (Supple-
mentary Information Sec. 3.13 (p. 85)). Using the zero-phonon transition is still
preferred to avoid a strongly disturbing coupling between the coherent spin dy-
namics and phonons. The zero-phonon-line FC factors for platinum porphyrins

are much larger (Supplementary Information Sec. 3.13), which make them promis-
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ing candidates for spintronics applications in general[45], and for a molecular

TRFR experiment in particular (Supplementary Information Sec. 3.14 (p. 86)).

3.3.4 Persistence of spin-orientation effects for symme-

tries lower than (),

For our proof-of-principle study we have focused on a system with C5, symmetry,
for which the complexity of the description can be kept at a moderate level.
This case is also relevant since many organic molecules have a flat structure
(around the location with the optically active electrons). For molecules that
only weakly deviate from this Cs, symmetry, the effects are most likely only
weakly suppressed. That is, the effects demonstrated in this chapter only fade
out gradually when one gradually distorts the Cy, symmetry.

The nonzero TRFR signal in our proposal comes mainly forward due to the
strong selection rules that link particular optical polarizations to transitions from
the singlet ground state into specific triplet sublevels. More specific, since one
of the three electric dipole moments for the singlet-to-triplet transitions is zero
(directly following from the (s, symmetry), the TRFR signal shows a single spin
oscillation, originating from the quantum superposition of two triplet sublevels.
In the case of a relatively large deviation from Cj,, these selection rules become
usually less strict in two ways: excitations are allowed (1) to all three sublevels,
and (2) with all polarizations (z, y, z). However, the oscillator strengths of the
different polarizations are usually not equally strong for the different sublevels. As
such, an imbalance in the populations of the triplet sublevels can still be created,
such that the TRFR signal will not be fully suppressed. Additionally, the total
TRFR signal will then consist of a sum of three oscillations with frequencies
\wi;| = |Ei — Ej|/h, with i and j two different triplet sublevel indices.

3.4 Summary and Outlook

We have derived the fundamentals of a TRFR experiment applied to organic
molecules with strong spin-orbit coupling allowing for singlet-triplet excitations.
We have shown how the optical selection rules can be exploited to induce a quan-
tum superposition of triplet sublevels of the excited state of the molecular system,
using an ultrashort pump pulse. We have derived how the polarization of an op-
tical probe pulse is affected upon transmission, from which the requirements for

polarization rotation follow. As a proof-of-principle calculation, the metal-organic
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complex (2,6-bis(aminomethyl)phenyl)(hydrido)platinum has been considered to
study the possibility of a molecular TRFR experiment. Using the results of
ab initio calculations, we have calculated the time dependence of the polariza-
tion rotation angle and of the expectation value of the total electronic angular
momentum. Both oscillate in phase with a frequency corresponding to the sub-
level splitting, implying that the oscillation of polarization rotation is a suitable
measure for coherent spin dynamics. Nevertheless, metal-organic molecules like
platinum porphyrins seem better candidates for a molecular TRFR experiment
because of their larger Franck-Condon factors for the zero-phonon transition.
Using the TRFR technique to study triplet-exciton spin dynamics in organic
molecules offers an interesting tool for probing material properties and new func-
tionalities. An obvious example is a study of the lifetime of coherent spin dynam-
ics, and the TRFR technique also allows for studying (extremely small or zero)
energy splittings between triplet sublevels. Such studies are useful for judging
whether the molecules can be applied in spintronic or quantum information ap-
plications via light-induced spin orientation, or sensors based on spin dynamics.
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3.6 SI: Principles of the TRFR technique for an

idealized II—system

We give here the theoretical basis of the Time-Resolved Faraday Rotation (TRFR)
technique (main text Fig. 3.1) as applied to the artificial system of Fig. 3.5 which
contains a single electron and where a weak magnetic field is applied in the z-
direction. For the sake of simplicity, we assume that the levels [3) and [4) lie
significantly lower than the levels |1) and |2). As such, this system closely resem-
bles quantum wells with a zinc-blende band structure having a conduction band
that is derived from s-like atomic states and a valence band from p-like states.
For such quantum wells, the concept of spin injection is discussed by Fox[10] (224
ed., chapter 6.4.5).

The TRFR technique is a pump-probe technique, where a resonant pump
pulse induces spin polarization and where the polarization rotation of a detuned
(usually linearly polarized) probe pulse is measured as a function of delay time, as
a measure for the spin dynamics of the system. We will assume that the photon
energy of both the pump and probe pulses equals E,, = £, — Ey = E_ — E;. As
such, we can neglect |3) and |[4), implying that the system behaves as a four-level
[I-system. The physics behind the TRFR technique as applied to a Il-system
(Fig. 3.5) offers a useful basis for this technique applied to V-systems like the
singlet-triplet system on which the rest of this work focuses. Note that if the
energies F3 and F4 would be equal to E; and Es, the system would resemble
direct gap I1I-V semiconductors (Fox[10], 2" ed., chapter 3.3.7). As such, the
concept of spin injection becomes slightly more complicated. Now, o+ and o~
also allow for the transitions |3), — |+). and |[4), — |—), respectively, though
with a probability three times as small as the transitions depicted in Fig. 3.5.
For direct gap ITI-V semiconductors, one can therefore induce at most 50% spin

polarization.
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Figure 3.5: Selection rules for circularly polarized light for an isolated sys-
tem closely resembling a quantum well with the zinc-blende band struc-
ture. Using ultrashort pulses (with a Heisenberg uncertainty in E,, larger than
the Zeeman splittings), the optical selection rules apply to the quantization axis de-
fined by the z-direction in which the pulses propagate (whereas the magnetic field
is in the z-direction). For the sake of simplicity, we assume that the probe light is
close to resonance with the transition to the states |1) and |2) such that we can ne-
glect |3) and |4), implying that the system behaves as a four-level II-system. Hence,
the only nonzero transition dipole moments are ,u‘i = —e J{—|oT|1); = —ed; and
1o = —€ {+|07]2)s = —edy. Spin polarization in the excited state is induced with

a circularly polarized pump pulse (67 = y\;%z) which prepares the system in the state

|[+)z (see Eq. (3.1)), where we assume full absorption for a system having initially
only |2), populated. Directly after excitation, the wave function is given by |+),. A
magnetic field in the z-direction induces population transfer to |—),. Accordingly, the
wave function is given by Eq. (3.6) as a function of time. The polarization rotation
of a linearly polarized probe pulse (originating from a different refractive index for its
circular components) as a function of the delay time At is a suitable measure for the

spin dynamics.

Let us consider (for the system in Fig. 3.5) a circularly polarized pump pulse
propagating in the z-direction (corresponding to the so-called Voigt geometry,
i.e. perpendicular to the magnetic field) with polarization o= = y;\/%z Using
ultrashort laser pulses (with a Heisenberg uncertainty in E,;, larger than the
Zeeman splittings), the optical selection rules apply to the quantization axis
defined by the propagation direction. For light propagating in the z-direction,
the relevant transition dipole moments for the system of Fig. 3.5 are ufl =
—e f—|oT|1); = —edy and pg, = —e (+|07|2), = —ed,. Note that p7,
,ui;, t—o and i are zero according to the selection rules. Let us assume that

the electron initially populates |2),. Assuming full absorption, the pulse spin
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polarizes the system such that only the state |+), is populated, We use a subscript
x to refer to the optical {|+)., |—), }-basis, and z to refer to the {|+)., |—).}-basis.
Let us define for the wave function at time ¢t = 0

o o o |+>z + |_>z
Vet = 0)) = [+)a = — 5 (3.1)

The corresponding spin polarization amounts II = 1, according to

+ —N(—)‘

)
AT NO) (3.2)

-

Due to the magnetic field, the spin undergoes a Larmor precession, since |+), is
not an eigenstate of the Hamiltonian. As a function of time, the wave function
is given by (neglecting decay processes)

e—z‘E+t/h|+>Z +e—iE_t/h|_>Z

|the(t)) = NG (3.3)

After multiplication with a global phase factor, and defining {2 = === this

yields

|+>z + emt|_>z

V2

For a TRFR experiment, the polarization rotation Af of a linearly polarized

[¥e(t)) = (3.4)

pump pulse is recognized to be a measure for the amount of spin polarization.
Spin dynamics is studied experimentally by measuring Af as a function of the
delay time At between the pump and probe. Let us derive Af(At) for a probe
pulse propagating in the x-direction with E;,, = Eyy. The origin of a polarization
rotation lies in a different (real part of the) refractive index for the circularly
polarized components of the probe pulse. Written as a superposition of circular
components, we have y = ﬁ% Note that the probe pulse is detuned in order
to prevent population transfer. Since the selection rules for electronic dipole
transitions apply in the optical basis, let us perform the transformation |, (t)), —

|1(t)), using the transformation matrix

11
V22
This yields
1+ eiQt 1 — ez’Qt
W}e(t)) = |+>:c + |_>:c (3'6)

2
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To determine the refractive indices, let us first consider the linear susceptibility
tensor xM, with components given by Boyd[54] (3" Ed. Eq. (3.5.18))

8 N [y 13 [y 13
1 mnMnm nmMmn
W = 25 S0 - 37

Wnm — wp) - Zf)/nm (wnm + wp) + Zf}’mn

where we use a tilde to denote a complex number. Here, we consider an ensemble
with N the number density of isolated systems (each represented by Fig. 3.5),
g0 = 8.854... - 1072 Fm™! is the vacuum permittivity, & = 1.054... - 1073* Js is
Planck’s constant, p£22n is the first term in a power series for the diagonal elements
of the density matrix, u’, = —e(1c(t)|i|1),) is the i-component of the transition
dipole moment (with i = z,vy, 2), Wmn = (Ey — E,)/h is the transition frequency,
w, is the probe laser frequency, and v is the damping rate. Note that in Eq. (3.7)
go should be omitted when using Gaussian units (as in older editions of Boyd)
instead of SI-units.

When the probe pulse arrives at the sample, the system (Fig. 3.5) populates

the excited state given by Eq. (3.6). This implies that péﬂ) = 1, whereas pg? =

pg%) = 0. Since the levels |1), and |2), are empty, only the (detuned) downward
transitions |—), — |1), and |+), — |2), are relevant for the description of the
polarization rotation (since an upward transition with the probe is impossible
with zero population in the lower states). This implies that the second term in
Eq. (3.7) corresponds to resonance and is the so-called rotating term, whereas the
first term is the counter-rotating one and can be omitted. Hence, we can write
the components of the linear susceptibility tensor X! to a good approximation
as
N < il
W) = 2 Hnelen

3.8
Ap,ne + Z.f)/ne ( )

n=1
where we define A, = wpe + w,. The eigenvectors of xV are the so-called
principal axes. For a probe pulse propagating in the z-direction, we can neglect

the z-components of x). The other two principal axes turn out to be o= = Hﬁ
and 0~ = y\;%é, with corresponding transition dipole moments
" N 1 — e—iQAt ot *
Het = —e Y AD]o1), = —e———ds = (4t} ) (39)
o _ 1 + e*’L’QAt o k
iy = e e A)|o72)s = —e———do = (i3, ) (3.10)
In the {o", 0~ }-basis the only nonzero components of x are
N ug g N edi]? 1 - cos(QAt
g, =N pern N _elhl 1= cos@A) (3.11)

B 50_hAp,16 + i’)/le B 50_h Ap,l@ + i’yle 2
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(1) N u3, 1y N eldy* 1+ cos(QAL)
Xewo- = T3 A T = T . (3.12)
5Oh Ap,Ze + 1Y2e 50h A]3,26 + 7Y2e 2

Assuming dy = dy = dp, Ap1e = Dp2e = A, and yi. = V2. = v allows us to write

) Nedo? A, —iy [Fea0 g ]

€0h A% + ’Y2

2
0 1+cos(QAL)

2

(3.13)

Clearly, xV) depends on At. However, since ¥ is diagonal (independent of At),
the principal axes do not depend on At. It is important to realize that we have
considered a II-system here. In Section 3.8 we will consider a V-system for which
the principal axes turn out to oscillate as a function of At.

To determine how the circular components of a linear probe are affected upon
transmission, we have to consider their refractive indices. The refractive index is
given by|[54]

=1+ 30~ 14 Lo (3.14)

JJ 2 JJ

where the latter approximation is valid for

)Z%-) ) << 1. We assume that the probe
is sufficiently detuned from the |—) — |1) and |+) — |2) transitions, such that
the imaginary part of ¥ can be neglected, and with that population transfer
as well (as explained in Section 3.7). From Eq. (3.13) and Eq. (3.14) it follows
that the difference between the real parts of the refractive indices amounts

Ne?|do|* A, cos(QAL)
An =ng,- — ~ £
=T Tl coh AZ+442 2

(3.15)

To describe how the probe pulse is affected by the sample, one should consider
the Jones matrix J{o*, o™}, which performs the following transformation

Ey/V?2
Eouif{o" 07} = ot 0 }Bu{ot 0} = J{o" 0} | ) 3.16
Ho" 07t =J{o", 0 }Ein{o",07} {UU}EO/\@ (3.16)
The Jones matrix is given by
eiAn‘7+ O
J{oT, 07} = . 3.17
(o0} [ . ] (317)

which expresses the retardation of (light polarized along) principal axis j by An;
where A = 2nd/\, with d the thickness of the sample and A the wavelength of
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the light[16]. It is more convenient to multiply the Jones vector with the global
phase factor e~*"s+ which gives for Eq. (3.16)

Eq
V2

To determine the polarization rotation we follow the circular complex-plane rep-

Eout{0+> 0_} =

1
eiAM] (3.18)

resentation of polarized light as defined in the book of Azzam and Bashara[16].
In line with Eq. (1.92) of [16] we define the ratio

k= E,|E, (3.19)

where we use k in contrast to [16] (which uses x). From Eq. (1.95) of [16] we
adopt the expression for the azimuth 6

0 = _M (3.20)

2
For the incoming and outcoming probe, Eq. (3.19) yields k;, = 1 and Koy =
e~ "AAn - corresponding to 6;, = 0 and O, = % respectively, according to

Eq. (3.20). The polarization rotation (optical rotation angle) Af is now given by

AG = s — by (3.21)
which gives Af = ™22 with An proportional to cos(QAt) as given by Eq. (3.15).

Measuring Af as a function of At will show an oscillation with angular frequency

Q = 2= and amplitude

rd Nedo? A,
2\ th AIZ] +’}/2

max(Af) = (3.22)
In literature[13, 46] this oscillation of the polarization rotation is recognized to
be a suitable measure for the Larmor spin precession in the excited state, since
the angular frequency is the same for both oscillations. The reader is referred to
the book of Cohen-Tannoudji, Diu and Laloé[5] for a derivation of the oscillation
of a Larmor spin precession of a spin 1/2 in the presence of a uniform magnetic
field: for a spin initially populating the state |+),, the angular frequency of the
time-variation of the expectation value (S,) equals the energy splitting between
the sublevels (in units of /) induced by the field.

So far, we considered an ensemble of isolated II-systems (with number density
N), where each system is represented by Fig. 3.5. Let us now shortly elaborate
on how to theoretically describe a TRFR experiment applied to a coherently
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coupled ensemble of II-systems (with number density N). We will see that also
the upward transitions affect the probe polarization and contribute to the total
TRFR signal.

A pump pulse driving the upward transition |2), — |+), does not only induce
electron spin polarization in the state |[+),. Simultaneously, the hole spin in the
state |2), (my = 3/2) is polarized. However, e.g. in I1I-V direct gap semicondu-
tors the corresponding hole spin dynamics in the valence band is usually neglected
(i.e. an equal distribution of the valence band states is assumed) because of the
fast thermalization (particularly because the valence bands with m; = —1/2,1/2
lie closeby), happening on a much shorter timescale than the conduction band’s
electron spin dynamics. Nevertheless, the probe polarization will be affected also
by the (detuned) upward transitions |1), — |—), and |2), — |+)., since the hole
spin in the conduction band is polarized as well. Here, the reader is referred to
Fig. 3.5, but one should now understand the bars as bands. Also, there is now
(partial) population in the valence band states (|1), up to |4),). Particularly
interesting is the case where thermalization of the valence band states does not
occur faster than the spin dynamics in the conduction band, as can e.g. be real-
ized for quantum wells with a zinc-blende band structure where the valence band
states |3), and |4), lie sufficiently low. Accordingly, Larmor spin precession hap-
pens also in the valence band, accompanied by population transfer between the
bands with m; = —3/2 and 3/2. Correspondingly, one can write down a time-
dependent ground state (analogous to Eq. (3.6)) and follow the procedure as
above for calculation of the refractive indices and resulting polarization rotation
for a linearly polarized probe pulse.

One might wonder whether the contributions from the downward and upward
transitions do not cancel. To show that this is not the case, let us consider the
case where the probe pulse arrives at the sample directly after spin polarization
with the pump pulse, i.e. At = 0. Let us consider the contributions separately
by considering first (Case I) an artificial system as in Fig. 3.5, with only |+),

populated, i.e. pf}r = 1, and secondly (Case II) an artificial system as in Fig. 3.5,

with only |1), populated, i.e. pﬂ) = 1.

Case I: pgfl = 1. This case simply follows from the theory above, where we
can substitute At = 0 in Eq. (3.6) and replace the subscript e by + in Eq. (3.8).
It follows that the only nonzero component of ¥ is
N Mot W N P N

B A — iy
N coh (w2+ + wp) + i72+ B goh Ap + 27 B goh

A2 + 2

(3.23)

)221,)0'7 (wp) |lu|2

where we have defined (in line w