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Chapter 1

Introduction

1.1 Coherence and polarization of electron spins

and photons

For a physical description of the interaction of light and matter, electron spin

and polarization of light are of profound importance. Although these concepts

have been thoroughly investigated, our understanding of their interaction is far

from complete. Common text book examples are e.g. the optical selection rules

for the hydrogen atom and GaAs, which are well understood and widely applied

for the orientation and probing of spin in these systems. On the other hand, the

electronic spin and optical properties of more complex atomic structures such as

molecules and crystal defects (with lower symmetry) have not been fully explored.

Consequently, modern technology does not fully exploit their potential. The aim

of this thesis is to advance the understanding of how optical fields can control

and probe electronic spin coherence in molecules and crystal defects.

In 1808, Malus introduced the name polarization for light, while in 1669 al-

ready an effect due to light polarization (double refraction) had been reported

by Bartholin[1]. The concept of light polarization is used in many applications.

Optical communication, however, is mainly based on the detection of light inten-

sity, such that each photon carries at most one bit of information. A polarized

photon is said to be in a coherent superposition of polarization states. When

information is encoded in the polarization of a photon, each photon can contain

a much higher information density, where the practical limitation is set by the

ability to discriminate between different polarization states.

In 1925, Uhlenbeck and Goudsmit proposed the concept of spin[2], based

on the observation of anisotropic magnetoresistance in 1857[3], and the Stern-

1



2 Chapter 1. Introduction

Gerlach experiment in 1922[4]. The most common manifestation of electron spins

is in the form of magnetism, for which more and more technological applications

are found. Still, within electronic information processing, a bit of information

is usually based on the absence or presence of charge. Analogous to polarized

photons, spin polarized electrons allow for a larger information density. Also,

they are believed to allow for information processing at much lower energy cost.

Electron spin polarization occurs when there is a surplus of a certain spin sub-

state, i.e. an imbalance in the (spin-up and spin-down) populations (diagonal

elements of the density matrix[5]). For an electron spin brought in a coherent

superposition of spin states, the coherences (off-diagonal elements of the density

matrix) and spin expectation value oscillate with the so-called Bohr frequencies

of the system[5]. Measuring such spin precession instead of merely spin orien-

tation has the experimental advantage that it is much easier to trace back the

origin of a small signal when it oscillates. Moreover, one can learn about de-

coherence and dephasing mechanisms in addition to population relaxation. The

electron spin seems very promising to revolutionize electronics[6], particularly

through exploiting new (quantum mechanical) concepts like superposition[7] and

entanglement[8].

In material systems with selective coupling of photons to electronic spin, they

form an attractive pair for opto-electronic functionalities and the transfer of

quantum information. This introductory chapter will review different ways to

all-optically induce spin coherence (and probe spin dynamics) in various mate-

rials, and introduce main concepts that will be used in this thesis. The chapter

ends with introducing the specific questions that were addressed in this PhD

research, and providing a thesis outline.

1.2 Optical orientation

In many materials, there is naturally an equal amount of both up and down spins.

However, in the field of spintronics, which aims to exploit the electron spin, it is

important to be able to manipulate the population of spin (or in general total

angular momentum) sublevels. More advanced quantum technologies also rely on

controlling quantum coherence between spin sublevels. Spin polarization implies

an excess of up or down spin, which might e.g. be obtained by applying a strong

magnetic field. Alternatively, it can be obtained with a technique called optical

orientation (also known as optical spin injection)[9, 10]. Here, an imbalance in the

population of spin sublevels is based on different transition strengths for sublevel
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CB (l = 0) 

VB (l = 1) 

σ + σ −

-3/2 -1/2 1/2 3/2 

-1/2 1/2 

Figure 1.1: Optical selection rules for interband transitions in GaAs for

circularly polarized light. The valence band (VB) levels resemble pj=3/2 levels of

the hydrogen atom, whereas the conduction band (CB) resembles sj=1/2 levels. The

levels are labeled with mj-values. The oscillator strengths f of the allowed circular

transitions have ratio 1 : 3, where the strong transitions are indicated by thick arrows.

transitions.

Let us as an example consider a direct gap III-V semiconductor like GaAs

(with the energy level scheme given in Fig. 1.1). The conduction band (CB)

consists of s-like atomic states (l = 0), while the valence band (VB) consists

of p-like states (l = 1). Since electrons and holes have spin s = 1/2, the CB

consists of a j = 1/2 level, while the VB consists of j = 1/2 and j = 3/2. Due to

spin-orbit coupling (SOC) the VB splits, with the j = 3/2 level becoming higher

in energy.

The VB levels resemble pj=3/2 levels of the hydrogen atom, whereas the CB

resembles sj=1/2 levels. The oscillator strengths f of the allowed circular transi-

tions have ratio 1 : 3, thereby resembling the optical selection rules of hydrogen

(Section 2.10, Table 2.5). As illustrated in Fig. 1.1, σ± light generates three times

more electrons with mj=∓1/2 than with mj=±1/2 (when all ground state sublevels

are originally equally occupied), thereby inducing spin polarization.

1.3 Spin precession

The Time-Resolved Kerr Readout (TRKR) and Time-Resolved Faraday Rotation

(TRFR) technique are techniques (based on the magneto-optical Kerr effect) used

to detect spin dynamics and to measure the corresponding lifetime[12, 13]. The

difference between TRKR and TRFR is the use of reflected and transmitted light,

respectively. These techniques have been applied to many solid state systems like

e.g. GaAs. The techniques are optical pump-probe methods with picosecond laser

pulses tuned near resonance with transitions across the band gap.
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Figure 1.2: Typical result of a Time-Resolved Kerr Rotation (TRKR) ex-

periment, with the Kerr rotation angle as a function of pump-probe delay. The

oscillatory character reflects spin precession about the magnetic field. Figure adapted

from [11].

Spin polarization is induced with a polarized pump pulse. Let us assume that

at time t = tpump the system of Fig. 1.1 is excited with a σ+ pump pulse prop-

agating along x (with originally the ground state sublevels equally populated),

causing population imbalance of the mj sublevels (in the x-basis) of the excited

state, i.e. spin polarization (along the x-axis). With a magnetic field in the z-

direction, Larmor spin precession occurs during the interval (tpump, tprobe), where

the system is in the dark. The spin precesses around the z-axis implying that

the expectation value 〈Sx〉 (t) oscillates. The same holds for 〈Sy〉 (t), but usually

spin precession is measured in one direction only. The precession corresponds to

population transfer between the mj sublevels (in the x-basis).

To detect the spin dynamics, a polarized probe pulse is used. A linearly

polarized (denoted as π; here referring to the polarization and not the duration

of a pulse) probe pulse propagating in the x-direction arrives at delay time ∆t =

tprobe−tpump. If the system at time tprobe has a net spin polarization, an interesting

phenomenon occurs. The unequal filling of the up and down spin sublevels of the

conduction band gives rise to a difference in the absorption coefficient for σ+

and σ−, resulting in a different refractive index through the Kramers-Kronig

relation. Given that π is a superposition of σ+ and σ−, a polarization rotation

of the linearly polarized probe is induced after interaction with the sample. This

rotation angle is called the Kerr or Faraday rotation angle, depending on whether

TRKR or TRFR is applied. A typical measurement result of the TRKR technique

is depicted in Fig. 1.2, where each data point is obtained from a seperate TRKR

measurement[11, 14].
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1.4 Coherent population trapping

An alternative way to optically induce spin coherence is via a phenomenon known

as coherent population trapping (CPT)[15], which is of great significance in

quantum-optical operations that use ground-state spin coherence. This phe-

nomenon occurs when two lasers address a so-called Λ system (with its name

derived from the arrows in Fig. 1.3 forming the shape of a Λ) at exact two-photon

resonance, i.e. when the two-laser detuning matches the ground-state splitting,

as in Fig. 1.3. The ground-state spin system is then driven towards a superpo-

sition state that approaches |ΨCPT 〉 ∝ Ω2 |g1〉 − Ω1 |g2〉 for ideal spin coherence.

Here Ωn is the Rabi frequency for the driven transition from the |gn〉 state to the

common excited state. Since the system is now coherently trapped in the ground

state, the photoluminescence decreases.

�g

f0 f0

�e

f0+|�g-�e| f0+(�g+�e)

a b d

|g2⟩
|g1⟩

|e1⟩

|e2⟩

|g1⟩
|g2⟩

|e1⟩

|e2⟩

f0

|g1⟩
|g2⟩

|e1⟩

|e2⟩
c

|g1⟩
|g2⟩

|e1⟩

|e2⟩

f0

L1 L2 L3 L4

f0+�g f0+�e

Figure 1.3: Two-laser Λ scheme with optical transitions between S = 1/2

ground and excited state sublevels. Two lasers are resonant with transitions from

both ground state sublevels |g1〉 (red arrow) and |g2〉 (blue arrow) to a common excited

state sublevel |e2〉. This is achieved when the detuning equals the ground-state splitting

∆g. The gray arrows indicate a secondary Λ scheme via |e1〉.

1.5 Jones calculus

To describe how polarized light is affected by interaction with an optical element

(or a sample), it is often convenient to use Jones calculus[16] (see also Supplemen-

tary Information Section 2.12 (p. 41)). Within this method, light is represented

by a Jones vector and the optical element by a Jones matrix. The Jones vector

contains the amplitude and phase of the electric field components of the beam
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θ = -θ' 
x 

x' 

y' 
y 

E 

є 
b a 

A 

Figure 1.4: The polarization ellipse. The main parameters that define the polar-

ization ellipse are the azimuth θ of the semi-major axis a with respect to the x-axis,

and the ellipticity angle ε, which is defined through the ellipticity e = b
a (with b the

semi-minor axis) such that e = ± tan ε, where the + and - signs correspond to right-

and left-handed polarization respectively. The total amplitude of the electric field is

given by A =
√
a2 + b2. For convenience, one usually takes A = 1. It is also common

to assume a global phase factor δ = 0.

orthogonal to its propagation direction. Commonly, the amplitudes are normal-

ized, such that their intensities add up to 1. Any elliptical polarization can be

described, including the special cases of linear and circular polarization.

A convenient way to visualize the Jones vector is the polarization ellipse, which

is mainly described by the azimuth θ and the ellipticity angle ε, as illustrated in

Fig. 1.4. Here, the azimuth θ is the angle between the semi-major axis a and

the horizontal x-axis, where −1
2
π 6 θ 6 1

2
π. The ellipticity angle ε is defined

through the ellipticity e = b
a

(with b the semi-minor axis) such that e = ± tan ε,

where −1
4
π 6 ε 6 1

4
π. The + and − signs correspond to right- and left-handed

polarization respectively. In Fig. 1.4 the indicated polarization is left-handed.

Within the {x̂′, ŷ′}-basis, the corresponding Cartesian Jones vector of a light

beam with azimuth θ′ = 0 with respect to the x′-axis is given by the unit vector

Ê{x̂′, ŷ′} =

[
cos(ε)

i sin(ε)

]
(1.1)

with amplitude A = 1 and global phase δ = 0. This Jones vector can be trans-

formed through a counter-clockwise rotation θ′ = −θ to

Ê{x̂, ŷ} = T (−θ)

[
cos(ε)

i sin(ε)

]
=

[
cos(θ) cos(ε)− i sin(θ) sin(ε)

sin(θ) cos(ε) + i cos(θ) sin(ε)

]
(1.2)

with azimuth θ = −θ′ (w.r.t the x-axis) and ellipticity angle ε. A convenient
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method to visualize the Jones vector is via the Poincaré-sphere representation.

Within this method, the longitude 2θ and latitude 2ε determine a point represent-

ing the ellipse of polarization with azimuth θ and ellipticity angle ε (Fig. 2.4a).

When light crosses an optical element the resulting polarization of the emerg-

ing light is found by taking the product of the Jones matrix J of the optical

element and the Jones vector Ein of the incident light, which in the {x̂, ŷ}-basis

implies

Eout{x̂, ŷ} = J{x̂, ŷ}Ein{x̂, ŷ} = J{x̂, ŷ}

[
Ein,x
Ein,y

]
. (1.3)

To build J{x̂, ŷ} we first build J{x̂′, ŷ′}, which describes how light defined in the

{x̂′, ŷ′}-basis is affected, i.e.

Eout{x̂′, ŷ′} = J{x̂′, ŷ′}Ein{x̂′, ŷ′}. (1.4)

The Jones matrix is given by

J{x̂′, ŷ′} =

[
eiΛnx′ 0

0 eiΛny′

]
(1.5)

which expresses the retardation of (light polarized along) principal axis ĵ by Λnj
where Λ ≡ 2πd/λ, with d the thickness of the sample and λ the wavelength of

the light[16].

1.6 Theoretical chemistry methods

The elegance of theoretical chemistry (and physics) calculations and predictions

is that properties of matter can be revealed independent of experiments. In this

section the theoretical chemistry methods are introduced that are used through-

out this work. The methods belong to the realm of quantum chemistry (also

known as molecular quantum mechanics), which is a branch of theoretical chem-

istry aimed to apply quantum mechanics in physical models of chemical systems.

As with real experiments, calculations become usually increasingly complicated

and expensive with increasing size of the system. To gain better insight into and

intuition for chemical and physical properties, it is convenient to first apply theo-

retical chemistry calculations to a small model system, often allowing for general

predictions about more complex matter. For that reason we consider in Chapter 2

the hydrogen atom as a model system. The knowledge obtained here serves as a
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theoretical basis for Chapter 3, where several metal-organic molecules are investi-

gated. The main theoretical chemistry method for both chapters is the so-called

CASSCF/CASPT2/RASSI–SO method[17, 18], which is an expensive though ac-

curate method for chemical systems to study effects related to spin-orbit coupling

(SOC). Additionally, in the Supplementary Information of Chapter 3 also several

calculations have been performed based on the density-functional theory (DFT)

method, which is one of the most popular quantum chemistry methods due to its

versatility and relatively low computational cost.

It is well-known that relativistic effects affect atomic and molecular prop-

erties[19–22], particularly when heavy atoms are involved. To account in an

accurate way for such effects on excited state properties of molecular systems, the

CASSCF/CASPT2/RASSI–SO method was introduced by Roos and Malmqvist[17,

18] (within the quantum chemistry software package MOLCAS[23]). This is a

multiconfigurational approach where relativistic effects are treated in two steps,

both based on the Douglas–Kroll Hamiltonian[18]. Scalar terms are included in

the basis set generation and used to determine wave functions and energies, which

include static (through the use of the CASSCF method[24]) and dynamic corre-

lation effects (using multiconfigurational perturbation theory, CASPT2[25, 26]).

SOC is added a posteriori by means of the RASSCF state interaction (RASSI[27])

method.

Density functional theory (DFT) is a quantum chemistry method based on

the Hohenberg-Kohn (HK) theorem[28], which investigates the electronic struc-

ture of many-body systems. Electronic properties can be determined using the

spatially dependent electron density functional (i.e. it is a function of another

function). The main disadvantage of DFT is the lack of a systematic approach

to improve results towards an exact solution[24]. To investigate electronic prop-

erties in the presence of time-dependent potentials like electromagnetic waves,

time-dependent DFT (TDDFT) is a convenient method, based on the Runge-

Gross theorem[29], which is the time-dependent analogue of the HK theorem.

In our TDDFT calculations SOC was included perturbatively[30]. For the DFT

calculations in this work, we used the Amsterdam Density Functional (ADF)

program[31, 32].

1.7 Scope of this research and thesis outline

This thesis focuses on theoretical and experimental studies of optical preparation

and detection of spin coherence in molecules and crystal defects. The scientific
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progress of this work expands the range of material systems that can have func-

tionalities based on the selective coupling of photons to electronic spin states.

Also, it allows for a better opto-electronic characterization of these materials by

providing new probing tools. The work consists of a theoretical investigation

of underlying fundamentals and forthcoming requirements (Chapter 2-4), and

experimental work on a crystal defect in silicon carbide, demonstrating optical

characterization of its spin properties and optically induced electron spin coher-

ence (Chapter 5).

Chapter 2 presents a theoretical study of how charged items in the envi-

ronment of a hydrogen atom perturb its polarization selection rules. We focus

on the optical transitions between 1s and 2p sublevels of the hydrogen atom.

We investigate the effect of a gradual distortion of the symmetry by surrounding

charges, which provides insight in the gradual evolution of the polarization se-

lection rules. This ability to manipulate optical selection rules allows for better

control of the interaction between photons and electrons, which potentially allows

for new mechanisms to control the flow of quantum information. Also, this study

provides a useful theoretical framework for the more complex systems of later

chapters focusing on molecules and crystal defects.

The enormous variety of molecules and their ease of processing make them

interesting candidates for many applications. Metal-organic molecules can have

large spin-orbit coupling (SOC), which may facilitate mechanisms for optical spin

manipulation. The Time-Resolved Faraday Rotation technique (TRFR, already

widely applied to conventional semiconductors) is here of interest, since it is an all-

optical technique that can induce and probe the quantum dynamics of spin with

ultra-fast time resolution. However, whether (and how) TRFR can be applied

to study spin dynamics of triplet (spin S = 1) states in molecules was an open

question. We explore in Chapter 3 how TRFR can be applied to molecules with

strong SOC, exploiting the optical selection rules for transitions between singlet

and triplet states in such molecules. We define how one can study polarization and

quantum dynamics of spin after excitation to a superposition of triplet sublevels,

using an ultrashort pump pulse. We use the polarization rotation of an ultrashort

probe pulse as a measure for the coherent spin dynamics. Besides using this in

fundamental studies of the spin properties of such molecules, these results are of

value for advancing opto-electronic and spintronic applications.

Until now, all cases where the TRFR technique was used for studying coher-

ent spin dynamics concerned materials systems with strong SOC. Strong SOC

may seem a requirement, since it facilitates optical selection rules with allowed
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transitions that alter the spin state (otherwise only spin-conserving transitions

seem allowed). However, Chapter 4 defines how the TRFR technique can also

be applied to certain material systems with negligible SOC. In our derivations we

focus on the characterization of spin-active color centers in materials like silicon

carbide and diamond. Such color centers are recognized as promising systems

for quantum technologies since they can combine long-coherent electronic spin

and bright optical properties. We introduce the theory of a TRFR experiment

applied to divacancies in silicon carbide, based on non-spin-conserving optical

selection rules that can emerge due to the anisotropic spin S = 1 Hamiltonian

for the electronic ground and excited state of this system.

Finally, Chapter 5 presents an experimental investigation of the molybdenum-

impurity in silicon carbide. We demonstrate an all-optical technique for charac-

terizing the spin Hamiltonians for the ground and excited state, and find that

these are S = 1/2 systems with highly anisotropic spin properties. In turn,

we exploit these properties for tuning control schemes where two-laser driving

addresses transitions of a Λ system, and observe coherent population trapping

for the ground-state spin. These results demonstrate that the Mo defect and

similar transition-metal impurities in silicon carbide may be relevant for advanc-

ing quantum communication and quantum sensing technology. In particular,

these systems have optical transitions at near-infrared wavelengths (in or close

to telecom communication bands), and the device technology for silicon carbide

is already available at a high level in industry.
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1.8 SI: Change of basis

A choice of a basis is not unique. Let us perform a change of orthonormal

bases, from the (old) basis {x̂′, ŷ′} to the (new) basis {x̂, ŷ}, through a counter-

clockwise rotation with angle θ′, as depicted in Fig. 1.5. Consider the vector E

(which e.g. can be considered as the electric field component of a light beam),

θ' x 

x' 

y' 

y 

Ex' 

Ex 

Ey E 

Ey' 

θ' 

Ey' sin(θ') 

Ex' cos(θ') 
Ey' cos(θ') 

Ex' sin(θ') 

Figure 1.5: Illustration of a change of orthonormal bases. The transformation

is from the (old) basis {x̂′, ŷ′} to the (new) basis {x̂, ŷ}, through a counter-clockwise

rotation with angle θ′. To derive the transformation matrix T{x̂′,ŷ′}→{x̂,ŷ}, the change

of basis is applied to the vector E, which e.g. can be considered as the electric field

component of a light beam.
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which in the old basis is given by

E{x̂′, ŷ′} = Ex′x̂
′ + Ey′ŷ

′ =

[
Ex′

Ey′

]
(1.6)

In the new basis, we have instead

E{x̂, ŷ} = Exx̂ + Eyŷ =

[
Ex′ cos(θ′) + Ey′ sin(θ′)

Ey′ cos(θ′)− Ex′ sin(θ′)

]
(1.7)

The vector E can be easily transformed from the old basis to the new one through

the matrix transformation

E{x̂, ŷ} = T{x̂′,ŷ′}→{x̂,ŷ}E{x̂′, ŷ′} (1.8)

which corresponds to[
Ex
Ey

]
=

[
cos(θ′) sin(θ′)

− sin(θ′) cos(θ′)

][
Ex′

Ey′

]
(1.9)

where the transformation matrix T (θ′) has as its columns the old unit vectors as

written in the new basis, i.e.

x̂′{x̂, ŷ} = x′xx̂ + x′yŷ =

[
x′x
x′y

]
=

[
cos(θ′)

− sin(θ′)

]
(1.10)

ŷ′{x̂, ŷ} = y′xx̂ + y′yŷ =

[
y′x
y′y

]
=

[
sin(θ′)

cos(θ′)

]
(1.11)

where e.g. x′x denotes the x-component of x̂′, i.e. the projection of x̂′ onto x̂.

Any matrix M defined in the old basis can be described by the new basis

through the following unitary similarity transformation

M{x̂, ŷ} = T{x̂′,ŷ′}→{x̂,ŷ}M{x̂′, ŷ′}T † (1.12)

with T † the Hermitian adjoint (conjugate transpose) of T , which has the proper-

ties T †(θ′) = T−1(θ′) = T (−θ′), and it has the unit vectors x̂{x̂′, ŷ′} and ŷ{x̂′, ŷ′}
as its columns, i.e.

x̂{x̂′, ŷ′} = xx′x̂
′ + xy′ŷ

′ =

[
xx′

xy′

]
=

[
cos(θ′)

sin(θ′)

]
(1.13)

ŷ{x̂′, ŷ′} = yx′x̂
′ + yy′ŷ

′ =

[
yx′

yy′

]
=

[
− sin(θ′)

cos(θ′)

]
(1.14)
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1.9 SI: Jones calculus applied to a waveplate

To get familiar with Jones calculus, we take here waveplates as an example. We

will show that an optical element can be described by a Jones matrix, which

transforms the electric vector of an incoming beam via a matrix multiplication.

We also illustrate the transformation of one coordinate system to another via a

matrix transformation.

Usually, a waveplate has real-valued principal axes (often denoted as |H〉 and

|V 〉), which we denote as x̂′ and ŷ′. Consequently, the corresponding Jones matrix

is diagonal in the {x̂′, ŷ′}-basis, and given by Eq. (1.5).

Let us consider two special cases of the waveplate, namely the half-waveplate

(HWP) and the quarter-waveplate (QWP). A HWP has its thickness such that

the phase difference between the components is given by Λny′ − Λnx′ = π. Also,

only the vertical component ŷ′ (slow axis) gets retarded by the HWP, whereas

the horizontal component x̂′ (fast axis) is not affected, such that the Jones matrix

is given by

JHWP{x̂′, ŷ′} =

[
1 0

0 −1

]
(1.15)

The effect of a HWP on an incident linearly polarized beam is that its azimuth

(w.r.t. the fast axis x′) gets reflected in the fast axis, as illustrated in Fig. 1.6.

This follows from substituting Eq. (1.15) into Eq. (1.4) and taking real-valued Ex′

and Ey′ , which yields Ey′ → −Ey′ , i.e. θ′ → −θ′. Alternatively, one could apply

Eq. (1.3), which requires the transformation J{x̂′, ŷ′} → J{x̂, ŷ} via Eq. (1.12).

For a HWP with its fast axis at angle θ = −θ′ (w.r.t. the x-axis) this requires a

counter-clockwise rotation with angle θ′ (w.r.t. the x′-axis), which gives according

to Eq. (1.12)

JHWP{x̂, ŷ} =

[
cos(θ′) sin(θ′)

− sin(θ′) cos(θ′)

][
1 0

0 −1

][
cos(θ′) − sin(θ′)

sin(θ′) cos(θ′)

]

=

[
cos(2θ′) − sin(2θ′)

− sin(2θ′) − cos(2θ′)

] (1.16)

Substituting into Eq. (1.3) gives for an incident beam with Jones vector Êin = x̂

Êout{x̂, ŷ} =

[
cos(2θ′) − sin(2θ′)

− sin(2θ′) − cos(2θ′)

][
1

0

]
=

[
cos(2θ′)

− sin(2θ′)

]
(1.17)



14 Chapter 1. Introduction

θ'=-θ 
x 

x' 

y' 
y 

Ein,x' = Eout,x'  
Ein 

Ein,y' 

Eout,y' = -Ein,y' 

Eout 

Figure 1.6: The effect of a half-waveplate (HWP) on an incident linearly

polarized beam. For a beam polarized along x̂, the azimuth θ′ (w.r.t. the fast axis

x̂′) gets reflected in the fast axis.

which corresponds to an azimuth of θ = −2θ′ (w.r.t. the x-axis), as it should.

A QWP has its thickness such that the phase difference between the compo-

nents is given by Λny′ − Λnx′ = π/2. Also, only the vertical component (slow

axis) gets retarded by the QWP, whereas the horizontal component (fast axis) is

not affected, such that the Jones matrix is given by

JQWP{x̂′, ŷ′} =

[
1 0

0 i

]
(1.18)

which e.g. makes a linear beam with azimuth θ′ = 45◦ (w.r.t. the fast x′-axis)

circularly polarized. For a QWP with its fast axis at angle θ = −θ′ w.r.t. the x-

axis (i.e. the x-axis is at θ′ w.r.t. the x′-axis), one obtains in analogy to Eq. (1.16)

JQWP{x̂, ŷ} =

[
cos2(θ′) + i sin2(θ′) (−1 + i) sin(θ′) cos(θ′)

(−1 + i) sin(θ′) cos(θ′) sin2(θ′) + i cos2(θ′)

]
(1.19)



Chapter 2

Evolution of atomic optical selection

rules upon gradual symmetry lowering

Abstract

For atoms and crystals with a high symmetry, the optical selection

rules for electronic transitions are well covered in physics textbooks.

However, in studies of material systems one often encounters systems

with a weakly distorted symmetry. Insight and intuition for how op-

tical selection rules change when the high symmetry is gradually dis-

torted is, nevertheless, little addressed in literature. We present here

a detailed analysis of how a gradual symmetry distortion leads to a

complete alteration of optical selection rules. As a model system, we

consider the transitions between 1s and 2p sublevels of the hydrogen

atom, which get distorted by placing charged particles in its environ-

ment. Upon increasing the distortion, part of the optical selection

rules evolve from circular via elliptical to linear character, with an

associated evolution between allowed and forbidden transitions. Our

presentation combines an analytical approach with quantitative re-

sults from numerical simulations, thus providing insight in how the

evolution occurs as a function of the strength of the distortion.

This chapter is based on Ref. 1 on p. 177.
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2.1 Introduction

A physical system is never completely isolated. Even in atomic clocks[33], which

use quantum oscillations in atoms that are relatively insensitive to surrounding

matter and fields, the symmetry and dynamics of the quantum system of interest

are affected by the environment. In practice, systems with high symmetry nev-

ertheless seem to exist since the distortions due to an asymmetric environment

can be so weak that their influence is not significant.

The symmetry of a system dictates its optical selection rules for electronic

transitions. Well-known behavior of such optical selection rules is that absorbing

circularly polarized light can orient the spin (or, more generally, electronic angular

momentum) of an electron that gets excited[5, 34, 35]. This occurs in systems

of high symmetry, and is widely applied. A key example is the use of alkali

atoms (with spherical symmetry) such as hydrogen, rubidium and cesium, for

quantum optical studies and technologies. A second important example is the

optoelectronic control in semiconductors with the tetrahedral zincblende lattice

structure (with GaAs as key example), where spintronic applications use spin

orientation by circularly polarized light[10].

For other material systems, with a lower symmetry, optical transitions couple

more frequently purely to linearly polarized light. This holds for excitonic tran-

sitions in most organic molecules[35, 36], and transitions of molecule-like color

centers in crystals, such as the strongest transitions of the nitrogen-vacancy defect

in diamond[37] (a widely-studied system for quantum technologies).

There exist also many material systems which have a high but still weakly dis-

torted symmetry. For these cases it is much harder to assess the optical selection

rules with analytical methods, and this topic is little covered in textbooks. Here

detailed numerical calculations can provide predictions, but it is much harder to

obtain intuitive insight from the output of such calculations. Still, the elegance

of computational physics and chemistry calculations is that they can relatively

easily reveal how the properties of matter vary in dependence of parameter values.

In this work we provide a detailed theoretical analysis of how a gradual sym-

metry distortion leads to a complete alteration of optical selection rules. As a

model system we use the hydrogen atom, and our results give insight in how its

optical selection rules (for transitions between a 1s and 2p sublevel) change gradu-

ally for a gradual symmetry change due to a disturbing environment. The optical

selection rules of the bare hydrogen atom can be described analytically, and are

well-known[5]. We use this as a starting point. We include in the discussion how
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they behave in a weak magnetic field, since this is of interest for highlighting the

properties of the selection rules. We model the symmetry lowering due to an

environment by placing the hydrogen atom in a C2v-symmetry arrangement of

four negative point charges, where the magnitude of the charges is varied. For

this situation the analytical calculations are too complicated, and we link the

analysis to numerical calculations of this system. Our work thus also provides an

interesting example of how modern methods for numerically simulating matter

can give insight in its properties at a quantum mechanical level.

This manuscript is organized as follows. In Section 2.2, we will introduce the

bare hydrogen atom, first without considering spin, and we focus on the electronic

transitions between the 1s and 2p states. This serves as a summary of how

this is treated in many textbooks on atomic physics[5], and for introducing the

notations we use. We also shortly summarize how a magnetic field affects these

transitions (summarized in more detail in Supplementary Information Section 2.7

and 2.8). Next, we expand this model in the usual manner by also considering

the electron spin and the effect of spin-orbit coupling (SOC). This is presented in

Section 2.3 and Supplementary Information Section 2.10. In Section 2.4, we add

the symmetry disturbance to the modeling, by considering the hydrogen atom

in a C2v arrangement of negative point charges. For the analysis of this case we

use numerical simulation methods, that are also introduced in this section (we

use the CASSCF/RASSI–SO method[17, 18]). We focus on calculating energy

eigenstates and transition dipole moments, and study how a gradual symmetry

lowering affects the optical selection rules. For describing the polarizations of

light associated with atomic electric dipole oscillations we use the Jones-vector

formulation, which is introduced in Supplementary Information Section 2.12.

2.2 The resonance lines of the hydrogen atom

without spin

2.2.1 The hydrogen atom in the absence of a magnetic

field

The resonance lines of electronic transitions between the 1s and 2p levels of the

hydrogen atom occur around a wavelength of 120 nm. We use the notation |1s〉
(n = 1; l = 0) and |2p〉 (n = 2; l = 1), for the ground and excited states re-

spectively, as adopted from the book of Cohen-Tannoudji, Diu and Laloë[5]. At
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zero magnetic field, the Hamiltonian H0 (containing the kinetic and electrostatic

interaction energy) of the hydrogen atom has energy eigenvalues En = −EI/n2,

with EI the ionization energy. Note that we will often omit the quantum number

n, i.e. |s〉 = |1s〉 and |p〉 = |2p〉. Without considering spin, the hydrogen atom

has a single 1s level and three degenerate 2p levels. Because of this degener-

acy, a single resonance line occurs, and any linear combination of orthonormal

|p〉 eigenstates is a suitable eigenbasis for the Hamiltonian. A possible choice

would be the basis {|s〉, |px〉, |py〉, |pz〉}. The three p orbitals are real-valued and

have the same double-lobed shape, but are aligned along the x-, y-, and z-axes,

respectively[35].

A convenient measure for the strength of a transition is the real-valued oscil-

lator strength f (Supplementary Information Eq. (2.26) (p. 41)), which is pro-

portional to the absolute square of the transition dipole moment (which is a vec-

tor, with Cartesian components defined in Supplementary Information Eq. (2.25)

(p. 40)). In general, the total oscillator strength ftot is dimensionless and for

all possible transitions it adds up to the number of electrons (known as the

Kuhn–Thomas sum rule[35]). Since we consider only a small subset of all transi-

tions within the hydrogen atom (having ftot = 1), the total oscillator strength of

our subset will be smaller than 1. However, we will consider relative values frel,

for which the sum (frel,tot) will exceed 1 (see below).

The corresponding matrix elements of the transition dipole moment between

the |s〉 and |pi〉 states, with i ∈ {x, y, z}, are[5]

〈pi|Di|s〉 =
eIR√

3
(2.1)

where Di is the i-component of D = eR, with e the elementary charge and R

the position operator, and the constant value IR is a radial integral independent

of i. For an electron in the 1s orbital there are three possible transitions to

a 2p sublevel, each with a single nonzero transition dipole moment (Eq. (2.1))

and relative oscillator strength frel = 3 (according to Supplementary Information

Eq. (2.27) (p. 41)). The corresponding total relative oscillator strength (3×3 = 9)

follows from Supplementary Information Eq. (2.28) (p. 41), which for this case

can be simplified to frel,1s,tot = 9
(eIR)2

∑
i=x,y,z

|〈pi|Di|s〉|2 = 9. Note that when only

the 1s orbital is occupied, the absorption strength is equal for all normalized

linear (complex) combinations of Dx, Dy and Dz (due to the degeneracy of the

2p sublevels), i.e. the probability of a transition to 2p does not depend on the

polarization.
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2.2.2 The hydrogen atom in the presence of a magnetic

field

In the presence of a static magnetic field B along z, the resonance line of the

hydrogen atom is modified. A detailed description of how a magnetic field affects

the transitions is treated in Supplementary Information Section 2.7 and 2.8. The

field does not only change the resonance frequencies, but also the polarization of

the atomic lines, which is called the Zeeman effect. The Hamiltonian is given by

H = H0 +H1, with H1 the paramagnetic coupling term (here only acting on the

orbital, since we still neglect spin). Now, the eigenbasis in which H is diagonal

is {|s〉, |p−1〉, |p0〉, |p1〉}, where

|p−1〉 =
|px〉 − i|py〉√

2

|p0〉 = |pz〉

|p1〉 = −|px〉+ i|py〉√
2

(2.2)

with the indices −1, 0, 1 corresponding to the ml quantum number along z.

2.2.3 Electric dipole radiation

In Supplementary Information Section 2.8 (p. 34) we present a calculation of

how the expectation value of the electric dipole 〈D〉ml(t) of a hydrogen atom

oscillates when it is in a superposition of the ground state |s〉 and an excited

state |pml〉, again following [5]. For all three cases ml = −1, 0, 1 the mean value

of the electric dipole oscillates as a function of time, corresponding to the emission

of electromagnetic energy. The type of electric dipole oscillation determines the

type of polarization of the emitted radiation. Still, the polarization of light

that an observer sees depends on its orientation with respect to the source (see

Supplementary Information Section 2.8).

For convenience, we will name a polarization after (the complex linear combi-

nation of) the components of D for which (the absolute value of) the transition

dipole moment is maximized. A convenient way to find this complex linear com-

bination is the application of the Jones-vector formalism (Supplementary Infor-

mation Section 2.12 (p. 41)). For the hydrogen atom in the presence of a magnetic

field (without considering spin), the matrix elements are maximized when we take

the operators σ+ = x+iy√
2

(right circular), σ− = x−iy√
2

(left circular) and πz = z

(linear along z), respectively. As such, the only nonzero matrix elements related
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to transitions between 1s and 2p levels are

〈p−1|
Dx − iDy√

2
|s〉 =

eIR√
3

〈p0|Dz|s〉 =
eIR√

3

〈p1|
Dx + iDy√

2
|s〉 = −eIR√

3

(2.3)

Hence, the polarization of the radiation is σ−, πz or σ+, depending on whether

the nonzero matrix element is that of Dx−iDy√
2

, Dz or Dx+iDy√
2

, respectively.

2.3 The resonance lines of the hydrogen atom

including spin

Due to the electron and proton spins, the resonance lines of the hydrogen atom

are also affected by the fine- and hyperfine structure. In this work we will

only consider the electron spin, which can be either up (〈Sz〉 = ~/2) or down

(〈Sz〉 = −~/2), to which we will refer as α and β, respectively. Hence, the

orbitals 1s, 2p−1, 2p0 and 2p1 allow for eight possible spinorbitals[35], which

are products of a spatial and spin function. These spinorbitals form the basis

{|sβ〉, |sα〉, |p−1β〉, |p−1α〉, |p0β〉, |p0α〉, |p1β〉, |p1α〉} to which we refer as the un-

coupled representation[5]. Alternatively, these basis functions are often labeled

with the quantum numbers l, s, ml and ms, as tabulated in Supplementary In-

formation Table 2.3 (p. 38).

The Hamiltonian H0 (containing the kinetic and electrostatic interaction en-

ergy) is diagonal in this basis and the eigenvalues on the diagonal resemble the

2- and 6-fold degeneracies in energy. When the spin-orbit coupling (SOC) term

HSO = L · S is added to the Hamiltonian, the 6-fold degeneracy of the 2p levels

is lifted into sublevels with quantum number j = 1/2 and j = 3/2, i.e. 2p1/2

(2-fold degenerate) and 2p3/2 (4-fold)[5]. Here, j is the total angular momentum

quantum number related to J2 (with eigenvalues ~2j(j + 1)) for the total an-

gular momentum J = L + S (Supplementary Information Section 2.9 (p. 36)).

The degeneracy can be further lifted by e.g. a magnetic field (which introduces

an additional term to H). Also, the magnetic field induces a quantization axis.

It is now convenient to use an approach based on time-independent degenerate

perturbation theory[5]. Since the field is applied in the z-direction, we define a

basis formed by the eigenstates of the total angular momentum Jz. Constructing



2.3 The resonance lines of the hydrogen atom including spin 21

6

5

4
3

2

1

2
1

Symmetry 
lowering: 

Increasing  

z x y
z

 
z

   

z

 

 

z

 

0q  0q

(-2,3,-1) 

(2,3,-1) 

(-2,-3,-1) 

(2,-3,-1) 

H 
-q 

-q 

-q 

-q 

B

0( )e q

g

( )e q FD

3

4

5

2

1

6

2
1

g

Relative f: 1 2 3 2 12 1 1 2 3

a

b c

3 2vR C

q

x

y

z

Figure 2.1: Evolution of the polarization selection rules for the hydrogen

atom upon symmetry lowering due to a C2v arrangement of negative point

charges, in the presence of a weak magnetic field. a, A hydrogen atom (in

red, positioned at the origin) in a C2v arrangement (C2 rotation axis along z and two

vertical mirror planes) of four negative point charges (in blue, positioned at (2,3,-1),

(2,-3,-1), (-2,3,-1), (-2,-3,-1) in Bohrs). Each point charge has the value −q, where q

is gradually varied from 10−6 to 10−2 in atomic units. The weak magnetic field points

in the z-direction. b, Energy levels with Zeeman splitting for the ground (g) state 1s

(gµ) and excited (e) state 2p (eν) sublevels of the hydrogen atom in the presence of

a weak magnetic field and absence of point charges (q0). Supplementary Information

Section 2.10 gives a detailed analysis of the polarizations and the relative oscillator

strengths frel (given in red). Spin-orbit coupling (SOC) has been included. c, In the

limit of very strong charge (qF (ull)D(istortion), i.e. the perturbation due to the charges is

much larger than that of the magnetic field), the excited states converge to one of the

basis functions of the set {|pzβ〉, |pzα〉, |pxβ〉, |pxα〉, |pyβ〉, |pyα〉} and arrange in three

doublets (split by the magnetic field). Only six transitions between the 1s and 2p levels

remain allowed (equal f), and their polarizations are linear. Note that the different

ordering of ν for the excited states affected by charge (as indicated by the two red

boxes).
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the matrix Jz = Lz + Sz in the basis in which H is diagonal, one finds that Jz
is block-diagonal, i.e. the basis does not necessarily consist of eigenstates of Jz.

We determine the eigenfunctions of Jz via diagonalization of the 2- and 4-fold

degenerate subspaces, which provide the basis to which we refer as the coupled

representation (where H remains diagonal), which is the convenient one for the

case with SOC. Good quantum numbers are now j, mj, l and s. The basis can

be expressed as a linear combination of the basis functions of the uncoupled rep-

resentation (Supplementary Information Table 2.4 (p. 38)), where the prefactors

are the so-called Clebsch-Gordan coefficients[5].

A transition (via excitation or emission) between a 1s and 2p sublevel is possi-

ble if a nonzero value is obtained for the transition dipole moment 〈pj,mj |D|smj〉,
with |smj〉 = |j = 1

2
,mj = ±1

2
, l = 0, s = 1

2
〉 and |pj,mj〉 = |j,mj, l = 1, s = 1

2
〉.

The corresponding matrix elements and polarizations are presented in Supple-

mentary Information Table 2.5 (p. 39). The relative oscillator strength frel is

given by Supplementary Information Eq. (2.27) (p. 41), which directly depends

on the Clebsch-Gordan coefficients. Now ten of the twelve possible transitions

between a 1s and 2p sublevel have nonzero oscillator strength (Fig. 2.1b). In con-

trast, only six transitions are allowed when SOC is not taken into account (three

for either up or down spin). We will determine the polarizations and frel-values

also numerically in Section 2.4, where the 1s and 2p sublevels will be denoted as

ground and excited states |gµ〉 and |eν〉 (see also Fig. 2.1b).

2.4 Evolution of optical selection rules for the

hydrogen atom in a C2v arrangement of point

charges

In this section, we report on ab initio calculations that study the evolution of

the optical selection rules for transitions between the 1s and 2p sublevels of the

hydrogen atom upon gradual symmetry lowering due to a C2v arrangement of

negative point charges (each with charge −q), in the presence of a weak magnetic

field (Fig. 2.1a). Such a relatively simple system is already too complicated to

solve in an analytical way, such that we have to use numerical methods. First,

we numerically calculate functions that are relatively good approximations for

the eigenstates of the Hamiltonian. Strictly speaking, these functions are not

eigenstates because a numerical calculation uses a finite basis set. They are

nevertheless good approximations, and we will often refer to these functions as
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eigenstates (or eigenfunctions). Secondly, we numerically calculate the Cartesian

components of the corresponding transition dipole moments (with the relevant

ones defined in Supplementary Information Eq. (2.25) (p. 40)). An accurate way

to calculate these is the use of the CASSCF/RASSI–SO method (which combines

the Complete Active Space Self Consistent Field (CASSCF) and Restricted Ac-

tive Space State Interaction (RASSI) method with the inclusion of SOC), as

introduced by Roos and Malmqvist[17, 18]. We perform such calculations using

the MOLCAS[23] software. To approximate the 1s and 2p orbital we use the

large ANO basis set[38], which for the excited states of the hydrogen atom does

actually not very accurately approximate the energies. Our purpose, however, is

to illustrate how the mixing of sublevels affects transition dipole moments. In

this regard, the quality of the orbitals is expected to be sufficient, since they have

the required symmetry.

Including a magnetic field within ab initio calculations is not straightforward.

We will therefore mimic the field by inducing a quantization axis z (Fig. 2.1a),

through diagonalization of Jz within degenerate subspaces (see Section 2.3). This

provides the required eigenbasis to which the calculated transition dipole mo-

ments are transformed. From the transition dipole moments, we can calculate

the relative oscillator strength frel for each transition between a 1s and 2p sub-

level, according to Supplementary Information Eq. (2.27) (p. 41). The evolution

of frel as a function of q is depicted in Fig. 2.3.

We will use the Jones-vector formulation (see also Supplementary Informa-

tion Section 2.12 (p. 41)) to investigate how the polarization selection rules are

affected as a function of q. The Jones-vector formulation assigns a polariza-

tion ellipse (Fig. 1.4) with azimuth θ (−1
2
π 6 θ < 1

2
π) and ellipticity angle

ε (−1
4
π 6 ε 6 1

4
π) to the oscillation of an electric vector[16]. Normally, this

electric vector is the electric field component of a light wave. Instead, we will

assign such a polarization ellipse to the oscillation of an atomic electric dipole

related to an electronic transition, with the components of the electric vector

given by the (normalized) components of the corresponding transition dipole mo-

ment (Supplementary Information Eq. (2.32) (p. 42)). A convenient method to

visualize the Jones vector is via the Poincaré-sphere representation[16]. Within

this method, the longitude 2θ and latitude 2ε determine a point (labeled P in

Fig. 2.4a) representing the ellipse of polarization with azimuth θ and ellipticity

angle ε (Fig. 1.4).
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Figure 2.2: Evolution of the excited states for the hydrogen atom upon

gradual symmetry lowering due to a C2v arrangement of negative point

charges, in the presence of a weak magnetic field. Weights (absolute squares

of the coefficients) for the excited states |eν(q)〉 with −q the value of the point charges

in atomic units and ν ∈ {1, ..., 6} as written in the basis as used for the bare H atom,

i.e. {|sβ〉, |sα〉, |pzβ〉, |pzα〉, |pxβ〉, |pxα〉, |pyβ〉, |pyα〉}. The left plots (ν ∈ {1, 4, 6}) have

in common that |eν(q)〉 is a superposition of the states |pzβ〉, |pxα〉 and |pyα〉, whereas

for the right plots |eν(q)〉 is a superposition of |pzα〉, |pxβ〉 and |pyβ〉. Furthermore, the

plots are ordered in rows based on the fact that the weights as a function of q are the

same within each row. In the limit of very strong charge (qFD, i.e. the perturbation

due to the charges is much larger than due to the magnetic field), the excited states

converge to one of the basis states of the set |{pzβ〉, |pzα〉, |pxβ〉, |pxα〉, |pyβ〉, |pyα〉}.
For the first row, there is convergence towards |pz〉, towards |px〉 for the second, and

|py〉 for the third. Data points are connected to guide the eye.
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2.4.1 The hydrogen atom in the presence of a weak mag-

netic field

As a proof of principle calculation, we will first perform numerical calculations

on the pure atom (i.e. q = q0 = 0), to see whether we obtain the same optical

selection rules as the analytical solution. Fig. 2.1b considers a hydrogen atom in

the presence of a magnetic field in the z-direction (without point charges), where

we label the 1s and 2p sublevels as the ground and excited state sublevels |gµ〉
(µ ∈ {1, 2}) and |eν(q = q0)〉 (ν ∈ {1, ..., 6}), respectively. For |eν(q)〉 a notation

with dependence on q is already introduced for later use (and we omit this for

|gµ〉 since we found no significant dependence on q for these states in our results).

For the case of q0, the numbering of µ and ν increases with increasing energy for

both ground and excited states.

From the CASSCF/RASSI–SO calculations, the eigenfunctions of the Hamil-

tonian are obtained. As introduced before, we mimic the magnetic field by diago-

nalization of Jz within the 2- and 4-fold degenerate subspaces. As such, we obtain

the states |gµ〉 and |eν(q0)〉 (Table 2.1), which are the same states (apart from a

global phase factor) as those obtained from the analytical solution, i.e. the cou-

pled representation (Supplementary Information Table 2.4 (p. 38)). The weights

(i.e. the absolute squares of the coefficients) of the excited states (when decom-

posing as in Eq. (2.4) and (2.5)) are presented in Fig. 2.2 (first data point of each

subplot corresponds to q = 0).

The CASSCF/RASSI–SO calculations also provide transition dipole moments.

We transform the matrix elements to the basis obtained after diagonalization of

Jz within the degenerate subspaces. Now we have obtained the i-components

〈eν(q0)|Di|gµ〉 (i ∈ {x, y, z}) of the transition dipole moment related to the

|gµ〉 ↔ |eν(q0)〉 transitions. From Supplementary Information Eq. (2.27) (p. 41),

the corresponding relative oscillator strengths (frel) are obtained, which are the

first data points (q = 0) of each series in Fig. 2.3. Since the numerical frel-values

are exactly the same as the analytical ones (Supplementary Information Table 2.5

(p. 39)), i.e. frel ∈ {0, 1, 2, 3}, we conclude that our method is accurate.

Using the Jones-vector formalism (see also Supplementary Information Sec-

tion 2.12), our numerical calculations also provide the same polarization selection

rules as in Supplementary Information Table 2.5 (p. 39). The evolution of the

optical selection rules as a function of q for the six transitions having their electric

dipole oscillating in the xy-plane has been visualized in Fig. 2.4a and b, where

the first data point of each series corresponds to q = 0, for which the transitions
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are circular.
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Figure 2.3: Evolution of the relative oscillator strengths for transitions be-

tween 1s (gµ) and 2p (eν) sublevels of the hydrogen atom upon gradual

symmetry lowering due to a C2v arrangement of negative point charges, in

the presence of a weak magnetic field. The relative oscillator strength frel,µν

for a transition between |gµ〉 and |eν〉 has been defined in Supplementary Informa-

tion Eq. (2.27) (p. 41). Interestingly, the two originally forbidden transitions become

slightly allowed (πz polarization) for small q-values (forbidden for zero charge q0 and

very strong charge qFD). Note that the sum of the relative f -values does not vary as a

function of q, i.e. frel,1sα,tot = frel,1sβ,tot = 9. This becomes particularly clear from the

fact that the plot has a horizontal mirror plane (dashed line) at f = 1.5. Data points

are connected to guide the eye. See Table 2.2 for the q-dependent optical selection

rules.
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2.4.2 The hydrogen atom in the presence of a C2v arrange-

ment of point charges and a weak magnetic field

To study the dependence of the atomic electric dipole oscillation on a charged en-

vironment, we consider the hydrogen atom in a C2v arrangement of four negative

point charges −q (positioned at (2,3,-1), (2,-3,-1), (-2,3,-1), (-2,-3,-1) in Bohrs

with respect to the hydrogen atom), as depicted in Fig. 2.1a. The symmetry of

the hydrogen atom is gradually distorted by increasing q, and this will gradually

affect the Hamiltonian and its eigenstates.

Again, from the CASSCF/RASSI–SO calculations, the eigenfunctions of the

Hamiltonian and the transition dipole moments are obtained. In the absence

of a magnetic field and in the presence of charges, the six excited states form

three doublets. A magnetic field will further lift these degeneracies and impose

additional optical selection rules. As before, we mimic a magnetic field by di-

agonalizing Jz, now within the 2-fold degenerate subspaces. We thus obtain the

states |gµ〉 and |eν(q 6= 0)〉 for the case that the perturbation due to the magnetic

field is weaker than that due to the charges (i.e. the magnetic field affects the

energies only by slightly lifting the degeneracies).

The excited states depend on the magnitude of the surrounding charges and

are denoted as |eν(q)〉, with ν ∈ {1, ..., 6}. The labeling of ν is based on the

evolution of these coefficients: with each gradual increase of charge (q → q′),

the states are slightly affected and the new state |eν′(q′)〉 is labeled with the

ν-value that most resembles |eν(q)〉 (i.e. ν ′ = ν for the ν ′ with largest overlap

〈eν(q)|eν′(q′)〉). Accordingly, we find a different order of ν for the excited states

affected by charge (compare Fig. 2.1b,c). Whereas q0 (Fig. 2.1b) denotes the

absence of charge, qFD (Fig. 2.1c) denotes the limit of a very strong charge that

saturates in fully distorting the symmetry (but small enough to not ionize the

hydrogen atom).

It turns out that we can write the excited states always as a linear combination

of at most three basis functions of the set {|pzβ〉, |pzα〉, |pxβ〉, |pxα〉, |pyβ〉, |pyα〉}.
We find the following relations (where the coefficients are the projections onto

each of the basis functions)

|eν=1,4,6(q)〉 = 〈pzβ|eν(q)〉|pzβ〉+ 〈pxα|eν(q)〉|pxα〉+ 〈pyα|eν(q)〉|pyα〉 (2.4)

|eν=2,5,3(q)〉 = 〈pzα|eν(q)〉|pzα〉+ 〈pxβ|eν(q)〉|pxβ〉+ 〈pyβ|eν(q)〉|pyβ〉 (2.5)

of which the weights (absolute squares of the coefficients) are presented in Fig. 2.2.

For each of the doublets (first row in Fig. 2.2: ν = 1, 2; second row: ν = 4, 5;
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Table 2.1: The excited states of the hydrogen atom upon symmetry lowering

due to a C2v arrangement of negative point charges. The excited states |eν(q)〉
are tabulated for the case of zero charge (q0) and very strong charge (qFD). In the

latter case the final excited states converge to one of the basis functions of the set

{|pzβ〉, |pzα〉, |pxβ〉, |pxα〉, |pyβ〉, |pyα〉}. The ground states |gµ〉 (|sβ〉 and |sα〉) are not

significantly affected for the range of q values that we consider.

ν |eν(q0)〉 |eν(qFD)〉
1 1√

3
(|pzβ〉 − |pxα〉+ i|pyα〉) |pzβ〉

2 1√
3
(|pzα〉+ |pxβ〉+ i|pyβ〉) |pzα〉

3 − 1√
2
(i|pxβ〉+ |pyβ〉) |pyβ〉

4 −
√

2
3
|pzβ〉+ 1√

6
(−|pxα〉+ i|pyα〉) |pxα〉

5 −
√

2
3
|pzα〉+ 1√

6
(|pxβ〉+ i|pyβ〉) |pxβ〉

6 1√
2
(−i|pxα〉+ |pyα〉) |pyα〉

third row: ν = 6, 3) the weights of the two different sublevels are the same.

In the limit of very strong charge (qFD), the excited states converge to one of

the basis functions of the set {|pzβ〉, |pzα〉, |pxβ〉, |pxα〉, |pyβ〉, |pyα〉} (see Fig. 2.2

and Table 2.1). Consequently, a nonzero value for the transition dipole moment is

only obtained for transitions between sublevels with equal spin, e.g. 〈pxα|Dx|sα〉 =

〈px|Dx|s〉〈α|α〉 = eIR√
3

(see also Eq. (2.1)). As such, only six of the twelve transi-

tions are allowed (ten for q = 0), with linear polarization πx, πy or πz, depending

on whether the excited state is |px〉, |py〉 or |pz〉, respectively (see Fig. 2.1c). Ap-

parently, the interaction with the surrounding charges outweighs the contribution

from SOC, such that only spin-conserving transitions are allowed.

To study the optical selection rules for intermediate q-values, we use the tran-

sition dipole moments as obtained from our CASSCF/RASSI–SO calculations.

Again, we transform the transition dipole moments to the basis obtained after

diagonalization of Jz within the degenerate subspaces, such that we obtain the

i-components 〈eν(q)|Di|gµ〉 (i ∈ {x, y, z}) of the transition dipole moment related

to the |gµ〉 ↔ |eν(q)〉 transitions. Interestingly, we can divide the twelve possi-

ble transitions into two groups (Table 2.2), based on the direction in which the

electric dipole oscillates. For Group XY (red) it oscillates in the xy-plane (the

z-component of the transition dipole moment remains zero for increasing q). For

Group Z (blue) it oscillates in the z-direction (zero x- and y-components).

Fig. 2.3 depicts the gradual evolution of the relative oscillator strength (frel)
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Table 2.2: Evolution of the polarization selection rules of |gµ〉 ↔ |eν(q)〉
transitions for the hydrogen atom upon symmetry lowering due to a C2v

arrangement of negative point charges. The twelve possible |gµ〉 ↔ |eν(q)〉 tran-

sitions are divided into two groups (both containing six transitions), based on the

direction in which the electric dipole oscillates: for Group XY (red) it oscillates in

the xy-plane (the z-component of the transition dipole moment remains zero for in-

creasing q), whereas for Group Z (blue) it oscillates in the z-direction (zero x- and

y-components). Cells with an arrow denote how the polarization changes from zero

charge q0 (left value) to very strong charge qFD (right), where a zero denotes a tran-

sition with zero oscillator strength f . Two cells contain only πz, implying that the

polarization is unaffected (although f increases with q). The values 0(πx) denote a

polarization change towards πx, whereas lim
q→qFD

f(q) = 0. The two originally forbidden

transitions become slightly allowed (πz-polarized) for nonzero q, but lim
q→qFD

f(q) = 0,

which is denoted as 0(πz).

µ

ν
1 2 3 4 5 6

1 πz σ+ → 0(πx) σ− → πy πz → 0 σ+ → πx 0→ 0(πz)

2 σ− → 0(πx) πz 0→ 0(πz) σ− → πx πz → 0 σ+ → πy

as a function of q for all twelve |gµ〉 ↔ |eν(q)〉 transitions, as obtained from Sup-

plementary Information Eq. (2.27) (p. 41). Although certain transitions become

even forbidden with increasing charge magntitudes q, the total emission and

absorption remain the same, because the sum of the oscillator strengths of all

transitions from or to |1sα〉 or |1sβ〉 is unaffected, i.e. frel,1sα,tot = frel,1sβ,tot = 9

(compare Section 2.2 for the orbitals and frel-values for the qFD-case, and Sup-

plementary Information Table 2.5 (p. 39) for the frel-values when q = 0). This

becomes also clear from the fact that the plot has a horizontal mirror plane

(dashed line) at f = 1.5. Since the transitions have different polarizations, the

dependence of the oscillator strengths of each transition on q implies that the

amount of light emitted in a specific direction depends on q as well. However,

when light would be collected from all directions simultaneously, no variation

would be observed in the intensity. Particularly interesting is the fact that the

two originally forbidden transitions (q = 0 and SOC included, see Supplementary

Information Table 2.5) become slightly allowed (πz polarization) for 0 < q < qFD,

which results from the fact that |e3(q)〉 and |e6(q)〉 gain some contribution from

|pzα〉 and |pzβ〉, respectively (Fig. 2.2).
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Figure 2.4: Evolution of the ellipticity angle ε and azimuth θ for the hydro-

gen atom upon gradual symmetry lowering. We consider the six transitions (see

legend) that have the electric dipole oscillating in the xy-plane (Group XY in Table 2.2).

a, For these six transitions, the polarization change as a function of q is represented on

a Poincaré sphere[16]. The longitude −π 6 2θ < π and latitude −1
2π 6 2ε 6 1

2π de-

termine a point P , that represents a polarization ellipse with azimuth θ and ellipticity

angle ε (Fig. 1.4). For the green (squares) and black (diamond) series the y-axis is the

major axis, hence θ = π/2. For the other four (red and blue) series the x-axis is the

major axis of the polarization ellipse, hence θ = 0. The four arrows outside the sphere

indicate for the data points the direction of increasing q. b, Ellipticity angle values ε

from a as a function of charge magnitude q for the six different transitions, changing

all from circular (ε = ±π/4) towards linear (ε = 0). Data points are connected to guide

the eye.

To study the gradual evolution of the optical selection rules as a function

of q, we use the Jones-vector formalism (see also Supplementary Information

Section 2.12). For the six transitions having the electric dipole oscillating in

the xy-plane (Group XY, red in Table 2.2), the Jones vectors are visualized in

Fig. 2.4a via the Poincaré-sphere representation[16], and the ellipticity angles ε

are plotted as a function of q in Fig. 2.4b. We find for all six Group XY transitions

that the polarization of the atomic electric dipoles changes gradually upon a
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gradual increase of the point charges. More specific, the polarization changes from

circular (σ) via elliptical towards linear (π). The change to linear goes most rapid

for the transitions where |e4〉 and |e5〉 are involved, a bit slower for the transitions

with |e3〉 and |e6〉, and slowest for the transitions with |e1〉 and |e2〉 (which actually

become forbidden for large q). This corresponds, respectively, to excited states

that evolve towards |px〉, |py〉 and |pz〉 character (see also Fig. 2.2). The fact that

the evolution towards linear polarization goes faster for the transitions associated

with |px〉 than for the ones associated with |py〉 is related to the particular design

of the distortion used in our study: the charges −q are in x-direction closer to

the atom than in y-direction (see Fig. 2.1a).

For the six allowed transitions at qFD, the πz-transitions originate from πz
(for q0), whereas πx and πy originate from σ (and are elliptical for intermediate

q-values). An observer at the +z-direction will (with gradually increasing charge)

see that the polarization of emitted light changes gradually from circular to linear.

Similarly, absorption of light becomes with increasing q ultimately most efficient

for linearly polarized light.

A final observation to discuss is the fact that the character of the eigen-

states and the selection rules have their strongest evolution in the range between

q = 10−4 and q = 10−3 (see the traces in Fig. 2.2, Fig. 2.3 and Fig. 2.4b). In Sup-

plementary Information Section 2.13 (p. 43) we present a perturbation-theory

approach aimed at analyzing why the transition occurs most strongly in this

range. This confirms the notion that the transition occurs when the energy scale

associated with the Coulomb distortion by the point charges starts to dominate

over the spin-orbit coupling of the hydrogen atom.

2.5 Summary and Outlook

Studying the electronic transitions of the 1s and 2p levels of the hydrogen atom

in the presence of negative point charges (and a weak magnetic field) provided

a better understanding of the relation between the electronic wavefunctions and

the polarizations of the interacting light. By external lowering of the symmetry

of the hydrogen atom by gradually changing the magnitude of negative point

charges in a C2v arrangement, it was found that the polarization selection rules

were affected gradually as well (both oscillator strength and polarization). Only

six transitions (equal oscillator strength and linear polarization) remain allowed

between 1s and 2p sublevels in the limit of very strong charge.

This study has provided a simple model system to show the principle of sym-
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metry dependent optical selection rules. We have shown for the hydrogen atom

that varying the magnitude of the negative point charges allows to switch the

optical selection rules of certain transitions between circular and linear (elliptical

in between) and to switch other transitions between allowed (on) and forbid-

den (off). Such switching could be interesting for the storage and transfer of

(quantum) information. The study also provides a better intuition for polariza-

tion selection rules of systems with (relatively) low symmetry (like molecules or

crystal defects).

2.6 Author contributions

This chapter is based on Ref. 1 on p. 177. The project was initiated by all authors.

Calculations and data analysis were performed by G.J.J.L. and he had the lead

on writing the manuscript. All authors contributed to improving the manuscript.
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Supplementary Information (SI)

In the main text we have considered the resonance lines of the hydrogen atom

around 120 nm, corresponding to an atomic transition between the ground state

|1s〉 (n = 1; l = ml = 0) and the excited state |2p〉 (n = 2; l = 1; ml =

−1, 0, 1). We have investigated the modification of the optical selection rules

in the presence of surrounding negative point charges. Relevant fundamentals

are given for reference in the Supplementary Information below. Analogous to

the book of Cohen-Tannoudji, Diu and Laloë[5] (which gives a derivation for the

spinless case), the optical selection rules are derived for electronic transitions

between 1s and 2p levels in the presence of a magnetic field while considering

spin-orbit coupling, with the result tabulated in Table 2.5. With these optical

selection rules as a starting point (Fig. 2.1b), we introduce point charges in the

main text and study how the optical selection rules are modified.

2.7 SI: Energy levels of the hydrogen atom in a

magnetic field

For the hydrogen atom at zero magnetic field, the Hamiltonian H0 (containing the

kinetic and electrostatic interaction energy) has energy eigenvalues En = −EI/n2,

with EI the ionization energy. In the presence of a static magnetic field B along

z, the resonance line is modified. This field does not only change the frequency,

but also the polarization of the atomic lines, which is called the Zeeman effect.

In addition, due to the electron and proton spins, the resonance line is affected

by the fine- and hyperfine structure. However, let us neglect spin for the moment

(in Section 2.7 and 2.8), following [5]. As such, the Hamiltonian is given by

H = H0 + H1, with H1 the paramagnetic coupling term. The corresponding

eigenvalue equation becomes

(H0 +H1)|φn,l,ml〉 = (En −mlµBB))|φn,l,ml〉 (2.6)

with µB = e~
2me

the Bohr magneton, e the elementary charge, ~ the reduced Planck

constant, and me the electron mass. For the states involved in the resonance line,

we obtain

(H0 +H1)|φ1,0,0〉 = −EI |φ1,0,0〉 (2.7)
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(H0 +H1)|φ2,1,ml〉 = (−EI + ~(Ω +mlωL))|φ2,1,ml〉 (2.8)

with the Larmor angular velocity given by ωL = eB
2me

. At zero field this gives the

angular frequency of the resonance line

Ω =
E2 − E1

~
=

3EI
4~

(2.9)

2.8 SI: Electric dipole oscillations

The electric dipole operator is given by

D = eR (2.10)

with R the position operator. Hence, D is a three-dimensional vector, with

components Dx, Dy, Dz. Considering the |1s〉 and |2p〉 states of the hydrogen

atom, the only nonzero matrix components of D are[5]

〈φ2,1,1|Dx|φ1,0,0〉 = −〈φ2,1,−1|Dx|φ1,0,0〉 = −eIR√
6

〈φ2,1,1|Dy|φ1,0,0〉 = 〈φ2,1,−1|Dy|φ1,0,0〉 = i
eIR√

6

〈φ2,1,0|Dz|φ1,0,0〉 =
eIR√

3

(2.11)

where the constant value IR is a radial integral. If a system is in a stationary

state, the mean value of the operator D is zero, i.e. the system cannot emit any

light. Let us therefore assume that the system is in a linear superposition of the

ground state |1s〉 and one of the |2p〉 excited state sublevels

|ψml(t = 0)〉 = cos(α)|φ1,0,0〉+ sin(α)|φ2,1,ml〉 (2.12)

with α real. As a function of time, this state evolves as

|ψml(t)〉 = cos(α)|φ1,0,0〉+ sin(α)e−i(Ω+mωL)t|φ2,1,ml〉 (2.13)

where the global phase factor e−iEit/~ has been omitted. The mean value of the

electric dipole is given by

〈D〉ml (t) = 〈ψml(t)|D|ψml(t)〉 (2.14)
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For ml = 1, we obtain

〈Dx〉1 = −eIR√
6

sin(2α) cos((Ω + ωL)t)

〈Dy〉1 = −eIR√
6

sin(2α) sin((Ω + ωL)t)

〈Dz〉1 = 0

(2.15)

which implies that 〈D〉1 (t) rotates in the xy-plane in the counter-clockwise di-

rection, with angular velocity Ω + ωL.

For ml = 0, we obtain

〈Dx〉0 = 〈Dy〉0 = 0

〈Dz〉0 =
eIR√

3
sin(2α) cos(Ωt)

(2.16)

which implies that 〈D〉0 (t) oscillates linearly along z, with angular frequency Ω.

For ml = −1, we obtain

〈Dx〉−1 =
eIR√

6
sin(2α) cos((Ω− ωL)t)

〈Dy〉−1 = −eIR√
6

sin(2α) sin((Ω− ωL)t)

〈Dz〉−1 = 0

(2.17)

which implies that 〈D〉−1 (t) rotates in the xy-plane in the clockwise direction,

with angular velocity Ω− ωL.

For all three cases (ml = −1, 0, 1) the mean value of the electric dipole os-

cillates as a function of time, corresponding to the emission of electromagnetic

energy. The type of electric dipole oscillation determines the type of polarization

of the emitted radiation. Still, the polarization of light that an observer sees

depends on its orientation with respect to the source. For the ml = 1 case, the

electric dipole oscillates in the counter-clockwise direction with respect to the

z-axis. An observer will at the positive (negative) side of the z-axis therefore

detect σ+ (σ−) radiation, where σ± = x±iy√
2

. However, if the observer detects in

the xy-plane, the radiation will be linearly polarized, perpendicular to B. In any

other direction, the radiation is elliptically polarized. For the ml = −1 case, an

observer will detect the opposite direction for circular and elliptical polarization.

For the ml = 0 case, an observer in the z-direction will not observe any radi-

ation, since an oscillating linear dipole does not radiate along its axis. In any

other direction the detected radiation will be linearly polarized, parallel to B.
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If one is interested in excitation by means of polarized light, the process

just takes place in the reverse direction. Upon excitation, the electric dipole

oscillation will become resonant to the oscillation of the electromagnetic field of

a photon, where the polarization of the electric dipole oscillation is determined

by the polarization of the photon. The type of dipole oscillation that is induced

will be exactly the same as the type of oscillation that would be responsible for

emission of this light. For example, if at +z you observe σ− light induced by a

clockwise rotation of the dipole (as seen from +z), you should excite the system

with σ− with the source of light being positioned at −z, in order to induce the

same oscillation (now counter-clockwise as seen from the origin).

2.9 SI: Spin-orbit coupling

According to special relativity, an electron moving in the electrostatic field of a

proton experiences this field in its reference frame as a magnetic field[35]. The

intrinsic magnetic moment due to the electron spin can interact with this mag-

netic field. The corresponding interaction energy is found to be proportional to

the inner product of L and S, i.e.

HSO ∝ L · S (2.18)

Including this spin-orbit coupling (SOC), one obtains the total Hamiltonian

H = H0 +HSO (2.19)

with H0 the original Hamiltonian without the spin-orbit interaction.

It is useful to define the total angular momentum operator

J2 = L2 + S2 + 2L · S (2.20)

which allows to write

L · S =
1

2
(J2 − L2 − S2) (2.21)

where the corresponding energies are determined from

〈L · S〉 =
1

2
(
〈
J2
〉
−
〈
L2
〉
−
〈
S2
〉
) =

~2

2
(j(j + 1)− l(l+ 1)− s(s+ 1)) (2.22)

which implies that the spin-orbit interaction induces an energy splitting

∆E ∝ j(j + 1)− l(l + 1)− s(s+ 1) (2.23)

For atoms, the proportionality constant is proportional to Z4, with Z the atomic

number[35]. Hence, spin-orbit interaction is strong for (systems consisting of)

heavy atoms.
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2.10 SI: The resonance line of the hydrogen atom

including spin

The electron spin can be either up (〈Sz〉 = ~/2) or down (〈Sz〉 = −~/2), to which

we refer as α and β, respectively. The orbitals 1s, 2p−1, 2p0 and 2p1 allow for

eight possible spinorbitals. These spinorbitals span a basis to which we refer as

the uncoupled representation[5]. It is convenient to label the basis states with

the quantum numbers l, s, ml and ms, as tabulated in Table 2.3.

SOC lifts the 6-fold degeneracy of the 2p levels into sublevels with quan-

tum number j, i.e. 2p1/2 (2-fold degenerate) and 2p3/2 (4-fold degenerate). The

degeneracy can be further lifted by e.g. a magnetic field (which introduces an

additional term to H, which we neglect for the moment though), which induces

a quantization axis. When the field is applied in the z-direction, it is convenient

to define a basis spanned by the eigenstates of the total angular momentum Jz.

Constructing the matrix Jz = Lz + Sz in the basis in which H is diagonal, one

finds that Jz is block-diagonal, i.e. the basis does not consist of eigenstates of Jz.

Diagonalization of the 2- and 4-fold degenerate subspaces provides the basis to

which we refer as the coupled representation (where H remains diagonal).

When the spin and orbital angular momentum are coupled, it is convenient

to work in the coupled representation (Table 2.4). Good quantum numbers are

now j, mj, l and s. The basis can still be expressed as a linear combination

of the basis states of the uncoupled representation, where the prefactors are the

so-called Clebsch-Gordan coefficients.

Excitation or emission between a 1s and 2p sublevel is possible if a nonzero

value is obtained for the transition dipole moment 〈ψe|D|ψg〉, with |ψg〉 = |j =
1
2
,mj = ±1

2
, l = 0, s = 1

2
〉 and |ψe〉 = |j,mj, l = 1, s = 1

2
〉. As tabulated in

Table 2.5, we see that now ten of the twelve possible transitions from the 1s to

2p sublevels have nonzero oscillator strength. Instead, in the case without SOC

only six transitions are possible (three for either up or down spin).
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Table 2.3: Uncoupled representation for the spinorbitals originating from

the 1s, 2p−1, 2p0 and 2p1 orbitals.

Spinorbital |l, s,ml,ms〉
|sβ〉 |0, 1

2
, 0,−1

2
〉

|sα〉 |0, 1
2
, 0, 1

2
〉

|p−1β〉 |1, 1
2
,−1,−1

2
〉

|p−1α〉 |1, 1
2
,−1, 1

2
〉

|p0β〉 |1, 1
2
, 0,−1

2
〉

|p0α〉 |1, 1
2
, 0, 1

2
〉

|p1β〉 |1, 1
2
, 1,−1

2
〉

|p1α〉 |1, 1
2
, 1, 1

2
〉

Table 2.4: Coupled representation for the spinorbitals originating from the

1s, 2p−1, 2p0 and 2p1 orbitals. The left column contains the basis states of the

coupled representation. The middle column gives the same states in the basis of the

uncoupled representation, where the prefactors are the so-called Clebsch-Gordan coef-

ficients. The right column gives the notation as used in the main text, (for the excited

state) corresponding to the case where no surrounding charges are present.

|j,mj, l, s〉
∑
Cml,ms|l, s,ml,ms〉

|1
2
,−1

2
, 0, 1

2
〉 |0, 1

2
, 0,−1

2
〉 |g1〉

|1
2
, 1

2
, 0, 1

2
〉 |0, 1

2
, 0, 1

2
〉 |g2〉

|1
2
,−1

2
, 1, 1

2
〉 1√

3
|1, 1

2
, 0,−1

2
〉 −

√
2
3
|1, 1

2
,−1, 1

2
〉 |e1(q0)〉

|1
2
, 1

2
, 1, 1

2
〉

√
2
3
|1, 1

2
, 1,−1

2
〉 − 1√

3
|1, 1

2
, 0, 1

2
〉 |e2(q0)〉

|3
2
,−3

2
, 1, 1

2
〉 |1, 1

2
,−1,−1

2
〉 |e3(q0)〉

|3
2
,−1

2
, 1, 1

2
〉 1√

3
|1, 1

2
,−1, 1

2
〉+

√
2
3
|1, 1

2
, 0,−1

2
〉 |e4(q0)〉

|3
2
, 1

2
, 1, 1

2
〉

√
2
3
|1, 1

2
, 0, 1

2
〉+ 1√

3
|1, 1

2
, 1,−1

2
〉 |e5(q0)〉

|3
2
, 3

2
, 1, 1

2
〉 |1, 1

2
, 1, 1

2
〉 |e6(q0)〉
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Table 2.5: Transition dipole moments, polarizations (pol.) and transition

strengths for transitions between 1s and 2p sublevels, in the presence of a

magnetic field. See main text Fig. 2.1 for definitions of |gµ〉 and |eν〉. The relative

oscillator strengths frel (Eq. (2.27)) for all transitions from either |s− 1
2
〉 or |s 1

2
〉 add up

to frel,tot = 9, equal to the case without SOC (main text Section 2.2).

|smj〉 ↔ |pj,mj〉
= |gµ〉 ↔ |eν〉

〈eν |D|gµ〉 in the uncoupled representation.
Vanishing terms are omitted.

Pol. frel

|s− 1
2
〉 ↔ |p 1

2
,− 1

2
〉

= |g1〉 ↔ |e1〉

(
1√
3
〈1, 1

2
, 0,−1

2
| −
√

2
3
〈1, 1

2
,−1, 1

2
|
)
D|0, 1

2
, 0,−1

2
〉

= 1√
3
〈φ2,1,0|Dz|φ1,0,0〉 = 1

3
eIR

π 1

|s− 1
2
〉 ↔ |p 1

2
, 1
2
〉

= |g1〉 ↔ |e2〉

(√
2
3
〈1, 1

2
, 1,−1

2
| − 1√

3
〈1, 1

2
, 0, 1

2
|
)
D|0, 1

2
, 0,−1

2
〉

=
√

2
3
〈φ2,1,1|Dx+iDy√

2
|φ1,0,0〉 = −

√
2

3
eIR

σ+ 2

|s− 1
2
〉 ↔ |p 3

2
,− 3

2
〉

= |g1〉 ↔ |e3〉
〈1, 1

2
,−1,−1

2
|D|0, 1

2
, 0,−1

2
〉

= 〈φ2,1,−1|Dx−iDy√
2
|φ1,0,0〉 = 1√

3
eIR

σ− 3

|s− 1
2
〉 ↔ |p 3

2
,− 1

2
〉

= |g1〉 ↔ |e4〉

(
1√
3
〈1, 1

2
,−1, 1

2
|+
√

2
3
〈1, 1

2
, 0,−1

2
|
)
D|0, 1

2
, 0,−1

2
〉

=
√

2
3
〈φ2,1,0|Dz|φ1,0,0〉 =

√
2

3
eIR

π 2

|s− 1
2
〉 ↔ |p 3

2
, 1
2
〉

= |g1〉 ↔ |e5〉

(√
2
3
〈1, 1

2
, 0, 1

2
|+ 1√

3
〈1, 1

2
, 1,−1

2
|
)
D|0, 1

2
, 0,−1

2
〉

= 1√
3
〈φ2,1,1|Dx+iDy√

2
|φ1,0,0〉 = −1

3
eIR

σ+ 1

|s− 1
2
〉 ↔ |p 3

2
, 3
2
〉

= |g1〉 ↔ |e6〉
〈1, 1

2
, 1, 1

2
|D|0, 1

2
, 0,−1

2
〉 = 0 0

|s 1
2
〉 ↔ |p 1

2
,− 1

2
〉

= |g2〉 ↔ |e1〉

(
1√
3
〈1, 1

2
, 0,−1

2
| −
√

2
3
〈1, 1

2
,−1, 1

2
|
)
D|0, 1

2
, 0, 1

2
〉

= 〈φ2,1,−1|Dx−iDy√
2
|φ1,0,0〉 = −

√
2

3
eIR

σ− 2

|s 1
2
〉 ↔ |p 1

2
, 1
2
〉

= |g2〉 ↔ |e2〉

(√
2
3
〈1, 1

2
, 1,−1

2
| − 1√

3
〈1, 1

2
, 0, 1

2
|
)
D|0, 1

2
, 0, 1

2
〉

= − 1√
3
〈φ2,1,0|Dz|φ1,0,0〉 = −1

3
eIR

π 1

|s 1
2
〉 ↔ |p 3

2
,− 3

2
〉

= |g2〉 ↔ |e3〉
〈1, 1

2
,−1,−1

2
|D|0, 1

2
, 0, 1

2
〉 = 0 0

|s 1
2
〉 ↔ |p 3

2
,− 1

2
〉

= |g2〉 ↔ |e4〉

(
1√
3
〈1, 1

2
,−1, 1

2
|+
√

2
3
〈1, 1

2
, 0,−1

2
|
)
D|0, 1

2
, 0, 1

2
〉

= 1√
3
〈φ2,1,−1|Dx−iDy√

2
|φ1,0,0〉 = 1

3
eIR

σ− 1

|s 1
2
〉 ↔ |p 3

2
, 1
2
〉

= |g2〉 ↔ |e5〉

(√
2
3
〈1, 1

2
, 0, 1

2
|+ 1√

3
〈1, 1

2
, 1,−1

2
|
)
D|0, 1

2
, 0, 1

2
〉

=
√

2
3
〈φ2,1,0|Dz|φ1,0,0〉 =

√
2

3
eIR

π 2

|s 1
2
〉 ↔ |p 3

2
, 3
2
〉

= |g2〉 ↔ |e6〉
〈1, 1

2
, 1, 1

2
|D|0, 1

2
, 0, 1

2
〉

= 〈φ2,1,1|Dx+iDy√
2
|φ1,0,0〉 = − 1√

3
eIR

σ+ 3
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2.11 SI: Transition dipole moment and oscilla-

tor strength

For a system with N states, the transition dipole moment related to a transition

from the initial state |ψI〉 to the final state |ψF 〉 is given by µFI , where I ∈ {1...N}
and F ∈ {1...N}. Within a Cartesian coordinate system (i = {x, y, z}), the

corresponding components of this complex vector are given by

µFI,i = 〈ψF |Di|ψI〉 (2.24)

where Di is the i-component of the electric dipole operator D = eR, with e the

elementary charge and R the position operator. The transition dipole moment

is Hermitian, implying that µIF,i = 〈ψI |Di|ψF 〉 = µ∗FI,i, where the ∗ denotes the

complex conjugate.

When we consider spinorbitals, the 1s and 2p contain 2 and 6 sublevels,

respectively. The total basis set contains thus 8 spinorbitals, for which one can

write down the matrix elements of the transition dipole moment. For each i-

component, we obtain an 8 × 8 matrix. Since we are only interested in |1s〉 ↔
|2p〉 transitions, the lower left 6 × 2 submatrix contains all the information we

need, i.e. the ones with I ∈ {1, 2} (1s sublevels) and F ∈ {3, 8} (2p sublevels).

This submatrix contains the elements of the transition dipole moment related to

transitions from a 1s to a 2p sublevel. The upper right 2× 6 submatrix is related

to transitions from a 2p to a 1s sublevel and contains the complex conjugates.

Let us from now on merely focus on the 6×2 lower left submatrix of µFI,i and

relabel the states (according to main text Fig. 2.1b and c). We denote µνµ as the

transition dipole moment related to a transition from a ground state sublevel |gµ〉
(µ ∈ {1, 2}) to an excited state sublevel |eν〉 (ν ∈ {1, 6}). Within a Cartesian

coordinate system (i = {x, y, z}), the corresponding components of this complex

vector are given by

µνµ,i = 〈eν |Di|gµ〉 (2.25)

where Di is the i-component of D = eR, with e the elementary charge and R

the position operator. For each i-component, the transition dipole moments are

conveniently put into a 6× 2 matrix with values given by Eq. (2.25).

A convenient measure for the strength of a transition is the real-valued oscil-

lator strength f , which is proportional to the absolute square of the transition

dipole moment[35]. In this work, we will consider only a small subset of all pos-

sible transitions in the hydrogen atom, i.e. the |1s〉 ↔ |2p〉 transitions, where we
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refer to the sublevel transitions as |gµ〉 ↔ |eν〉. The oscillator strength related to

such a transition is therefore proportional to the absolute square of the transition

dipole moment µνµ (which is a vector, such that we have to take the sum of the

absolute squares of the components), i.e.

fµν ∝ |µνµ|2 =
∑
i=x,y,z

|µνµ,i|2 (2.26)

where fµν = fνµ. For our work it is convenient to define the relative oscillator

strength related to a transition between a ground state |gµ〉 and an excited state

|eν〉 as

frel,µν =
9

(eIR)2
|µνµ|2 =

9

(eIR)2

∑
i=x,y,z

|µνµ,i|2 =
9

(eIR)2

∑
i=x,y,z

|〈eν |Di|gµ〉|2 (2.27)

For an electron occupying the ground state sublevel |gµ〉, we define the total

relative oscillator strength as

frel,gµ,tot =
∑
ν

frel,µν =
9

(eIR)2

∑
ν,i

|〈eν |Di|gµ〉|2 (2.28)

2.12 SI: Jones calculus applied to the oscillation

of an atomic electric dipole

To describe how polarized light is affected by interaction with an optical element

(or a sample), it is often convenient to use Jones calculus. Within this method,

light is represented by a Jones vector and the optical element by a Jones matrix.

Within the Jones-vector formulation, a Jones vector contains the amplitude and

phase of the electric field components of a light beam (orthogonal to its prop-

agation direction). Commonly, the amplitudes are normalized, such that their

intensities add up to 1. Any elliptical polarization can be described, including

the special cases of linear and circular polarization.

The polarization ellipse is described by the azimuth θ and the ellipticity angle

ε, as illustrated in main text Fig. 1.4. The azimuth θ is the angle between the

semi-major axis a and the horizontal axis, where −1
2
π 6 θ < 1

2
π. Note that a and

θ are ill-defined for circularly polarized light. The ellipticity angle ε is defined

through the ellipticity e = b
a

(with b the semi-minor axis) such that e = ± tan ε,

where −1
4
π 6 ε 6 1

4
π (where the + and − signs correspond to right- and left-

handed polarization respectively).
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The general definition of the Jones vector representing an electric vector os-

cillating in the xy-plane is given by[16]

E{x̂, ŷ} = AeiδR(−θ)

[
cos(ε)

i sin(ε)

]
= Aeiδ

[
cos(θ) cos(ε)− i sin(θ) sin(ε)

sin(θ) cos(ε) + i cos(θ) sin(ε)

]
(2.29)

where we will take for convenience the amplitude A = 1 and the global phase

δ = 0. The transformation matrix R(−θ) rotates the primed basis with an angle

−θ (to the unprimed basis) in main text Fig. 1.4. It turns out that we have

to distinguish only two cases in this work, i.e. θ = 0 (the x-axis is the major

axis) and θ = π/2 (the y-axis is the major axis). Within the {x̂, ŷ}-basis, the

corresponding Cartesian Jones vectors follow from Eq. (2.29) by substituting for

θ, from which we can easily find ε, i.e.

θ = 0 : Ê{x̂, ŷ} =

[
cos(ε)

i sin(ε)

]
, ε = sin−1(−iEy) (2.30)

θ = π/2 : Ê{x̂, ŷ} =

[
−i sin(ε)

cos(ε)

]
, ε = sin−1(iEx) (2.31)

which for both cases corresponds to a clockwise rotation (right-handed polariza-

tion) for ε > 0. Note that |Ex| > |Ey| when θ = 0, whereas |Ey| > |Ex| when

θ = π/2.

We find it convenient to assign a Jones vector to the oscillation of an atomic

electric dipole related to an electronic transition, with the components of the

electric vector E given by the (normalized) components of the corresponding

transition dipole moment. As such, an electric dipole oscillating in the xy-plane

is represented by the Jones vector

Ê{x̂, ŷ} = N

[
〈φf |Dx|φi〉
〈φf |Dy|φi〉

]
(2.32)

with N a normalization constant and |φi(f)〉 the initial (final) state. We will

always take the ground state |φf〉 = |g1,2〉 for the initial state.

For the 1s ↔ 2s transitions of the hydrogen atom, it turns out that for six

of the twelve possible transitions the transition dipole moment has only nonzero

z-components for increasing charge q, i.e. the electric dipole oscillates only in the

z-direction (these six have been named Group Z (blue) in main text Table 2.2).

For this Group Z, only the oscillator strength varies as a function of q (i.e. the

polarization selection rules vary only in the sense of varying between forbidden
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and allowed). For the other six transitions (Group XY (red) in main text Ta-

ble 2.2), the transition dipole moment has only nonzero x- and y-components,

i.e. the electric dipole oscillates in the xy-plane. For these transitions the polar-

ization seletion rules are also affected in the sense of a change of the ellipticity

(actually, only the ellipticity angle ε turns out to be affected). We find for this

Group XY for increasing charge q that of the components Ex and Ey always one

is purely real and the other imaginary (or zero). This implies that we have either

θ = 0 or θ = π/2. More specific, for increasing q the polarization selection rules

for each of the Group XY series change from circular to linear, without affecting

θ. Therefore, we can for each series always write the Jones vector in the form of

either Eq. (2.30) or (2.31), where we multiply with a global phase factor eiδ
′

with

the phase δ′ taken such that Ex becomes real when |Ex| > |Ey| and Ey becomes

real when |Ey| > |Ex|. Subsequently, we can easily determine the ellipticity angle

ε.

2.13 SI: Perturbation-theory description of dis-

tortion by extra charges

In this section we present a perturbation-theory approach for analyzing why the

character of the eigenstates and the selection rules have their strongest evolution

in the range between q = 10−4 and q = 10−3 (see the traces in Fig. 2.2, Fig. 2.3

and Fig. 2.4b). This confirms that this occurs at the value for q where the

perturbation due to the charges becomes stronger than the spin-orbit coupling in

the bare hydrogen atom.

The notation used for this perturbation-theory description mostly follows[5].

However, for consistency with the main text we introduce H0so as notation for the

unperturbed Hamiltonian of the hydrogen atom with spin-orbit coupling already

included,

H0so = H0 +HSO (2.33)

The Hamiltonian with the perturbation due to the extra charges −q is then

H = H0so + V (2.34)

where V is

V =
∑
i

qi · e
|R− ri|

(2.35)
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The summation runs here over the set of extra charges put in the environment,

each labeled by a value for i. Further, e is the elementary charge, R is the position

operator for the electron, and ri are the positions of the extra charges. We will

restrict ourselves to the case with identical magnitude for all charges qi, that is,

for all i we use qi = q.

The unperturbed H0so has degenerate eigenstates for the states that belong

to the 2p1/2 and 2p3/2 manifolds. We therefore work out degenerate perturbation

theory by rotating the degenerate orbitals[5] in such a way that in each degenerate

set 〈pk|V |pl〉 = 0, for all cases k 6= l and k, l an index for labeling the p states.

The perturbation theory then gives for the first-order energy shift (with |φn〉,
|φp〉, En, Ep eigenstates and eigenvalues of H0so)

〈φn|V |φn〉 = q · e ·

〈
φn

∣∣∣∣∣∑
i

1

|R− ri|

∣∣∣∣∣φn
〉

(2.36)

The first order correction to the wave function has probability amplitudes

cnp =
〈φp|V |φn〉
En − Ep

=
q · e

En − Ep
·

〈
φp

∣∣∣∣∣∑
i

1

|R− ri|

∣∣∣∣∣φn
〉

(2.37)

where (given the above remark on degeneracies) we only need to consider terms

that combine 1s and 2p states. The last expression shows that the effect strongly

depends on the particular geometry of the perturbation with charges: the state

mixing is proportional to q and to a spatial integral that only concerns the oper-

ators 1/|R−ri|. For our particular geometry, we find via numerical evaluation of

the integral that the sum of the amplitudes cnp is of order 0.01 · q · e/(En − Ep).
That is, the state mixing is governed by matrix elements 〈φp|V |φn〉 ≈ 0.01 · q · e.
In the atomic units we use, the strength of the spin-orbit coupling is about 10−6

Hartree[5]. Hence, the perturbation by the charges will dominate over the spin-

orbit coupling for values of q > 10−4. This is in agreement with the trends in

traces in Fig. 2.2, Fig. 2.3 and Fig. 2.4b.

Notably, for describing the effective strength of the distortion, the above anal-

ysis shows how a spatial integral over the volume that is occupied by the electron

wave function is an important factor. When comparing two situations with the

extra charges either inside or outside the volume where the wave function has sig-

nificant amplitude, but with otherwise identical symmetry and identical Coulomb

distortion at the hydrogen nucleus, the effective strength of the distortion is there-

fore very different. That is, a distortion with charges −q at a distance a (with a of

order the Bohr radius) has a stronger influence than placing charges of magnitude

−C · q moved out radially to a distance C · a.



Chapter 3

Proposal for time-resolved optical

preparation and detection of

triplet-exciton spin coherence in organic

molecules

Abstract

Changes in optical polarization upon light-matter interaction can

probe chirality, magnetization and non-equilibrium spin orientation

of matter, and this underlies fundamental optical phenomena such as

circular dichroism and Faraday and Kerr rotation. With fast opti-

cal pulses electronic spin dynamics in materials can be initiated and

detected in a time-resolved manner. This has been applied to mate-

rial systems with high order and symmetry (giving distinct optical

selection rules), such as clouds of alkali atoms and direct-band-gap

semiconductor systems, also in relation to proposals for spintronic

and quantum technologies. For material systems with lower sym-

metry, however, the potential of these phenomena for studying and

controlling spin is not well established. We present here how pulsed

optical techniques give access to preparing and detecting the dy-

namics of triplet spin coherence in a broad range of (metal-)organic

molecules that have significant spin-orbit coupling. We establish how

the time-resolved Faraday rotation technique can prepare and detect

spin coherence in flat molecules with C2v symmetry, and extrapo-

late that the effects persist upon deviations from this ideal case,

and upon ensemble averaging over fully randomized molecular ori-

entations. For assessing the strength and feasibility of the effects in

reality, we present detailed theoretical-chemistry calculations.

45
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3.1 Introduction

Organic molecules are increasingly used for opto-electronic devices, because of

their chemical tunability, low-cost, and ease of processing. In such devices, the

ratio of singlet to triplet excitons can be an important performance parameter[39].

Moreover, because of the many interesting spin-related phenomena discovered in

organic semiconductors and molecules[40–45], further exploration of spintronic

applications in these materials is of interest. Both for organic opto-electronics

and spintronics, being able to control and probe triplet-exciton spin coherence

will be of great value for better material studies and improving the functionalities.

A handle for this may rely on the optical polarization of the interacting light.

Correlations between electronic spin states and optical polarization are well es-

tablished for inorganic semiconductors with strong spin-orbit coupling (SOC)[9],

and a particular example for using such correlations is the Time-Resolved Fara-

day Rotation (TRFR) technique[12, 13, 46]. This is a pump-probe technique

based on measuring the polarization rotation (optical rotation angle) of a probe

pulse upon transmission through a sample, as a measure for the (precessing) spin

orientation induced by a pump pulse. The oscillation of the polarization rotation

as a function of the delay time between pump and probe then directly reflects

coherent spin dynamics. The aim of the theoretical work in this chapter is to

study how this pump-probe technique also allows for optical control and probing

of coherent triplet-exciton spin dynamics in organic molecules.

3.2 Theoretical proof of principle for a molecu-

lar TRFR experiment

To realize a molecular TRFR experiment (Fig. 3.1), we suggest to use an ul-

trashort polarized pump pulse that excites a molecular system from the singlet

ground state into a coherent superposition of two sublevels of the lowest triplet

excited state (Fig. 3.2a), for the zero-phonon optical transition. This energy level

scheme differs from the most common TRFR scenario, which focuses on electron

spin coherence (with spin S = 1/2) in inorganic semiconductors[12, 13]. For

This chapter is based on Ref. 2 on p. 177.
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Figure 3.1: Schematic of a molecular Time-Resolved Faraday Rotation

(TRFR) experiment. The pump and probe pulse propagate in the x-direction,

whereas the molecule lies in the yz-plane. Depending on the state of the molecule, the

probe pulse experiences optical rotation upon transmission, where the optical Faraday

rotation angle ∆θ (in the yz-plane) is a measure for the spin orientation induced by the

pump pulse. Coherent spin dynamics occurs along the x-axis and is revealed by varying

the delay time between pump and probe, involving an oscillation of ∆θ. In view of

this work, the metal-organic molecule (2,6-bis(aminomethyl)phenyl)(hydrido)platinum

is depicted, which is referred to as PtN2C8H12. This molecule has C2v symmetry. The

Jones vectors E with corresponding (in general complex) prefactors (α, β, δ and ε) are

in general not normalized, unless representing polarizations (i.e. normalized electric

vectors which we denote with a hat, in which case we call the prefactors polarization

parameters).

these systems optical transitions can be described as excitations of single elec-

trons, from valence-band to conduction-band states. For the relevant electrons

in chemically stable organic molecules the typical situation is very different: the

ground state has two localized electrons in a spin singlet S = 0 configuration.

Without SOC effects, optical transitions are only allowed to excited states that

are also singlet states. Spin coherence can be carried out by excited states with

the electrons in a triplet spin S = 1 configuration, and these states have ener-

gies that are typically ∼200 meV lower in energy than their singlet equivalents.

Optical transitions directly into the triplet excited states are only possible when
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Figure 3.2: Energy level scheme and laser (de)tuning for the pump and

probe pulse in a molecular Time-Resolved Faraday Rotation (TRFR) ex-

periment. a, For PtN2C8H12 all three (x, y, z, as defined in Fig. 3.1) components

of 〈ψ2| r |ψg〉 are zero, wherefore we neglect |ψ2〉. When the pump pulse (red arrow)

arrives at t = 0, only |ψg〉 is populated, as indicated with the dot. Full absorption of a

photon out of a short (thus spectrally broad) optical pump pulse polarized in both the

y and z-direction induces a superposition of |ψ1〉 and |ψ3〉. b, Directly after excitation

with the pump, |ψe(t)〉 (being a superposition of |ψ1〉 and |ψ3〉) is populated, as indi-

cated with the dot. A linearly polarized probe pulse (blue arrow) with detuning ∆p

experiences a polarization rotation ∆θ, which oscillates as a function of the delay time

∆t. This oscillation is a measure for the coherent spin dynamics 〈J〉 (t), related to the

evolution |ψe(t)〉.

the system has significant SOC, with more oscillator strength for the transitions

as the SOC strength increases. Typical molecular systems with large SOC are

metal-organic complexes containing a heavy metal atom[47, 48], and molecules

with strong curvature at carbon-carbon bonds[49]. Such molecules are particu-

larly used in organic light-emitting diodes (OLEDs) for efficient triplet-exciton

harvesting.

For our analysis we will assume that the pump pulse exactly transfers all

population from the singlet to the triplet state (i.e. and exact optical π-pulse for

this transition). In practice this will often not be the case, but for the essential

aspects in our analysis this does not compromise its validity. Instead, an ultrafast

pump pulse will in general bring the system in a quantum superposition of |ψg〉
and |ψe(t = 0)〉. However, the quantum coherence between these two states

will typically decohere very fast, and this will bring the system in an incoherent

mixture of |ψg〉 and |ψe(t ≈ 0)〉. Then, the population in |ψg〉 will not contribute
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to the TRFR signal (for our probing scheme, see below). At the same time,

the population in |ψe(t ≈ 0)〉 will contribute to the TRFR signal in the same

manner as a system that is purely in this state. The main reason to still aim for

excitation with an optical π-pulse is that this maximizes the TRFR signal, and

our estimates below here assume this case.

We thus assume that the pump pulse brings the molecules in a state that

is purely a superposition of triplet sublevels (|ψe(t)〉 in Fig. 3.2b). This state

will show coherent spin dynamics as a function of time (also at zero magnetic

field the triplet sublevels are typically not degenerate[50]). We will study this

by calculating both 〈S〉 (t) and 〈J〉 (t), where J = L + S is the total electronic

angular momentum in conventional notation, and t is the time after the arrival of

the pump pulse (to be clear, we use t for time in the system’s free evolution, and

∆t for the pump-probe delay). As commonly done in literature on spintronics[51],

we will use the word spin for well-defined states of J. The discussion will clarify

whether a net spin orientation refers to a nonzero expectation value for J or S.

For our calculations we focus on a molecule that contains a heavy-metal atom

in order to have large SOC. In literature, usually density-functional theory (DFT)

calculations are used to study such complexes theoretically, like e.g. for plat-

inum porphyrins[45] and iridium complexes[52]. We use the more accurate com-

bined CASSCF/CASPT2/RASSI–SO method instead, as introduced by Roos and

Malmqvist[17, 18] in MOLCAS[23], in order to have a better basis for extract-

ing physically relevant wave functions and spin expectation values. Since this is

computationally a very expensive method, we chose the relatively small metal-

organic complex (2,6-bis(aminomethyl)phenyl)(hydrido)platinum (to which we

refer in this work as PtN2C8H12 (Fig. 3.1)). Note that this molecule is (possibly)

not chemically stable, in contrast to the related molecule[53] with Cl substituted

for the H bound to Pt and N(CH3)2 for NH2. However, it is computationally much

less demanding and therefore more suitable for our proof of principle calculation.

The sublevels of the lowest triplet (including SOC) of PtN2C8H12 are labeled

as |ψ1〉, |ψ2〉 and |ψ3〉 (Fig. 3.2 and Supplementary Information Fig. 3.9 (p. 84)).

The energies of these levels with respect to |ψg〉 are 3.544, 3.558 and 3.564 eV re-

spectively, as obtained from the CASPT2 calculation. The corresponding nonzero

components of the transition dipole moments are 〈ψ1| y |ψg〉 ≈ 0.0003 − i0.0112

and 〈ψ3| z |ψg〉 ≈ 0.0063 in atomic units (where the conversion factor to SI-units

is 8.47836 · 10−30 Cm). In other words, a transition from |ψg〉 is allowed only

with y and z polarized light to state |ψ1〉 and |ψ3〉, respectively, but forbidden

to state |ψ2〉. Having this type of selection rules for singlet-triplet transitions is
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a generic property of systems with C2v symmetry (for details see Supplementary

Information Sec. 3.12 (p. 83)), and introduces a way to selectively excite to (a

specific superposition of) triplet sublevels. Such an imbalance in populating the

triplet sublevels is essential for inducing spin orientation (see also below).

A spectrally broad pump pulse with polarization in both the y and z-direction

can thus bring the system into a superposition of |ψ1〉 and |ψ3〉. From the

CASPT2 calculations, an energy splitting E3 − E1 = 20 meV (30 THz angu-

lar frequency) has been obtained (Supplementary Information Table 3.3 (p. 83)).

To simultaneously address |ψ1〉 and |ψ3〉, we thus need to use ultrashort laser

pulses with an uncertainty in the photon energy given by σEph > E3 − E1. This

requires that the time duration of the pulses does not exceed 16 fs (defined as the

standard deviation of the envelope), as follows from the time−energy uncertainty

relation.

Figure 3.3: Calculation of 〈Jx〉 (t), 〈Lx〉 (t) and 〈Sx〉 (t) for a superposition

of two triplet sublevels of a single PtN2C8H12 molecule. This calculation

originates from a superposition of triplet sublevels |ψ1〉 and |ψ3〉 (which interact with y

and z polarized light respectively, Fig. 3.2), induced by an ultrashort pump pulse having

electric unit vector Êpump = ẑ+ŷ√
2

. Spin oscillation occurs in the x direction only. More

specific, 〈Jx〉 (t), 〈Lx〉 (t) and 〈Sx〉 (t) oscillate with frequency ω31 = (E3−E1)/~, while

the y and z components remain zero.
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For the pure triplet spin states Tx, Ty and Tz (defined in Supplementary

Information Eq. (3.77-3.79) (p. 84)), all (x, y, z) components of 〈S〉 are zero.

Instead, for a superposition of these sublevels the net spin can be nonzero. More

specifically, for a superposition of two of these spin states (say, Ti and Tj), the

spin expectation value oscillates with only a nonzero component in the direction

perpendicular to i and j, and with a frequency corresponding to the energy

difference between the sublevels. To induce nonzero spin and subsequent spin

dynamics for PtN2C8H12, we therefore propose a direct excitation from |ψg〉 to

the state |ψe(t = 0)〉, being a superposition of |ψ1〉 and |ψ3〉 (Fig. 3.2a, for

details see Supplementary Information Eq. (3.26) (p. 67)). As a function of time,

this superposition evolves as |ψe(t)〉 (Fig. 3.2b and Supplementary Information

Eq. (3.28) (p. 67)), for which 〈Jx〉 (t), 〈Lx〉 (t) and 〈Sx〉 (t) oscillate with frequency

ω31 = (E3 − E1)/~, while the y and z components remain zero. Fig. 3.3 shows

the result of a calculation of such an oscillation, for the case where the electric

unit vector of the pump pulse is Êpump = ẑ+ŷ√
2

.

We aim to probe this oscillating spin (orientation) via Faraday rotation, which

can be realized my measuring the polarization rotation ∆θ (as introduced in

Fig. 3.1). The optical transitions and selection rules that we have introduced

in the above can be used for calculating ∆θ (for details see Supplementary In-

formation Sec. 3.7 (p. 64) and Sec. 3.8 (p. 66)). Fig. 3.4 shows results of such

a calculation, for an ensemble of isolated and identically oriented PtN2C8H12

molecules (e.g. realized by using a crystal host). We have assumed a detuned

linearly polarized probe pulse, and present ∆θ as a function of the delay time ∆t

between an ultrashort polarized pump and probe pulse. Taking a detuned probe

(Fig. 3.2) limits probe-pulse induced population transfer back to the ground state,

which allows to consider dispersion only[54]. We take a detuning where dispersion

is near maximal, while probe absorption is strongly suppressed.

While we do not present the full equations for the above calculation in the

main text (but in the Supplementary Information), we will discuss here some

notable aspects. The polarization of the probe pulse after transmission Eout is

affected when its components experience a different real part of the refractive in-

dex[16] (birefringence). A generic description of light-matter interaction in such

a medium requires formulating the linear susceptibility and relative permittivity

as a tensor. However, the refractive index does not have a tensor representation

due to its square-root relation with these parameters[55]. Speaking about refrac-

tive indices only makes sense when a transformation is performed to the basis of

the principal axes, which are the eigenvectors of the linear susceptibility tensor
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Figure 3.4: Calculation of the polarization rotation ∆θ = θout− θin as a func-

tion of ∆t for an ensemble of isolated and identically oriented PtN2C8H12

molecules. The curve was calculated with Supplementary Information Eq. (3.61)

(p. 73) with the following parameter values: Polarization parameters α = β = δ = ε =

1/
√

2, i.e. electric unit vectors Êpump = Êin = ẑ+ŷ√
2

(where Êin is the initial polariza-

tion of the probe); Transition dipole moments d1 = 0.0003 − i0.0112 and d3 = 0.0063

a.u.; Triplet sublevel splitting E3 − E1 = 20 meV; Probe wavelength λ = 349 nm;

Detuning ∆p = −60 meV, which is assumed to satisfy the requirements |∆p| >> γ and

|∆p| >> |E3 − E1|/~; Thickness d = 100 nm; Number density N = 1024 m-3.

χ̃(1) (Eq. (3.31) in the Supplementary Information (p. 68)). For our system, the

oscillating dynamics of |ψe(t)〉 yields that the principal axes oscillate with time

(see Eq. (3.38) and (3.41)). While accounting for this, the electric-field compo-

nents of the probe after transmission (Eq. (3.56)), and in turn the corresponding

azimuth θout (Eq. (3.59)), and polarization rotation ∆θ = θout − θin (Eq. (3.61))

can be calculated, for results as in Fig. 3.4.

Comparing Fig. 3.3 with Fig. 3.4, we conclude that ∆θ(∆t) is an appropriate

measure for 〈J〉 (t), since both oscillate in phase with frequency ω31. The ex-

perimental advantage of measuring oscillating coherent spin dynamics instead of

merely spin orientation is that it is much easier to trace back the origin of a small

signal when it oscillates, and it gives access to observing the dephasing time of

the dynamics.
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3.3 Feasibility analysis

The experimental feasibility of a molecular TRFR experiment particularly de-

pends on the amplitude of the oscillation of the polarization rotation ∆θ as a

function of the delay time ∆t. Typically, the accuracy of a TRFR experiment is

in the order of nrads[56]. Fig. 3.4 gives a value of 23 nrad for this amplitude, well

within the required range. In Supplementary Information Sec. 3.10 (p. 75) we

discuss how this signal can be enhanced by several orders of magnitude. In the

remainder of this section we address other aspects of the feasibility of a molecular

TRFR experiment.

3.3.1 TRFR experiment with an ensemble of randomly

oriented molecules

In Supplementary Information Sec. 3.15 (p. 91) we show for an ensemble of ran-

domly oriented PtN2C8H12 molecules that the TRFR signal is only reduced by

a factor 2 as compared to the case with all molecules oriented such that the

maximum signal is obtained (i.e. perpendicular to the incoming light). Hence,

optically induced spin orientation does not necessarily require the same orienta-

tion for the molecules of interest when put in a crystal host. Moreover, this shows

that a nonzero TRFR signal can be obtained for molecules in the gas phase and

in solution. In these cases it can be satisfied that the molecules of interest are

well isolated from each other. Still, the spin lifetime might be affected by several

effects.

The spin dynamics might be affected by thermal fluctuations within the

molecule. Although this is usually hardly the case for pure spins, the effect

might be nonnegligible in our case due to the orbital part being mixed in via

SOC. As long as this orbital contribution is small, these effects will not be severe.

The strength of the SOC effect drives in fact a trade off between positive and

negative effects for observing long-coherent spin oscillations with TRFR. Strong

SOC makes the direct singlet-triplet transition stronger. However, it will also

shorten the effective triplet-spin dephasing time because it shortens the optical

life time of the triplet state, and since it enhances the mentioned coupling to

thermal fluctuations. In addition, rapid tumbling of molecules in solution might

limit for how long coherent spin oscillations can be observed. This effect might

be suppressed by e.g. taking a high viscosity of the solvent, large molecules or a

low temperature (for details see Supplementary Information Sec. 3.15). Another
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trade off lies in the triplet sublevel splitting for the system of choice. A larger

splitting gives faster spin oscillations, but is thus more demanding on the need for

ultrashort laser pulses. A larger energy scale for the splitting probably increases

to what extent the spin dynamics couples to other dynamics of the system.

3.3.2 Single molecule TRFR experiment

In earlier work, the optically detected magnetic resonance (ODMR) technique

has been used to study triplet spin polarization in molecular ensembles[57] and

single molecules[58]. Within this technique, a microwave field drives the spin

dynamics. An advantage of our TRFR technique may lie in that it is an all-optical

technique, and fast laser pulses give access to a much higher time resolution.

Other advantages are the absence of a magnetic field and the applicability to

ensembles of randomly oriented molecules.

It would be very interesting to be able to also apply the TRFR experiment to

a single molecule. Hence, we qualitatively determine whether such an experiment

is possible. As an approximation for the signal obtained with a single molecule

experiment, we can take the thickness d equal to the separation between two

molecules (determined by N). In our calculation for PtN2C8H12, we have d =

100 nm and N corresponding to a separation of 10 nm. Our approximation

thus implies only one order of magnitude loss of ∆θ signal when taking a single

molecule into account. We thus conclude that the signal of a TRFR experiment

applied to a single PtN2C8H12 molecule lies within the measurable range (> nrad)

which offers a strong indication that the TRFR technique can be used to probe

the spin of single molecules as well. Likewise, the TRFR technique has already

been applied successfully to probing of a single spin in a semiconductor quantum

dot[59].

3.3.3 Franck-Condon suppression of optical transitions

Although our proof-of-principle calculation was performed for (2,6-bis(amino-

methyl)phenyl)(hydrido)platinum, this particular molecule seems unfavorable for

an actual demonstration of a molecular TRFR experiment since the Franck-

Condon (FC) factor for the zero-phonon transition is extremely small (Supple-

mentary Information Sec. 3.13 (p. 85)). Using the zero-phonon transition is still

preferred to avoid a strongly disturbing coupling between the coherent spin dy-

namics and phonons. The zero-phonon-line FC factors for platinum porphyrins

are much larger (Supplementary Information Sec. 3.13), which make them promis-
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ing candidates for spintronics applications in general[45], and for a molecular

TRFR experiment in particular (Supplementary Information Sec. 3.14 (p. 86)).

3.3.4 Persistence of spin-orientation effects for symme-

tries lower than C2v

For our proof-of-principle study we have focused on a system with C2v symmetry,

for which the complexity of the description can be kept at a moderate level.

This case is also relevant since many organic molecules have a flat structure

(around the location with the optically active electrons). For molecules that

only weakly deviate from this C2v symmetry, the effects are most likely only

weakly suppressed. That is, the effects demonstrated in this chapter only fade

out gradually when one gradually distorts the C2v symmetry.

The nonzero TRFR signal in our proposal comes mainly forward due to the

strong selection rules that link particular optical polarizations to transitions from

the singlet ground state into specific triplet sublevels. More specific, since one

of the three electric dipole moments for the singlet-to-triplet transitions is zero

(directly following from the C2v symmetry), the TRFR signal shows a single spin

oscillation, originating from the quantum superposition of two triplet sublevels.

In the case of a relatively large deviation from C2v, these selection rules become

usually less strict in two ways: excitations are allowed (1) to all three sublevels,

and (2) with all polarizations (x, y, z). However, the oscillator strengths of the

different polarizations are usually not equally strong for the different sublevels. As

such, an imbalance in the populations of the triplet sublevels can still be created,

such that the TRFR signal will not be fully suppressed. Additionally, the total

TRFR signal will then consist of a sum of three oscillations with frequencies

|ωij| = |Ei − Ej|/~, with i and j two different triplet sublevel indices.

3.4 Summary and Outlook

We have derived the fundamentals of a TRFR experiment applied to organic

molecules with strong spin-orbit coupling allowing for singlet-triplet excitations.

We have shown how the optical selection rules can be exploited to induce a quan-

tum superposition of triplet sublevels of the excited state of the molecular system,

using an ultrashort pump pulse. We have derived how the polarization of an op-

tical probe pulse is affected upon transmission, from which the requirements for

polarization rotation follow. As a proof-of-principle calculation, the metal-organic
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complex (2,6-bis(aminomethyl)phenyl)(hydrido)platinum has been considered to

study the possibility of a molecular TRFR experiment. Using the results of

ab initio calculations, we have calculated the time dependence of the polariza-

tion rotation angle and of the expectation value of the total electronic angular

momentum. Both oscillate in phase with a frequency corresponding to the sub-

level splitting, implying that the oscillation of polarization rotation is a suitable

measure for coherent spin dynamics. Nevertheless, metal-organic molecules like

platinum porphyrins seem better candidates for a molecular TRFR experiment

because of their larger Franck-Condon factors for the zero-phonon transition.

Using the TRFR technique to study triplet-exciton spin dynamics in organic

molecules offers an interesting tool for probing material properties and new func-

tionalities. An obvious example is a study of the lifetime of coherent spin dynam-

ics, and the TRFR technique also allows for studying (extremely small or zero)

energy splittings between triplet sublevels. Such studies are useful for judging

whether the molecules can be applied in spintronic or quantum information ap-

plications via light-induced spin orientation, or sensors based on spin dynamics.
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Supplementary Information (SI)

3.6 SI: Principles of the TRFR technique for an

idealized Π−system

We give here the theoretical basis of the Time-Resolved Faraday Rotation (TRFR)

technique (main text Fig. 3.1) as applied to the artificial system of Fig. 3.5 which

contains a single electron and where a weak magnetic field is applied in the z-

direction. For the sake of simplicity, we assume that the levels |3〉 and |4〉 lie

significantly lower than the levels |1〉 and |2〉. As such, this system closely resem-

bles quantum wells with a zinc-blende band structure having a conduction band

that is derived from s-like atomic states and a valence band from p-like states.

For such quantum wells, the concept of spin injection is discussed by Fox[10] (2nd

ed., chapter 6.4.5).

The TRFR technique is a pump-probe technique, where a resonant pump

pulse induces spin polarization and where the polarization rotation of a detuned

(usually linearly polarized) probe pulse is measured as a function of delay time, as

a measure for the spin dynamics of the system. We will assume that the photon

energy of both the pump and probe pulses equals Eph = E+−E2 = E−−E1. As

such, we can neglect |3〉 and |4〉, implying that the system behaves as a four-level

Π-system. The physics behind the TRFR technique as applied to a Π-system

(Fig. 3.5) offers a useful basis for this technique applied to V -systems like the

singlet-triplet system on which the rest of this work focuses. Note that if the

energies E3 and E4 would be equal to E1 and E2, the system would resemble

direct gap III-V semiconductors (Fox[10], 2nd ed., chapter 3.3.7). As such, the

concept of spin injection becomes slightly more complicated. Now, σ+ and σ−

also allow for the transitions |3〉x → |+〉x and |4〉x → |−〉x respectively, though

with a probability three times as small as the transitions depicted in Fig. 3.5.

For direct gap III-V semiconductors, one can therefore induce at most 50% spin

polarization.
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Figure 3.5: Selection rules for circularly polarized light for an isolated sys-

tem closely resembling a quantum well with the zinc-blende band struc-

ture. Using ultrashort pulses (with a Heisenberg uncertainty in Eph larger than

the Zeeman splittings), the optical selection rules apply to the quantization axis de-

fined by the x-direction in which the pulses propagate (whereas the magnetic field

is in the z-direction). For the sake of simplicity, we assume that the probe light is

close to resonance with the transition to the states |1〉 and |2〉 such that we can ne-

glect |3〉 and |4〉, implying that the system behaves as a four-level Π-system. Hence,

the only nonzero transition dipole moments are µσ
+

−1 = −e x〈−|σ+|1〉x ≡ −ed1 and

µσ
−

+2 = −e x〈+|σ−|2〉x ≡ −ed2. Spin polarization in the excited state is induced with

a circularly polarized pump pulse (σ− = ŷ−iẑ√
2

) which prepares the system in the state

|+〉x (see Eq. (3.1)), where we assume full absorption for a system having initially

only |2〉x populated. Directly after excitation, the wave function is given by |+〉x. A

magnetic field in the z-direction induces population transfer to |−〉x. Accordingly, the

wave function is given by Eq. (3.6) as a function of time. The polarization rotation

of a linearly polarized probe pulse (originating from a different refractive index for its

circular components) as a function of the delay time ∆t is a suitable measure for the

spin dynamics.

Let us consider (for the system in Fig. 3.5) a circularly polarized pump pulse

propagating in the x-direction (corresponding to the so-called Voigt geometry,

i.e. perpendicular to the magnetic field) with polarization σ− = ŷ−iẑ√
2

. Using

ultrashort laser pulses (with a Heisenberg uncertainty in Eph larger than the

Zeeman splittings), the optical selection rules apply to the quantization axis

defined by the propagation direction. For light propagating in the x-direction,

the relevant transition dipole moments for the system of Fig. 3.5 are µσ
+

−1 =

−e x〈−|σ+|1〉x ≡ −ed1 and µσ
−

+2 = −e x〈+|σ−|2〉x ≡ −ed2. Note that µσ
−
−1 ,

µσ
+

+2, µ−2 and µ+1 are zero according to the selection rules. Let us assume that

the electron initially populates |2〉x. Assuming full absorption, the pulse spin
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polarizes the system such that only the state |+〉x is populated, We use a subscript

x to refer to the optical {|+〉x, |−〉x}-basis, and z to refer to the {|+〉z, |−〉z}-basis.

Let us define for the wave function at time t = 0

|ψe(t = 0)〉 = |+〉x =
|+〉z + |−〉z√

2
(3.1)

The corresponding spin polarization amounts Π = 1, according to

Π =

∣∣∣∣N(+)−N(−)

N(+) +N(−)

∣∣∣∣ (3.2)

Due to the magnetic field, the spin undergoes a Larmor precession, since |+〉x is

not an eigenstate of the Hamiltonian. As a function of time, the wave function

is given by (neglecting decay processes)

|ψe(t)〉 =
e−iE+t/~|+〉z + e−iE−t/~|−〉z√

2
(3.3)

After multiplication with a global phase factor, and defining Ω = E+−E−
~ , this

yields

|ψe(t)〉 =
|+〉z + eiΩt|−〉z√

2
(3.4)

For a TRFR experiment, the polarization rotation ∆θ of a linearly polarized

pump pulse is recognized to be a measure for the amount of spin polarization.

Spin dynamics is studied experimentally by measuring ∆θ as a function of the

delay time ∆t between the pump and probe. Let us derive ∆θ(∆t) for a probe

pulse propagating in the x-direction with Ein = E0ŷ. The origin of a polarization

rotation lies in a different (real part of the) refractive index for the circularly

polarized components of the probe pulse. Written as a superposition of circular

components, we have ŷ = σ++σ−√
2

. Note that the probe pulse is detuned in order

to prevent population transfer. Since the selection rules for electronic dipole

transitions apply in the optical basis, let us perform the transformation |ψe(t)〉z →
|ψe(t)〉x using the transformation matrix

USz→Sx =

[
1√
2

1√
2

1√
2
− 1√

2

]
(3.5)

This yields

|ψe(t)〉 =
1 + eiΩt

2
|+〉x +

1− eiΩt

2
|−〉x (3.6)
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To determine the refractive indices, let us first consider the linear susceptibility

tensor χ̃(1), with components given by Boyd[54] (3rd Ed. Eq. (3.5.18))

χ̃
(1)
ij (ωp) =

N

ε0~
∑
nm

ρ(0)
mm

[
µimnµ

j
nm

(ωnm − ωp)− iγnm
+

µinmµ
j
mn

(ωnm + ωp) + iγmn

]
(3.7)

where we use a tilde to denote a complex number. Here, we consider an ensemble

with N the number density of isolated systems (each represented by Fig. 3.5),

ε0 = 8.854... · 10−12 F m−1 is the vacuum permittivity, ~ = 1.054... · 10−34 J s is

Planck’s constant, ρ
(0)
mm is the first term in a power series for the diagonal elements

of the density matrix, µien = −e〈ψe(t)|i|ψn〉 is the i-component of the transition

dipole moment (with i = x, y, z), ωmn = (Em−En)/~ is the transition frequency,

ωp is the probe laser frequency, and γ is the damping rate. Note that in Eq. (3.7)

ε0 should be omitted when using Gaussian units (as in older editions of Boyd)

instead of SI-units.

When the probe pulse arrives at the sample, the system (Fig. 3.5) populates

the excited state given by Eq. (3.6). This implies that ρ
(0)
ee = 1, whereas ρ

(0)
11 =

ρ
(0)
22 = 0. Since the levels |1〉x and |2〉x are empty, only the (detuned) downward

transitions |−〉x → |1〉x and |+〉x → |2〉x are relevant for the description of the

polarization rotation (since an upward transition with the probe is impossible

with zero population in the lower states). This implies that the second term in

Eq. (3.7) corresponds to resonance and is the so-called rotating term, whereas the

first term is the counter-rotating one and can be omitted. Hence, we can write

the components of the linear susceptibility tensor χ̃(1) to a good approximation

as

χ̃
(1)
ij (ωp) =

N

ε0~

2∑
n=1

µineµ
j
en

∆p,ne + iγne
(3.8)

where we define ∆p,ne = ωne + ωp. The eigenvectors of χ̃(1) are the so-called

principal axes. For a probe pulse propagating in the x-direction, we can neglect

the x-components of χ̃(1). The other two principal axes turn out to be σ+ = ŷ+iẑ√
2

and σ− = ŷ−iẑ√
2

, with corresponding transition dipole moments

µσ
+

e1 = −e x〈ψe(∆t)|σ+|1〉x = −e1− e−iΩ∆t

2
d1 =

(
µσ

+

1e

)∗
(3.9)

µσ
−

e2 = −e x〈ψe(∆t)|σ−|2〉x = −e1 + e−iΩ∆t

2
d2 =

(
µσ
−

2e

)∗
(3.10)

In the {σ+, σ−}-basis the only nonzero components of χ̃(1) are

χ̃
(1)

σ+σ+ =
N

ε0~
µσ

+

1e µ
σ+

e1

∆p,1e + iγ1e

=
N

ε0~
e2|d1|2

∆p,1e + iγ1e

1− cos(Ω∆t)

2
(3.11)
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χ̃
(1)

σ−σ− =
N

ε0~
µσ
−

2e µ
σ−
e2

∆p,2e + iγ2e

=
N

ε0~
e2|d2|2

∆p,2e + iγ2e

1 + cos(Ω∆t)

2
(3.12)

Assuming d1 = d2 ≡ d0, ∆p,1e = ∆p,2e ≡ ∆p and γ1e = γ2e ≡ γ allows us to write

χ̃(1) =
Ne2|d0|2

ε0~
∆p − iγ
∆2
p + γ2

[
1−cos(Ω∆t)

2
0

0 1+cos(Ω∆t)
2

]
(3.13)

Clearly, χ̃(1) depends on ∆t. However, since χ̃(1) is diagonal (independent of ∆t),

the principal axes do not depend on ∆t. It is important to realize that we have

considered a Π-system here. In Section 3.8 we will consider a V -system for which

the principal axes turn out to oscillate as a function of ∆t.

To determine how the circular components of a linear probe are affected upon

transmission, we have to consider their refractive indices. The refractive index is

given by[54]

ñj =

√
1 + χ̃

(1)
jj ≈ 1 +

1

2
χ̃

(1)
jj (3.14)

where the latter approximation is valid for
∣∣∣χ̃(1)

jj

∣∣∣ << 1. We assume that the probe

is sufficiently detuned from the |−〉 → |1〉 and |+〉 → |2〉 transitions, such that

the imaginary part of χ̃(1) can be neglected, and with that population transfer

as well (as explained in Section 3.7). From Eq. (3.13) and Eq. (3.14) it follows

that the difference between the real parts of the refractive indices amounts

∆n ≡ nσ− − nσ+ ≈ Ne2|d0|2

ε0~
∆p

∆2
p + γ2

cos(Ω∆t)

2
(3.15)

To describe how the probe pulse is affected by the sample, one should consider

the Jones matrix J{σ+, σ−}, which performs the following transformation

Eout{σ+, σ−} = J{σ+, σ−}Ein{σ+, σ−} = J{σ+, σ−}

[
E0/
√

2

E0/
√

2

]
(3.16)

The Jones matrix is given by

J{σ+, σ−} =

[
eiΛnσ+ 0

0 eiΛnσ−

]
(3.17)

which expresses the retardation of (light polarized along) principal axis ĵ by Λnj
where Λ ≡ 2πd/λ, with d the thickness of the sample and λ the wavelength of
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the light[16]. It is more convenient to multiply the Jones vector with the global

phase factor e−iΛnσ+ which gives for Eq. (3.16)

Eout{σ+, σ−} =
E0√

2

[
1

eiΛ∆n

]
(3.18)

To determine the polarization rotation we follow the circular complex-plane rep-

resentation of polarized light as defined in the book of Azzam and Bashara[16].

In line with Eq. (1.92) of [16] we define the ratio

κ = Eσ+/Eσ− (3.19)

where we use κ in contrast to [16] (which uses χ). From Eq. (1.95) of [16] we

adopt the expression for the azimuth θ

θ = −arg(κ)

2
(3.20)

For the incoming and outcoming probe, Eq. (3.19) yields κin = 1 and κout =

e−iΛ∆n, corresponding to θin = 0 and θout = Λ∆n
2

respectively, according to

Eq. (3.20). The polarization rotation (optical rotation angle) ∆θ is now given by

∆θ = θout − θin (3.21)

which gives ∆θ = πd∆n
λ

, with ∆n proportional to cos(Ω∆t) as given by Eq. (3.15).

Measuring ∆θ as a function of ∆t will show an oscillation with angular frequency

Ω = E+−E−
~ and amplitude

max(∆θ) =
πd

2λ

Ne2|d0|2

ε0~
∆p

∆2
p + γ2

(3.22)

In literature[13, 46] this oscillation of the polarization rotation is recognized to

be a suitable measure for the Larmor spin precession in the excited state, since

the angular frequency is the same for both oscillations. The reader is referred to

the book of Cohen-Tannoudji, Diu and Laloë[5] for a derivation of the oscillation

of a Larmor spin precession of a spin 1/2 in the presence of a uniform magnetic

field: for a spin initially populating the state |+〉x, the angular frequency of the

time-variation of the expectation value 〈Sx〉 equals the energy splitting between

the sublevels (in units of ~) induced by the field.

So far, we considered an ensemble of isolated Π-systems (with number density

N), where each system is represented by Fig. 3.5. Let us now shortly elaborate

on how to theoretically describe a TRFR experiment applied to a coherently
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coupled ensemble of Π-systems (with number density N). We will see that also

the upward transitions affect the probe polarization and contribute to the total

TRFR signal.

A pump pulse driving the upward transition |2〉x → |+〉x does not only induce

electron spin polarization in the state |+〉x. Simultaneously, the hole spin in the

state |2〉x (mJ = 3/2) is polarized. However, e.g. in III-V direct gap semicondu-

tors the corresponding hole spin dynamics in the valence band is usually neglected

(i.e. an equal distribution of the valence band states is assumed) because of the

fast thermalization (particularly because the valence bands with mJ = −1/2, 1/2

lie closeby), happening on a much shorter timescale than the conduction band’s

electron spin dynamics. Nevertheless, the probe polarization will be affected also

by the (detuned) upward transitions |1〉x → |−〉x and |2〉x → |+〉x, since the hole

spin in the conduction band is polarized as well. Here, the reader is referred to

Fig. 3.5, but one should now understand the bars as bands. Also, there is now

(partial) population in the valence band states (|1〉x up to |4〉x). Particularly

interesting is the case where thermalization of the valence band states does not

occur faster than the spin dynamics in the conduction band, as can e.g. be real-

ized for quantum wells with a zinc-blende band structure where the valence band

states |3〉x and |4〉x lie sufficiently low. Accordingly, Larmor spin precession hap-

pens also in the valence band, accompanied by population transfer between the

bands with mJ = −3/2 and 3/2. Correspondingly, one can write down a time-

dependent ground state (analogous to Eq. (3.6)) and follow the procedure as

above for calculation of the refractive indices and resulting polarization rotation

for a linearly polarized probe pulse.

One might wonder whether the contributions from the downward and upward

transitions do not cancel. To show that this is not the case, let us consider the

case where the probe pulse arrives at the sample directly after spin polarization

with the pump pulse, i.e. ∆t = 0. Let us consider the contributions separately

by considering first (Case I) an artificial system as in Fig. 3.5, with only |+〉x
populated, i.e. ρ

(0)
++ = 1, and secondly (Case II) an artificial system as in Fig. 3.5,

with only |1〉x populated, i.e. ρ
(0)
11 = 1.

Case I: ρ
(0)
++ = 1. This case simply follows from the theory above, where we

can substitute ∆t = 0 in Eq. (3.6) and replace the subscript e by + in Eq. (3.8).

It follows that the only nonzero component of χ̃(1) is

χ̃(1)
σ−σ−(ωp) =

N

ε0~
µ
σ−
2+µ

σ−
+2

(ω2+ + ωp) + iγ2+

=
N

ε0~
|µ|2

∆p + iγ
=

N

ε0~
|µ|2 ∆− iγ

∆2
p + γ2

(3.23)

where we have defined (in line with the theory above) ∆p ≡ ω2+ + ωp where
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ω2+ = (E2 − E+)/~ < 0. Also, we assume γ2+ = γ−1 ≡ γ and µ
σ−
2+ = µ

σ+
1− ≡ µ.

Case II: ρ
(0)
11 = 1. For this case the wave function is given by |1〉x. For the linear

susceptibility this implies that the first term in Eq. (3.6) corresponds to resonance

and is the so-called rotating term, whereas the second term is the counter-rotating

one and can be omitted. It follows that the only nonzero component of χ̃(1) is

χ̃(1)
σ+σ+

(ωp) =
N

ε0~
µ
σ+
1−µ

σ+
−1

(ω−1 − ωp)− iγ−1

=
N

ε0~
|µ|2

−∆p − iγ
=

N

ε0~
|µ|2−∆ + iγ

∆2
p + γ2

(3.24)

where ω−1 = (E− − E1)/~ > 0. Also, we have ω−1 = −ω2+, which implies

ω−1 − ωp = −∆p.

We see that χ̃
(1)
σ+σ+(ωp) in Eq. (3.24) equals −χ̃(1)

σ−σ−(ωp) in Eq. (3.23). For

a coherent ensemble (e.g. a quantum well with a zinc-blende band structure) of

the systems in Fig. 3.5 one might have that both the downward and upward

transitions contribute to the total TRFR signal, thereby resembling Case I and

Case II simultaneously. Considering the extreme (i.e. ρ
(0)
mm = 1) cases of Eq. (3.23)

and Eq. (3.24), following Eq. (3.14) and Eq. (3.15) shows that at ∆t = 0 the

total TRFR amplitude can become twice the value of Eq. (3.22). In practice, one

will not realize ρ
(0)
mm = 0, 1 (i.e. completely full or empty bands) for a coherent

ensemble. The total TRFR signal will therefore be mitigated, but it is important

to realize that both the downward and upward transitions can contribute to a

polarization rotation of the probe pulse.

3.7 SI: Fundamentals of a molecular TRFR ex-

periment

Let us study here the theoretical application of the Time-Resolved Faraday Ro-

tation (TRFR) technique (main text Fig. 3.1) to a model system (main text

Fig. 3.2) in the absence of a magnetic field. The system consists of the states

|ψg〉, |ψ1〉, |ψ2〉 and |ψ3〉, with energies Eg, E1, E2 and E3, respectively, with

Eg = 0. The only nonzero components of the transition dipole moments related

to |ψg〉 are µy1g = −e〈ψ1|y|ψg〉 = −ed1 and µz3g = −e〈ψ3|z|ψg〉 = −ed3, with e the

elementary charge. Considering absorption, the system behaves therefore as a

three-level V -system where |ψ2〉 can be neglected, but it is nevertheless displayed

(main text Fig. 3.2) since in this work the excited state levels are sublevels of

a triplet. In this regard it is interesting to mention the V -system of a GaAs

quantum well, which has been studied theoretically[60] and for which electron

spin dynamics experiments have been performed[61, 62]. In these experiments,
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a magnetic field ensures Larmor spin precession. Although we do not consider a

magnetic field, most of the theory of Sections 3.7 and 3.8 can be directly applied

to this V -system.

Although ultrashort pulses with a substantial energy uncertainty will be con-

sidered, monochromatic waves are assumed, for which (by definition) the time

variation of the electric (field) vector E is exactly sinusoidal. Usually within the

Jones formalism[63], the electric vector is denoted as E = Exx̂+Eyŷ, with x̂ and

ŷ the orthonormal Jones unit vectors. In this work however, the propagation of

light will be taken along the x-direction, such that the electric vector has nonzero

components only in the y and z-direction.

At t = 0, an ultrashort pump pulse, for which the electric vector is given by

Epump = αẑ + βŷ (with α and β in general complex), excites the system of main

text Fig. 3.2a to |ψe〉, being a superposition of the states |ψ1〉 and |ψ3〉. The

following assumptions are made: (i) Before the pump arrives, only |ψg〉 is pop-

ulated, (ii) the photon energy is Eph = E3+E1

2
, with (iii) a quantum uncertainty

σEph > |E3−E1|, where a block function is assumed for the intensity distribution

of the pulse instead of a Gaussian, and (iv) only |ψe〉 is populated after excitation

with the pump pulse (i.e. full absorption).

Consider a sample, consisting of a homogeneous ensemble of these model

systems with number density N . To ensure that the systems are well isolated

from each other, N should be relatively small, which can be realized by putting

the molecules in a molecular host crystal (i.e. a matrix) or liquid host (i.e. in

solution), which should be transparent to the pump and probe pulse, or taking

an ensemble of molecules in gas phase. In our derivation (Sec. 3.8 and 3.9)

and calculations (Sec. 3.10) we will first assume that all molecules are oriented

similarly, which can be realized via a (solid) host crystal. Later (Sec. 3.15),

we will show that a net TRFR signal can even be obtained for an ensemble of

randomly oriented molecules. Considering the host crystal, we assume that (iv) is

satisfied for each system of the ensemble. In practice, it is sufficient when the vast

majority of the systems satisfies (iv). Still, this will usually require the tuning

of a very intense pump pulse, given the typical small transition dipole moment

between ground and excited state. It is assumed that each system is evolving

according to Eq. (3.27). After a delay time ∆t, the sample is illuminated with

an ultrashort probe pulse (also obeying assumptions (ii) and (iii)) for which the

electric vector is given by Ein = δẑ+εŷ, to which we refer as the incoming probe.

Given the small transition dipole moment, the probability for a created exciton

to recombine during the delay time between pump and probe is small as well.
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Hence, it is reasonable to assume that the system has still no population in |ψg〉
once the probe pulse arrives at the sample (main text Fig. 3.2b). If one would

now take a resonant probe pulse, all population would be transferred to |ψg〉 via

stimulated emission, which is unfavourable in view of the lifetime of the spin

dynamics. In this work therefore, we will assume that we are allowed to consider

only the dispersion (related to stimulated emission). This implies neglecting∣∣∣Im{χ̃(1)
ij

}∣∣∣ with respect to
∣∣∣Re
{
χ̃

(1)
ij

}∣∣∣, with χ̃(1) the linear susceptibility tensor

(see Eq. (3.29), as adapted from Boyd[54]). This can be realized by taking an off-

resonant probe pulse (as illustrated in Fig. 3.2b) having a detuning ∆p = ωge+ωp
(with ωge = (Eg −Ee)/~ < 0 the transition frequency and ωp > 0 the probe laser

frequency). Since χ̃
(1)
ij is proportional to ∆p−iγ

∆2
p+γ2

, we can neglect
∣∣∣Im{χ̃(1)

ij

}∣∣∣ if we

ensure |∆p| >> γ, which for the remaining real part implies ∆p

∆2
p+γ2

≈ ∆−1
p . It is

also instructive to plot the real and imaginary part of χ̃
(1)
ij as a function of ωp

(Boyd[54], 3rd ed., Fig. 3.5.1), illustrating that the tails of Im
{
χ̃

(1)
ij

}
fall off faster

than the ones of Re
{
χ̃

(1)
ij

}
. Note that we have defined the excited state |ψe〉 being

a superposition of |ψ1〉 and |ψ3〉. However, it is somewhat misleading to consider

for the calculation of ∆p an energy Ee, since |ψe〉 is not an eigenstate of the

Hamiltonian (naturally, one would take the expectation value Ee = 〈ψe|H|ψe〉).
Strictly speaking, a probe laser has a different detuning with respect to the levels

|ψ1〉 and |ψ3〉. However, we will use one and the same value for ∆p for both

|ψ1〉 and |ψ3〉 (within the calculation of χ̃(1) for a superposition of |ψ1〉 and |ψ3〉),
which is a reasonable assumption if we take |∆p| >> |E3 − E1|/~.

To explain the requirements for the polarization rotation ∆θ to oscillate as

a function of the delay time ∆t, both the general (Section 3.8) and an idealized

(Section 3.9) scenario are considered.

3.8 SI: Polarization rotation for a TRFR exper-

iment applied to a V -system

Here we derive the polarization of an ultrashort detuned probe pulse (Ein =

δẑ + εŷ), as a function of the delay time ∆t after the arrival of an ultrashort

pump pulse (Epump = αẑ + βŷ), for a model system as in main text Fig. 3.2

(nonzero µy1g and µz3g).

For the general case of full absorption of a pump pulse having Epump = ξx̂ +

βŷ+αẑ, for a system initially populated in |ψi〉, the state directly after a coherent
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excitation becomes

|ψ(t = 0)〉 = C
∑
n

〈ψn|ξx+ βy + αz|ψi〉|ψn〉 (3.25)

with n the amount of involved excited state levels, and C the normalization

factor. It is assumed that the pump pulse has an equal intensity for all energies

En − Ei (block pulse).

In our case, the superposition of states directly after excitation becomes

|ψe(t = 0)〉 =
βd1|ψ1〉+ αd3|ψ3〉√
|βd1|2 + |αd3|2

(3.26)

According to the time-dependent Schrödinger equation, this wave function evolves

as

|ψe(t)〉 =
e−iE1t/~βd1|ψ1〉+ e−iE3t/~αd3|ψ3〉√

|βd1|2 + |αd3|2
(3.27)

For convenience, Eq. (3.27) is multiplied with the global phase factor eiE1t/~ to

give

|ψe(t)〉 =
βd1|ψ1〉+ eiΩtαd3|ψ3〉√
|βd1|2 + |αd3|2

(3.28)

with Ω ≡ ω13 = (E1 − E3)/~.

The polarization of a probe pulse upon transmission, i.e. Eout, might be af-

fected, which follows from considering the linear susceptibility tensor χ̃(1). As-

suming that for each system only |ψe(t)〉 is populated (Fig. 3.2b), following

Boyd[54] (3rd ed., Eq. (3.5.20)) gives

χ̃
(1)
ij (ωp) =

N

ε0~
∑
n

[
µienµ

j
ne

∆′p,ne − iγne
+

µineµ
j
en

∆p,ne + iγne

]
(3.29)

where we use a tilde to denote a complex number. Here, N is the system’s number

density, ε0 = 8.854... ·10−12 F m−1 is the vacuum permittivity, ~ = 1.054... ·10−34

J s is Planck’s constant, µien = −e〈ψe(t)|i|ψn〉 with i = x, y, z, ∆′p,ne = ωne − ωp
and ∆p,ne = ωne + ωp with ωp the probe laser frequency, γne is the damping rate.

Note that in Eq. (3.29) ε0 should be omitted when using Gaussian units (as in

older editions of Boyd[54]) instead of SI-units.

Assuming that the laser can only address the ground state (via stimulated

emission), we can drop the summation sign and substitute g for n, which yields

χ̃
(1)
ij (ωp) =

N

ε0~

[
µiegµ

j
ge

∆′p − iγ
+

µigeµ
j
eg

∆p + iγ

]
(3.30)
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where we have dropped the subscript n for ∆p, ∆′p and γ. Since the transi-

tion frequency ωge = (Eg − Ee)/~ < 0 (and ωp > 0), only the second term

in Eq. (3.30) can become resonant, and is therefore the rotating term (and the

first the counter-rotating term). Within this rotating wave approximation the

first term is therefore neglected when ωp is nearly resonant with the transition

frequency ωge. To a good approximation the linear susceptibility now becomes

(after rewriting)

χ̃
(1)
ij (ωp) =

N

ε0~
µigeµ

j
eg

∆p − iγ
∆2
p + γ2

(3.31)

where the detuning ∆p = ωge + ωp is positive for ωp > |ωge| and negative when

ωp < |ωge|.
The polarization of the probe pulse upon transmission Eout is affected when

its components experience a different real part of the refractive index[16]. The

refractive index does not have a tensor representation, due to the square root

relationship with the dielectric constant[55]. Hence, speaking about refractive

index only makes sense when a transformation is performed to the basis of the

principal axes, which are the eigenvectors of χ̃(1). To determine these, we first

write down the (only nonzero) transition dipole moments

µzeg =
(
µzge
)∗

= −e〈ψe(∆t)|z|ψg〉

= −e

(
β∗d∗1〈ψ1|+ e−iΩ∆tα∗d∗3〈ψ3|√

|βd1|2 + |αd3|2

)
z|ψg〉

= −e e−iΩ∆tα∗|d3|2√
|βd1|2 + |αd3|2

(3.32)

µyeg =
(
µyge
)∗

= −e〈ψe(∆t)|y|ψg〉

= −e β∗|d1|2√
|βd1|2 + |αd3|2

(3.33)

Neglecting constant prefactors, diagonalization of χ̃(1) involves diagonalization of

the matrix[
µzgeµ

z
eg µzgeµ

y
eg

µygeµ
z
eg µygeµ

y
eg

]
=

e2

|βd1|2 + |αd3|2

[
|α|2|d3|4 eiΩ∆tβ∗α|d1|2|d3|2

e−iΩ∆tβα∗|d1|2|d3|2 |β|2|d1|4

]
(3.34)

One obtains the eigenvalues λ1 = 0 and λ2 = |β|2|d1|4 + |α|2|d3|4 after diagonal-
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ization of the latter matrix, i.e. solving∣∣∣∣∣ |α|2|d3|4 − λ eiΩ∆tβ∗α|d1|2|d3|2

e−iΩ∆tβα∗|d1|2|d3|2 |β|2|d1|4 − λ

∣∣∣∣∣ = 0 (3.35)

The corresponding (normalized) eigenvectors ẑ′ and ŷ′ are the principal axes that

we are looking for. For λ1 = 0 we have[
|α|2|d3|4 eiΩ∆tβ∗α|d1|2|d3|2

e−iΩ∆tβα∗|d1|2|d3|2 |β|2|d1|4

][
z′1
z′2

]
= 0 (3.36)

which implies

z′1
z′2

= −eiΩ∆tβ
∗|d1|2

α∗|d3|2
(3.37)

Normalization yields for the first principal axis

ẑ′ =
−eiΩ∆tβ∗|d1|2ẑ + α∗|d3|2ŷ√
|β|2|d1|4 + |α|2|d3|4

(3.38)

which is clearly time-dependent. For λ2 = |β|2|d1|4 + |α|2|d3|4 we have[
−|β|2|d1|4 eiΩ∆tβ∗α|d1|2|d3|2

e−iΩ∆tβα∗|d1|2|d3|2 −|α|2|d3|4

][
y′1
y′2

]
= 0 (3.39)

which implies

y′1
y′2

= eiΩ∆tα|d3|2

β|d1|2
(3.40)

Normalization yields for the second time-dependent principal axis

ŷ′ =
eiΩ∆tα|d3|2ẑ + β|d1|2ŷ√
|β|2|d1|4 + |α|2|d3|4

(3.41)

Note that the third principal axis x̂ remains unaffected (if the x-component of

Epump equals zero) and will therefore not be taken into account anymore. De-

termining the polarization of the probe pulse upon transmission is based on de-

termining the refractive indices of these time-dependent principal axes. In the

inertial frame of these principal axes, i.e. the {ẑ′, ŷ′}-basis, the only nonzero

element of χ̃(1) is the eigenvalue

χ̃
(1)
y′y′ =

N

ε0~
µy
′

geµ
y′

eg

∆p − iγ
∆2
p + γ2

(3.42)
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where

µy
′

geµ
y′

eg = e2 |β|2|d1|4 + |α|2|d3|4

|βd1|2 + |αd3|2
(3.43)

In general, the complex refractive index of principal axis ĵ is given by

ñj =

√
1 + χ̃

(1)
jj ≈ 1 +

1

2
χ̃

(1)
jj (3.44)

where the latter approximation is valid for
∣∣∣χ̃(1)

jj

∣∣∣ << 1. In our case we have

ñy′ ≈ 1 + 1
2
χ̃

(1)
y′y′ and ñz′ = 1. Since the refractive index differs in one direction,

the sample behaves as a (singly) birefringent material. To describe how the probe

pulse is affected by the sample, one should consider the Jones matrix J{ẑ, ŷ},
which performs the following transformation

Eout{ẑ, ŷ} = J{ẑ, ŷ}Ein{ẑ, ŷ} = J{ẑ, ŷ}

[
δ

ε

]
(3.45)

To build J{ẑ, ŷ} we first build J{ẑ′, ŷ′}, which describes how a probe pulse in

the {ẑ′, ŷ′}-basis is affected, i.e.

Eout{ẑ′, ŷ′} = J{ẑ′, ŷ′}Ein{ẑ′, ŷ′} (3.46)

The Jones matrix is given by

J{ẑ′, ŷ′} =

[
eiΛnz′ 0

0 eiΛny′

]
(3.47)

which expresses the retardation of (light polarized along) principal axis ĵ by Λnj
where Λ ≡ 2πd/λ, with d the thickness of the sample and λ the wavelength of the

light[16]. Note that we consider here only the real part of the complex refractive

index, which is valid for a sufficiently detuned probe pulse. In Section 3.7 we

therefore required |∆p| >> γ, implying ∆p−iγ
∆2
p+γ2

≈ ∆−1
p . It is convenient to define

∆n ≡ ny′ − nz′ ≈
N

2ε0~∆p

e2 |β|2|d1|4 + |α|2|d3|4

|βd1|2 + |αd3|2
(3.48)

Multiplication of the Jones matrix with the global phase factor e−iΛnz′ gives

J{ẑ′, ŷ′} =

[
1 0

0 eiΛ∆n

]
(3.49)
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The eigenvectors of the Jones matrix are called eigenpolarizations, which are

equivalent to the principal axes. As it should, the Jones matrix in Eq. (3.47)

satisfies the requirement that the eigenpolarizations correspond to the two po-

larization states that pass through the optical system unaffected[16]. However,

since the polarizations have different retardations, the resulting polarization of a

passing light pulse consisting of a superposition of the principal axes might be

affected. In this work, polarization rotation is considered in particular, which

implies for linearly polarized light a rotation of the plane in which the electric

field component oscillates.

The Jones matrix J{ẑ, ŷ} is obtained using the transformation matrix T which

has as its columns the unit vectors ẑ′{ẑ, ŷ} (Eq. 3.38) and ŷ′{ẑ, ŷ} (Eq. 3.41),

respectively. Let us build the matrices T and T † that perform a transformation

from the {ẑ′, ŷ′}-basis to the {ẑ, ŷ}-basis and back, respectively.

T =
1√

|β|2|d1|4 + |α|2|d3|4

[
−eiΩ∆tβ∗|d1|2 eiΩ∆tα|d3|2

α∗|d3|2 β|d1|2

]
(3.50)

where the conjugate transpose is given by

T † =
1√

|β|2|d1|4 + |α|2|d3|4

[
−e−iΩ∆tβ|d1|2 α|d3|2

e−iΩ∆tα∗|d3|2 β∗|d1|2

]
(3.51)

of which the columns consist of the unit vectors ẑ{ẑ′, ŷ′} and ŷ{ẑ′, ŷ′}, respec-

tively, i.e.

ẑ = e−iΩ∆t−β|d1|2ẑ′ + α∗|d3|2ŷ′√
|β|2|d1|4 + |α|2|d3|4

(3.52)

ŷ =
α|d3|2ẑ′ + β∗|d1|2ŷ′√
|β|2|d1|4 + |α|2|d3|4

(3.53)

Altogether the Jones matrix of Eq. (3.45) becomes

J{ẑ, ŷ} = TJ{ẑ′, ŷ′}T †

= j0

[
−eiΩ∆tβ∗|d1|2 eiΩ∆tα|d3|2

α∗|d3|2 β|d1|2

][
1 0

0 eiΛ∆n

][
−e−iΩ∆tβ|d1|2 α|d3|2

e−iΩ∆tα∗|d3|2 β∗|d1|2

]

= j0

[
jzz jzy
jyz jyy

]
(3.54)
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where

j0 ≡
1

|β|2|d1|4 + |α|2|d3|4

jzz ≡ eiΛ∆n|α|2|d3|4 + |β|2|d1|4

jzy ≡ eiΩ∆t
(
eiΛ∆n − 1

)
β∗α|d1|2|d3|2

jyz ≡ e−iΩ∆t
(
eiΛ∆n − 1

)
βα∗|d1|2|d3|2

jyy ≡ eiΛ∆n|β|2|d1|4 + |α|2|d3|4

(3.55)

Substitution into Eq. (3.45) yields the following components

Eout,z = j0

(
eiΩ∆t

(
eiΛ∆n − 1

)
P1 + eiΛ∆nP2 + P3

)
Eout,y = j0

(
e−iΩ∆t

(
eiΛ∆n − 1

)
Q1 + eiΛ∆nQ2 +Q3

) (3.56)

with

P1 = β∗αε|d1|2|d3|2

Q1 = βα∗δ|d1|2|d3|2

P2 = |α|2δ|d3|4

Q2 = |β|2ε|d1|4

P3 = |β|2δ|d1|4

Q3 = |α|2ε|d3|4

To determine the polarization rotation we follow the Cartesian complex-plane

representation of polarized light, according to the book of Azzam and Bashara[16].

Using Eq. (1.77) of [16], we define the ratio

κ = Ey/Ez (3.57)

where we use κ in contrast to [16] (which uses χ). In line with Eq. (1.86) of [16],

we adopt the expression for the azimuth θ

tan(2θ) =
2 Re{κ}
1− |κ|2

(3.58)

which implies

θ =
1

2
tan−1

(
κ∗ + κ

1− κ∗κ

)
(3.59)

Note that the tan−1 function returns a value in the range (−π/2, π/2). In practice

therefore, to return a value for θ in the range (−π, π], we actually use the atan2

function (as implemented in most programming languages), i.e.

θ =
1

2
atan 2 (κ∗ + κ, 1− κ∗κ) (3.60)
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The polarization rotation (optical rotation angle) ∆θ is now given by

∆θ = θout − θin (3.61)

From Eq. (1.87) of [16] we obtain for the ellipticity angle ε

sin(2ε) =
2 Im{κ}
1 + |κ|2

(3.62)

which implies

ε =
1

2
sin−1

(
i
κ∗ − κ
1 + κ∗κ

)
(3.63)

3.9 SI: Idealized TRFR scenario for a V -system

Let us consider the simplest model example (with reference to main text Fig. 3.2)

that satisfies the conditions for the TRFR experiment, i.e. transition dipole mo-

ments d1 = d3 ≡ d0 and real-valued α = β = δ = ε ≡ E0/
√

2, i.e. Epump = Ein =

E0
ẑ+ŷ√

2
(main text Fig. 3.1). From Eq. (3.28) it follows that

|ψe(t)〉 =
|ψ1〉+ eiΩt|ψ3〉√

2
(3.64)

with Ω ≡ ω13 = (E1 − E3)/~. Assuming that ωp is nearly resonant with the

transition from |ψe(t)〉 to |ψg〉, i.e. with the transition frequency ωge = (Eg −
Ee)/~ < 0, the only nonzero eigenvalue of χ̃(1) is to a good approximation given

by[54]

χ̃
(1)
y′y′(ωp) ≈

N

ε0~
e2|d0|2

∆p − iγ
∆2
p + γ2

(3.65)

where the tilde denotes a complex number, ∆p = ωge + ωp the detuning and γ

the damping rate. The eigenvectors of χ̃(1) are the principal axes

ẑ′ =
eiΩ∆tẑ + ŷ√

2
(3.66)

ŷ′ =
−eiΩ∆tẑ + ŷ√

2
(3.67)

as obtained from Eq. (3.38) and (3.41), respectively. The polarization of the

probe pulse upon transmission (to which we refer as the outcoming probe) is

given by Eq. (3.56), which for this idealized scenario becomes

Eout{ẑ, ŷ} =
E0

2
√

2

[
eiΩ∆t

(
eiΛ∆n − 1

)
+ eiΛ∆n + 1

e−iΩ∆t
(
eiΛ∆n − 1

)
+ eiΛ∆n + 1

]
(3.68)
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where Λ ≡ 2πd/λ, d the thickness of the sample, λ the wavelength of the light,

and ∆n ≈ Re
{
χ̃

(1)
y′y′

}
/2 as follows from Eq. (3.48).

At one and three quarters of the period of oscillation P = 2π/Ω (or at any

multiple of P later), the principal axes are circular. Let us consider the case

∆t = 1
4
P with principal axes

ẑ′(∆t =
1

4
P ) =

iẑ + ŷ√
2

(3.69)

ŷ′(∆t =
1

4
P ) =

−iẑ + ŷ√
2

(3.70)

Since these circular principal axes experience different refractive indices, the po-

larization of a linear probe pulse will be (maximally) rotated upon interaction

with the sample when the probe pulse arrives at delay time ∆t = 1
4
P . To de-

rive the expression for the optical rotation angle, ∆t = 1
4
P is substituted into

Eq. (3.68), which yields the following real components after multiplication with

the global phase factor e−iΛ∆n/2

Ez,out(∆t =
1

4
P ) = E0 cos

(
Λ∆n

2
+
π

4

)
(3.71)

Ey,out(∆t =
1

4
P ) = E0 sin

(
Λ∆n

2
+
π

4

)
(3.72)

For the case of a Jones vector with real components, the azimuth θ is directly

obtained from

θ = tan−1

(
Ey
Ez

)
(3.73)

With the electric vector of the incoming probe given by Ein = E0
ẑ+ŷ√

2
, and the

outcoming probe pulse by Eq. (3.71) and (3.72), the optical rotation angle at

∆t = 1
4
P is given by

∆θmax = tan−1

(
sin
(

Λ∆n
2

+ π
4

)
cos
(

Λ∆n
2

+ π
4

))− π

4

=
Λ∆n

2
=
πd∆n

λ

(3.74)

This is the well-known expression for the optical rotation angle of linearly polar-

ized light in case of circular principal axes. Analogously, at ∆t = 3
4
P , one finds

∆θ = −∆θmax.
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3.10 SI: TRFR model results and discussion

As long as the polarization of the probe remains to a good approximation linear

(i.e. small ellipticity angle), ∆θ behaves as a sinusoid with angular frequency Ω

and amplitude ∆θmax as a function of the delay time ∆t. See main text Fig. 3.4

for an example of such oscillation of ∆θ, using the following input parameters:

Polarization parameters α = β = δ = ε = 1/
√

2, i.e. Êpump = Êin = ẑ+ŷ√
2

;

Transition dipole moments d1 = 0.0003− i0.0112 and d3 = 0.0063 (atomic units);

Triplet sublevel splitting E3 − E1 = 20 meV (30 THz angular frequency); Probe

wavelength λ = 349 nm (ωp
2π

= 846 THz) based on Ee − Eg = 3.55 eV; Detuning

∆p = −60 meV = 14.5 THz. Note that this value is assumed to satisfy the

requirements |∆p| >> γ and |∆p| >> |E3−E1|/~ (Section 3.7). Also, we neglect

the effect of detuning on λ (the probe’s wavelength) since it amounts only 1.7% of

the probe’s frequency; Sample thickness d = 100 nm; Number density N = 1024

m-3, corresponding to 1 molecule per 1000 nm3. This is considered to be small

enough to prevent the molecules from affecting each other, given that the length

of the molecule is 7.5 Å along the C2-axis (main text Fig. 3.1), according to the

scalar relativistic calculation of the ground state geometry (Table 3.1 (right)).

This number density corresponds to on average 1 molecule per 10 nm, i.e. 10

molecules along the thickness d.

Substituting these parameters into Eq. (3.42) gives Re
{
χ̃

(1)
y′y′

}
≈ −8.92 · 10−8

for which the absolute value is much smaller than 1, which allows to use Eq. (3.44)

for the approximation of ny′ . Using Eq. (3.48), we obtain ∆n = Re
{
χ̃

(1)
y′y′

}
/2 ≈

−4.46 · 10−8, which is substituted into Eq. (3.56). Following Eq. (3.57)−(3.61),

we calculate ∆θ(∆t), as is depicted in main text Fig. 3.4. The ellipticity angle of

the outcoming probe is calculated with Eq. (3.63). The ellipticity angle change

is given by ∆ε = εout − εin. Since the incoming probe is linear, we have εin = 0.

The ellipticity angle change turns out to be constant as a function of ∆t, i.e.

∆ε ≈ −3.28 ·10−8 rad. Moreover, this change turns out to be small enough, to be

allowed to assume that the outcoming probe pulse remains linear. This follows

from calculating

θout ≈ tan−1

(
|Eout,y|
|Eout,z|

)
(3.75)

which to a good approximation equals the exact calculation of Eq. (3.59). Eq. (3.75)

also illustrates for the case of a small ellipticity angle change, that the azimuth

can be determined experimentally by simply measuring the intensity of the out-
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coming probe in the directions ŷ and ẑ, i.e.

θout ≈ tan−1

(√
Iy
Iz

)
(3.76)

Let us consider the ideal scenario (d1 = d3 and real-valued α = β = δ = ε), to

evaluate some pathways to come up with an ideal molecular sample for a TRFR

experiment. The signal is affected by different parameters, of which we consider

the ones that can be adjusted relatively easily:

(i) ∆θ is proportional to ∆n (Eq. (3.74)), which is proportional to the linear

susceptibility (Eq. (3.65)) and depends therefore quadratically on the transition

dipole moment (and thus linearly on the oscillator strength). Taking a molecule

with larger transition dipole moments (which requires larger SOC) will thus sig-

nificantly increase the amplitude of oscillation. One should keep in mind here that

the probability for exciton recombination also increases with increasing transition

dipole moments, which implies a decreasing lifetime. Hence, the most suitable

molecule for a TRFR experiment satisfies a trade-off between a) large enough

SOC to be able to measure ∆θ, and b) not too large SOC in order to have large

lifetime.

(ii) ∆θ depends linearly on the number density N , since ∆n (Eq. (3.74)) is

proportional to N .

(iii) ∆θ depends linearly on the thickness d (Eq. (3.74)).

(iv) ∆θ depends strongly on the detuning ∆p, since ∆θ is proportional to
∆p

∆2
p+γ2

, which equals approximately ∆−1
p for |∆p| >> γ (which is required to pre-

vent population transfer). Since we take ∆p = 3(E3 − E1) (assumed to satisfy

equal detuning for both sublevels), we can increase the signal by decreasing the

energy splitting (as long as |∆p| >> γ is satisfied). Since we consider isolated

molecules that individually contribute to the total TRFR signal, we should con-

sider single molecules for typical values of the damping rate γ. In general, the

width of an absorption line is given by two times γ. Typical absorption line

widths of single molecules are in the order of (tens of) MHz[64]. As a rule of

thumb, the order of magnitude of the energy splitting for a molecular TRFR ex-

periment should thus be at least 100 MHz. Regarding ∆p it is also useful to note

that when working with an ensemble of systems it is wise to take ∆p = ωge + ωp
negative, i.e. ωp < |ωge|. The reason for this is that for positive ∆p one might

induce unwanted excitations with the probe for systems still having the ground

state populated to an excited state that lies slightly above the lowest triplet state.

Consequently, this reduces the intensity of the probe laser and the amplitude of
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the TRFR signal. However, if it is ensured that the vast majority of systems has

been excited already (with an intense pump pulse), this will only have a small

effect. When this effect is neglected, taking a detuning of −∆p shifts the TRFR

signal half a period (main text Fig. 3.4) with respect to ∆p. Here it is assumed

again that we can neglect the effect of detuning on λ (the wavelength of the probe

pulse) when substituting λ into Eq. (3.61) (through Eq. (3.56)) for the calculation

of ∆θ.

Let us vary the input parameters to calculate how the signal (∆θ) depends

on them. Consider the same input parameters as in main text Fig. 3.4. For

PtN2C8H12 the calculated splitting between |ψ1〉 and |ψ3〉 is 4.8 THz. If we

consider a splitting of 4.8 MHz instead, and γ = 1 MHz, we have Re
{
χ̃

(1)
y′y′

}
≈

−0.089. Since
∣∣∣Re
{
χ̃

(1)
y′y′

}∣∣∣ << 1 is not valid now, we should take the exact

expression for ∆n, using the exact part of Eq. (3.44). The oscillation of ∆θ(∆t)

is still approximately sinusoidal, but the approximation of Eq. (3.75) deviates

about 2.5% from using the exact Eq. (3.59). This deviation illustrates that the

outcoming probe cannot be assumed to be linearly polarized anymore. This is

directly reflected by the ellipticity angle change ∆ε, which as a function of ∆t

shows a sine with equilibrium value 0.034 rad and amplitude 0.4 mrad. However,

4.8 MHz does not satisfy our rule of thumb to take at least a splitting of 100

MHz, implying that |∆p| >> γ is usually not satisfied. Hence, one should expect

to have a small signal lifetime due to population transfer to the ground state.

Therefore, it will be very challenging to experimentally observe an oscillation of

∆θ for a sample having such parameters.

The amplitudes of oscillation of both ∆θ and ∆ε become much larger when

we besides increase the transition dipole moments. Taking it 102 times as large

(molecules like e.g. Ir(ppy)3[52] have such large transition dipole moments), to-

gether with a splitting 103 times as small with respect to the original parameters

(main text Fig. 3.4), shows a non-sinusoidal behavior for ∆θ and a nonzero equi-

librium value. Still, ∆ε oscillates sinusoidally. This illustrates that in the extreme

case when we do not satisfy
∣∣Re
{
χ̃(1)
}∣∣ << 1, that the oscillation of ∆θ is not

suitable as a measure for the oscillation of 〈J〉 (t), but one might consider to

measure ∆ε(∆t) instead.

We have shown that the TRFR experiment can be applied to molecules with-

out using a magnetic field. This requires that there is a so-called zero-field split-

ting (ZFS), which is usually defined in terms of the so-called D- and E-parameter.

In some cases one might want to perform the TRFR experiment at nonzero mag-

netic field, e.g. to study magnetic field dependence. Particularly interesting for
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this seem molecules with two sublevels of the lowest triplet excited state being

degenerate (E = 0), combined with large transition dipole moments between the

ground state and these sublevels. There are numerous examples of molecules

with E = 0, while D is nonzero, i.e. the splitting between these sublevels and the

third (e.g. Ir(ppy)3[52]). The D-parameter directly depends on the amount of

SOC. Depending on the symmetry of the molecule, E can be zero, which simul-

taneously allows to obtain large transition dipole moments by choosing a system

with large SOC. One might now use a small magnetic field to slightly separate

the degenerate sublevels. One should still ensure that the splitting is significantly

larger than the damping rate γ.

When choosing a molecule for performing the TRFR experiment, one should

also consider the following. Depending on the polarization and frequency of the

light, one might excite to a superposition of more than two triplet sublevels.

Consequently, the oscillation consists of a sum of sines with frequencies |ωij| =

|Ei − Ej|/~ for levels for which 〈ψi|J|ψj〉 is nonzero.

3.11 SI: Computational details and methods

In this work, we study as a function of time the oscillation of the polarization

rotation ∆θ and of the expectation value of the total angular momentum J

for PtN2C8H12 in case of a superposition of two triplet sublevels (Fig. 3.2a).

The former requires i.a. the calculation of transition dipole moments between

the ground state and excited state sublevels, whereas the latter also requires

total angular momentum integrals. An accurate but costly way to calculate

these is the use of the Complete Active Space SCF (CASSCF) and the sec-

ond order perturbative correlation (CASPT2) methods combined with the re-

stricted active space state interaction (RASSI) method to include SOC. This

combined CASSCF/CASPT2/RASSI–SO method has been introduced by Roos

and Malmqvist[17, 18].

To obtain the ground state geometry of PtN2C8H12, a scalar relativistic den-

sity functional theory (DFT) calculation (using the one-component formulation

of the zeroth-order regular approximation (ZORA)[65–68]) is performed with the

Amsterdam Density Functional (ADF) program[31, 32], where the B3LYP[69]

functional and TZP[70–72] basis set are used. According to this calculation, the

lowest energy conformation of the molecule has C2 symmetry (to which is referred

as the C2 geometry (Table 3.1 (left))), for which no imaginary frequencies are ob-

tained. In view of computational efficiency for the CASSCF/CASPT2/RASSI–SO
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method however, the C2v geometry (Table 3.1 (right)) is assumed to represent

the ground state although it possesses two imaginary frequencies, i.e. 65i and 78i

cm-1, having symmetry b1 and a2, respectively, corresponding to vibrations that

lower the symmetry from C2v to Cs and C2, respectively. This approach seems

reasonable when the molecule is at room temperature, since the calculated energy

difference between the two geometries amounts 22 meV. Also, the UV-Vis spec-

tra for both geometries are calculated via time-dependent DFT (TDDFT)[73–

76] (using ZORA) including SOC perturbatively[30]. No significant differences

are obtained (Fig. 3.6). Hence, we conclude that we can safely assume the C2v

geometry for the ground state.

We have applied the CASSCF/CASPT2/RASSI–SO method to the PtN2C8H12

molecule, using the MOLCAS[23] software using ANO-RCC[38, 77, 78] basis sets

(contracted for Pt to 8s7p5d2f , for N to 4s3p1d, for C to 4s3p1d, for H to 3s1p)

and the Douglas-Kroll method[79]. The first stage of the method is a CASSCF

calculation. The selected CAS is given in Fig. 3.7, where also the labeling of

the molecular orbitals (MOs) is explained. The lower lying inactive MOs are

doubly occupied (31, 10, 5 and 21 MOs for the symmetries a1, b1, a2 and b2,
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Figure 3.6: Excitation spectra as determined from TDDFT calculations, for

the C2 and C2v geometry of PtN2C8H12.
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respectively). The Hartree-Fock configuration is (1a1)2...(34a1)2(1b1)2...(13b1)2

(1a2)2...(7a2)2(1b2)2...(22b2)2. Within our CASSCF calculation, 18 active elec-

trons are distributed over 14 MOs. We have performed a state averaged CASSCF,

calculating the 10 lowest roots for each symmetry. This results in 80 roots, which

we call spin-free states in line with Molcas. The oscillator strengths between the

excited spin-free states and the ground state 11A1 are depicted in red in Fig. 3.8.

Since SOC is not considered within this calculation, excitations from the singlet

ground state can only take place to singlet excited states.

Using the CASSCF wave function, a CASPT2 calculation is performed to ob-

tain a second order perturbation estimate of the correlation energy. The resulting

energies are taken as an input for the RASSI method.

This work considers a direct excitation for PtN2C8H12 when initially popu-

lated in the singlet ground state |ψg〉, to a superposition of two sublevels of the

Occupied Unoccupied 
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32a1
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33a1
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8a2
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Figure 3.7: Selected molecular orbitals (MOs) for the Complete Active

Space (CAS) of PtN2C8H12.
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Figure 3.8: Excitation spectrum on semi-log scale, as obtained from ab initio

calculations for the spin-orbit states (with SOC) and the spin-free states (without

SOC). The height of the bars correspond to the oscillator strength for a transition

from the ground state. The curves are intended as a guide to the eye, representing

the excitation spectra broadened by Gaussians with σ = 0.02 eV. This work considers

the lowest triplet (encircled), for which excitation is allowed to only two of the three

sublevels (Fig. 3.9). Note that all nonzero f -values below 5.2 eV are contained in this

plot.

lowest triplet excited state. SOC induces mixing of triplets into singlets and vice

versa, which allows for excitations between them. In line with Molcas, we use

the term spin-orbit to refer to the eigenbasis obtained after diagonalization of the

Hamiltonian that includes the SOC term, which is performed within the RASSI

method. Strictly speaking, because of the mixing one should not speak about

singlet and triplet states anymore within the spin-orbit basis, but one usually

does because the hybridised spin-orbit states often resemble the original spin-free

states.

The RASSI calculation gives the spin-orbit states as a linear combination

of spin-free states. Table 3.3 tabulates the main contributions of the four lowest

spin-orbit states, where the corresponding transitions between MOs are tabulated

in Table 3.2. Particularly interesting are the singlets mixed into the triplets and

vice versa, since these are the contributions that give nonzero transition dipole

moments between the ground and excited states and therefore enable a transition.
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Table 3.1: Atomic coordinates (Å) for the C2 (left) and C2v (right) geometry of

PtN2C8H12.

Atom X Y Z

Pt 0.000000 0.000000 -0.045142

N -0.191499 2.057399 -0.390104

N 0.191499 -2.057399 -0.390104

C 0.000000 0.000000 -2.046215

C -0.036646 -1.215345 -2.727430

C 0.036646 1.215345 -2.727430

C 0.026445 1.220441 -4.122237

C -0.026445 -1.220441 -4.122237

C 0.000000 0.000000 -4.807534

C 0.143797 2.430631 -1.828603

C -0.143797 -2.430631 -1.828603

H 0.000000 0.000000 -5.891159

H 0.047114 2.146972 -4.688039

H -0.047114 -2.146972 -4.688039

H -0.496914 3.257069 -2.147392

H 0.496914 -3.257069 -2.147392

H 1.170515 2.801231 -1.816104

H -1.170515 -2.801231 -1.816104

H 1.164990 -2.276992 -0.194498

H -1.164990 2.276992 -0.194498

H -0.363756 -2.615608 0.250989

H 0.363756 2.615608 0.250989

H 0.000000 0.000000 1.623945

Atom X Y Z

Pt 0.000000 0.000000 -0.046962

N 0.000000 2.066477 -0.365512

N 0.000000 -2.066477 -0.365512

C 0.000000 0.000000 -2.044076

C 0.000000 -1.215513 -2.727191

C 0.000000 1.215513 -2.727191

C 0.000000 1.219696 -4.122133

C 0.000000 -1.219696 -4.122133

C 0.000000 0.000000 -4.807861

C 0.000000 2.448529 -1.845813

C 0.000000 -2.448529 -1.845813

H 0.000000 0.000000 -5.891569

H 0.000000 2.146459 -4.688100

H 0.000000 -2.146459 -4.688100

H -0.877938 3.072293 -2.029768

H 0.877938 3.072293 -2.029768

H 0.877938 -3.072293 -2.029768

H -0.877938 -3.072293 -2.029768

H 0.811887 -2.467017 0.094995

H -0.811887 -2.467017 0.094995

H -0.811887 2.467017 0.094995

H 0.811887 2.467017 0.094995

H 0.000000 0.000000 1.624375

As can be seen in Table 3.3, spin-orbit state |ψg〉 has contributions from spin-free

states 23B2 and 13A2, |ψ1〉 from 11B2, and |ψ3〉 from 21A1.

The oscillator strengths between the excited spin-orbit states and the ground

state |ψg〉 are depicted in blue in Fig. 3.8. The oscillator strengths corresponding

to the lowest triplet are encircled. The corresponding nonzero components of the

transition dipole moments are 〈ψ1| y |ψg〉 ≈ 0.0003 − i0.0112 and 〈ψ3| z |ψg〉 ≈
0.0063 in atomic units. In other words, a transition from |ψg〉 is allowed only

with y and z polarized light to state |ψ1〉 and |ψ3〉 respectively, but forbidden to

state |ψ2〉 (Fig. 3.9).
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Table 3.2: Lowest spin-free states (SFSs) for PtN2C8H12. For the SFSs with im-

portant contributions to the states |ψg〉, |ψ1〉, |ψ2〉 and |ψ3〉 (Table 3.3), the main MO

configurations are given as well, corresponding to transitions between the MOs depicted

in Fig. 3.7.

SFS Energy (eV) Conf., Weight Conf., Weight

11A1 0.00 Hartree-Fock, 0.92

13B1 3.78 13b1 ⇒ 35a1, 0.76

13A1 3.91 13b1 ⇒ 14b1, 0.42 7a2 ⇒ 8a2, 0.34

13A2 3.99 6a2 ⇒ 35a1, 0.85

23A1 4.03 33a1 ⇒ 35a1, 0.77

13B2 4.06 22b2 ⇒ 35a1, 0.85

11B1 4.08 13b1 ⇒ 35a1, 0.65

23B2 4.18 13b1 ⇒ 8a2, 0.64

21A1 4.27 33a1 ⇒ 35a1, 0.80

33A1 4.42 7a2 ⇒ 8a2, 0.43 13b1 ⇒ 14b1, 0.33

31A1 4.47 34a1 ⇒ 35a1, 0.53 34a1 ⇒ 36a1, 0.26

11B2 4.48 22b2 ⇒ 35a1, 0.50 13b1 ⇒ 8a2, 0.21

Table 3.3: Main contributions for PtN2C8H12 of the four lowest spin-orbit states

(SOSs) in terms of the spin-free states (SFSs) for which the MO configurations are

tabulated in Table 3.2.

SOS Energy (eV) SFS, Weight SFS, Weight SFS, Weight

|ψg〉 0.00 11A1, 0.97 23B2, 0.015 13A2, 0.0081

|ψ1〉 3.544 13B1, 0.61 13A1, 0.33 11B2, 0.042

|ψ2〉 3.558 13B1, 0.59 13A1, 0.33 23B2, 0.066

|ψ3〉 3.564 13B1, 0.59 13A2, 0.21 23B2, 0.17

21A1, 0.011

3.12 SI: Symmetry analysis

The aforementioned optical selection rules (Fig. 3.9) can also be obtained from

group theoretical arguments. Here, we discuss two different approaches to come

to the same conclusion.

Approach (1): The states |ψ1〉, |ψ2〉 and |ψ3〉 mainly originate from spin-

free state 13B1 (Table 3.3). SOC has allowed this state to mix with singlets
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Figure 3.9: Energy diagram illustrating the effect of SOC on optical selec-

tion rules of originally forbidden singlet-triplet transitions. When SOC is not

taken into account, the lowest triplet excited state of PtN2C8H12 has B1 symmetry.

Due to SOC, three separate sublevels |ψ1〉, |ψ2〉 and |ψ3〉 are obtained, having A2, B2

and A1 symmetry, respectively. It is assumed here that the ground state has C2v ge-

ometry. Excitations from the ground state can only take place to |ψ1〉 and |ψ3〉 with y

and z polarized light respectively, whereas a transition to state |ψ2〉 is forbidden.

having symmetry A1, A2 and B2, as follows from the transformation of rotations,

i.e. B2(Rx) + B1(Ry) + A2(Rz) within C2v. Since the electric-dipole moment

operator transforms as B1(x) +B2(y) +A1(z) within C2v, it directly follows that

excitations from the ground state are allowed to the lowest triplet only with y

and z polarization (Fig. 3.9). Besides this contribution from singlets mixed into

the lowest triplet (mainly 11B2 for |ψ1〉 and 21A1 for |ψ3〉), also triplets mixed into

the ground state contribute to the mentioned transition dipole moments (mainly

23B2 and 13A2), as tabulated in Table 3.3.

Approach (2): The orbital part of the lowest triplet has B1 symmetry. Let

us now determine the symmetry of the triplet sublevels. In this regard it is

convenient to consider the triplet spin functions Tx, Ty and Tz, defined as

Tx =
T−1 − T+1√

2
=
β1β2 − α1α2√

2
(3.77)

Ty = i
T−1 + T+1√

2
= i

β1β2 + α1α2√
2

(3.78)

Tz = T0 =
α1β2 + β1α2√

2
(3.79)

with αi and βi corresponding to the up and down spin of electron i respectively.

Tx, Ty and Tz transform as rotations. For C2v symmetry these are B2, B1 and

A2 for Tx, Ty and Tz, respectively. Taking the direct product between the orbital

part (B1) and the spin part (B2, B1 and A2) implies that the sublevels have

symmetry A2, A1 and B2, respectively. To determine the possible excitations,
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one considers that x, y and z transform in C2v as B1, B2 and A1 respectively.

From the A1 ground state one can thus only excite to levels having symmetry B1,

B2 and A1, in order to let the integral 〈ψe|D |ψg〉 be nonzero. Hence, excitations

from the ground state to the lowest triplet excited state can only take place for

the B2 and A1 sublevels, when the system interacts with y and z polarized light

respectively, whereas a transition to the B1 sublevel is forbidden.

Table 3.4: FC-factors for 0-0 transition of different metal-organic molecules,

as obtained from DFT calculations.

Molecule FC-factor of 0-0 transition

PtN2C8H12 < 10−6

PtP (D4h ground and excited state) 0.43

PtP (D4h ground and C2h excited state) 0.26

PtPπ (D4h ground and excited state) 0.44

3.13 SI: Franck-Condon factors

The molecular TRFR experiment that we have introduced is based on measuring

the triplet spin dynamics of a superposition of two electronic excited state sub-

levels (created by an on-resonance pump laser and probed via a probe laser that

is slightly detuned with respect to the singlet-triplet transition). One should real-

ize that electrons can couple to vibrations, implying that each electronic sublevel

has a series of vibronic states. The Franck-Condon principle states that an elec-

tronic transition most likely occurs between vibronic states that have comparable

geometry[35]. Creating and probing the excited state superposition is thus only

possible if there is good vibrational overlap between the lowest vibronic sublevels

of the electronic ground and excited state sublevels, for which the corresponding

transition is commonly referred to as the 0-0 transition. In other words, the ge-

ometry should not distort too much upon excitation (within the timescale of the

spin dynamics).

To study the geometry relaxation of the excited state, we have calculated the

so-called Franck-Condon (FC) factors (a measure for the strength of a vibronic

transition) for a series of vibronic states, of which we only report the 0-0 transition

(for three molecules, Table 3.4). These FC-factors have been determined via DFT

calculations with the ADF program[31, 32], using a B3LYP[69] functional and
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ba

Figure 3.10: Platinum porphyrins, with a, an unsubstituted platinum porphyrin

(PtP), and b, a π-extended platinum porphyrin (PtPπ). The platinum atom (white)

is surrounded by nitrogen atoms (blue), which are surrounded by carbon (grey) and

hydrogen (white) atoms.

TZP[70–72] basis set. Geometry optimizations and frequency calculations have

been performed for both the singlet ground state (restricted DFT) and triplet

excited state (unrestricted DFT).

Unfortunately, the geometry distortion turns out to be significant for the

PtN2C8H12 molecule that we consider in this work. This particularly follows from

the fact that the FC-factor is extremely small for the 0-0 transition (Table 3.4).

Although the detailed analysis for PtN2C8H12 in our work is useful as a proof of

principle for a molecular TRFR experiment, for a practical realization we should

thus look for other candidate molecules.

The FC-factor of the 0-0 transition of a metal-organic molecule is typically

large when the metal atom is well surrounded by the ligands. We found large

FC-factors (Table 3.4) for the 0-0 transition of unsubstituted porphine platinum

(to which we refer as PtP, Fig. 3.10a) and of a π-extended porphine platinum

(to which we refer as PtPπ, Fig. 3.10b). Such a π-substitution is particularly

interesting for manipulation of the transition energy of the molecule, since this

wavelength was shown to increase (more than 200 nm) for an increasing number

of fused-aromatic rings[80].

3.14 SI: Optical selection rules of platinum por-

phyrins

Platinum porphyrins are promising candidates for a molecular TRFR experiment.

Diaconu et al. observed magnetic circular dichroism (different absorption for left

and right circularly polarized light in a magnetic field) within the zero-phonon

region of platinum porphyrins in organic hosts[45]. Their work summarizes polar-
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Figure 3.11: Energy diagram illustrating for PtP the effect of SOC and

a Jahn-Teller (J-T) distortion on the optical selection rules of originally

forbidden singlet-triplet transitions. a, When SOC is not taken into account,

the lowest excited state of PtP is a doublet of two triplets with Eu symmetry, which

according to our calculations originates from the molecular orbital excitation a2u → eg.

b, Due to SOC, a mixing of singlets and triplets occurs. Additionaly, the sublevels of the

doublets split (labeled with a number (#) based on the energy (where 3 is a doublet)

and their symmetry is depicted as well (within D4h)). Excitations from the ground

state (D4h geometry) can only take place to state 2 and 3 with z and (x, y) polarized

light respectively, whereas the other transitions are forbidden (Table 3.5). c, After

excitation, the system will undergo a Jahn-Teller distortion, which further splits the

energy levels (Table 3.6) and the molecule gets C2h symmetry.

ization selection rules that satisfy the criteria for a molecular TRFR experiment,

and they present results with and without Jahn-Teller (J-T) and host interac-

tions.

In order to study in more detail the optical transitions between the ground

and excited state sublevels of PtP and PtPπ (Fig. 3.10), the CASSCF/CASPT2/-

RASSI–SO method is not suitable, because of the relatively large number of

atoms. Therefore, we perform TDDFT calculations (using ZORA) including SOC

perturbatively[30]. These calculations are performed with ADF using a B3LYP

functional and TZP basis set. In Table 3.5 we report for PtP (considering D4h

symmetry for both the ground and excited state geometry) the energies, oscillator

strengths f and transition dipole moments µ, for the lowest 10 excitations from

the ground state (from which the absorption spectrum can be derived).

When SOC is not taken into account, the lowest excited state of PtP is a

doublet of two triplets with Eu symmetry, which according to our calculations

originates from the molecular orbital excitation a2u → eg. Instead, Diaconu et
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Table 3.5: Transition dipole moments for the lowest 10 transitions from the

ground state for PtP as obtained from TDDFT calculations, including SOC

perturbatively (using ZORA). This calculation corresponds to the scheme in Fig. 3.11b

(J-T distortion is still neglected). The oscillator strengths f and transition dipole

moments µ determine the absorption spectrum of PtP, with their values given in atomic

units (µ-values smaller than 10−5 are neglected). D4h symmetry is considered. The

excited states are labeled with a number (#) according to the energetic ordering. States

1-5 originate from a 3Eu (which is a doublet of two triplets), and 6-10 from another 3Eu.

States 3 and 8 are each a degenerate doublet, which further split due to a Jahn-Teller

distortion (Fig. 3.11c and Table 3.6).

# Symm. E (eV) f µx µy µz

1 A1u 2.0189 0 0 0 0

2 A2u 2.0190 6.11 · 10−8 0 0 −i1.11 · 10−3

3 Eu 2.0335 1.65 · 10−6 i5.76 · 10−3 0 0

4 B1u 2.0486 0 0 0 0

5 B2u 2.0488 0 0 0 0

6 A1u 2.2202 0 0 0 0

7 A2u 2.2202 3.82 · 10−8 0 0 −i8.38 · 10−4

8 Eu 2.2328 2.96 · 10−5 i2.32 · 10−2 0 0

9 B1u 2.2457 0 0 0 0

10 B2u 2.2457 0 0 0 0

al.[45] find as the lowest excited state the other close lying 3Eu originating from

a1u → eg, which ends up as our second 3Eu (consisting of states 6-10 in Table 3.5

when SOC is included, which gives quite comparable results).

Due to SOC, a mixing of singlets and triplets occurs. Additionaly, the sub-

levels of the doublets split, as depicted in Fig. 3.11b (with the sublevels labeled

with a number (#) based on the energy (where 3 is a doublet) and their sym-

metry is depicted as well (within D4h)). Excitations from the ground state (D4h

geometry) can only take place to state 2 and 3 with z and (x, y) polarized light

respectively, whereas the other transitions are forbidden (Table 3.5). The po-

larization selection rules obtained as such seem to be promising for a molecular

TRFR experiment. A pump pulse polarized in both the z and (x, y) direction

will induce a superposition between states 2 and 3, which can be probed via the

polarization rotation upon transmission of a detuned probe pulse with similar

polarization.
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Table 3.6: Transition dipole moments for the lowest 6 transitions of PtP

as obtained from spin-unrestricted TDDFT calculations with the excited

state geometry taken as the ground state (to simulate the Jahn-Teller distor-

tion), including SOC perturbatively (using ZORA). This calculation corresponds to

the scheme in Fig. 3.11c. The oscillator strengths f and transition dipole moments µ

determine the emission spectrum of PtP, with their values given in atomic units (µ-

values smaller than 10−5 are neglected). No symmetry analysis is performed during

the TDDFT calculation. The states are labeled with a number (#) according to the

energetic ordering.

# E (eV) f µx µy µz

1 1.7616 1.08 · 10−10 0 0 4.99 · 10−5

2 1.7617 1.99 · 10−8 0 0 i6.79 · 10−4

3 1.7622 3.22 · 10−6 −8.10 · 10−3

+i7.56 · 10−4

−2.89 · 10−3

+i2.70 · 10−4

0

4 1.9997 9.98 · 10−6 −3.85 · 10−3

+i8.82 · 10−4

1.34 · 10−2

−i3.06 · 10−3

0

5 2.0003 3.18 · 10−9 0 i1.37 · 10−5 −4.06 · 10−5

+i2.51 · 10−4

6 2.0004 4.75 · 10−9 0 0 3.07 · 10−4

+i5.11 · 10−5

However, one should be aware that after excitation with a pump pulse, the

system undergoes a geometry relaxation (towards C2h), i.e. a J-T distortion

(Fig. 3.11c), which further splits the energy levels. This is no problem if the

relaxation takes place on a longer time scale than the spin dynamics. If it takes

place on a comparable timescale, the changes of the geometry and energy eigen-

states should be small to prevent quantum decoherence. From the calculation

of the FCFs we concluded already that the geometry change is relatively small

(Section 3.13). We therefore expect only a small effect on the energies of the

electronic states. To calculate the effect, we perform a spin-unrestricted TDDFT

calculation with the triplet excited state geometry taken as the ground state ge-

ometry (Table 3.6). Such an approach is common in the calculation of emission

spectra. The doublet Eu (Fig. 3.11b and Table 3.6) splits due to the J-T dis-

tortion. The optical selection rules for states #1 − 5 in Table 3.5 and #1 − 6

in Table 3.6 seem quite comparable, with more transitions allowed for the latter

case however. In case the timescales of the J-T distortion and spin dynamics

are comparable, the polarization rotation of the probe pulse is determined by
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Table 3.7: Transition dipole moments for the lowest 10 transitions from

the ground state (D4h geometry) for PtPπ as obtained from TDDFT calcu-

lations, including SOC perturbatively (using ZORA). The oscillator strengths f and

transition dipole moments µ determine the absorption spectrum of PtPπ, with their

values given in atomic units (µ-values smaller than 10−5 are neglected). No symmetry

restrictions are imposed during the TDDFT calculation. The excited states are labeled

with a number (#) according to the energetic ordering. State 7 consists mainly of a

singlet (the other states are mainly of triplet origin).

# E (eV) f µx µy µz

1 1.46716 0 0 0 0

2 1.46716 0 0 0 0

3 1.46786 3.60 · 10−5 −5.69 · 10−4 3.09 · 10−2 0

4 1.70006 1.85 · 10−4 −6.53 · 10−2 −1.10 · 10−3 0

5 1.70136 0 0 0 0

6 1.70136 0 0 0 0

7 2.13466 0.2793 2.274 3.70 · 10−2 −1.62 · 10−5

8 2.20166 0 0 0 0

9 2.20176 0 0 0 0

10 2.20246 1.50 · 10−3 1.64 · 10−1 2.60 · 10−3 0

the transition dipole moments given in Table 3.6. After having created a super-

position between states #2, 3 in Table 3.5, the probe pulse should thus address

(though slightly detuned to prevent population transfer back to the ground state)

states #2, 3 in Table 3.6. To quantify the change of states #2, 3 (in Table 3.6

with respect to #2, 3 in Table 3.5) it would be even more insightful to calculate

the overlap of the eigenstates before and after the J-T distortion, which we have

not done.

For a molecular TRFR experiment, the laser frequencies of the pump and

probe pulse should match the singlet-triplet frequency. In that regard, for a

TRFR experiment with platinum porphyrins the substitution of aromatic rings

to PtP can be useful. We have performed similar TDDFT calculations for PtPπ

(Table 3.7), which quite closely resemble the results of PtP. However, the fact

that the transition dipole moment in the z-direction remains negligible for all

states makes a TRFR experiment unpractical for PtPπ.



3.15 SI: Ensemble of randomly oriented molecules 91

3.15 SI: Ensemble of randomly oriented molecules

In our calculations we have considered a sample consisting of an ensemble of

similarly oriented molecules, illuminated at t = 0 with a linearly polarized pump

pulse having polarization Êpump = ẑ+ŷ√
2

(with respect to the molecular frame

of reference, as in main text Fig. 3.1). Let us address the following important

conclusion: the TRFR signal decreases when the sample is rotated along any

axis. In the molecular frame, the signal ultimately goes to zero when the electric

vector oscillates only along x, y or z, simply because each system ends up in

a single sublevel instead of a superposition. Interestingly, when the sample is

rotated an angle φ along x (the propagation axis of the pump), the signal does

not depend on φ if a circular instead of a linear pump is used, which might be

experimentally favourable.

Instead of using an ensemble of similarly oriented molecules, we can consider

the case of random orientations. One should keep in mind that for our derivation

to be valid, the number density N should be small enough to ensure that the

molecules are well isolated from each other. A particular example to which this

section applies is the case of an ensemble of the molecule of interest put with

random orientation in a crystalline host material. Perhaps even more interesting

would be the case of a liquid host (i.e. in solution), or the molecule of interest

put in the gas phase, since the molecules are then also well isolated. However,

in these latter cases the signal might suffer from broadening due to the larger

temperatures compared to the case of a crystalline host.

Let us consider a random ensemble of PtN2C8H12 molecules, illuminated at

t = 0 with a circular pump pulse (satisfying assumptions (i) to (iv) of Sec. 3.7,

where |ψe〉 follows from Eq. (3.26)). Within this random ensemble, molecules

having their plane parallel to the propagation axis will be excited to a single sub-

level and do therefore not contribute to the TRFR signal. Instead, any molecule

having its molecular plane exactly perpendicular to the pump propagation axis

will be excited to a superposition of sublevels and does therefore contribute to

the TRFR signal. At delay times where the signal is maximally positive or nega-

tive, these are the molecules that contribute most. At these times, all remaining

molecules (having an orientation that is neither parallel nor perpendicular to the

propagation axis) contribute to the total TRFR signal with a value that lies be-

tween zero and the maximum. Clearly, for an ensemble of randomly oriented

PtN2C8H12 molecules, a net nonzero TRFR signal is obtained (presumed that all

requirements for a TRFR experiment are satisfied). This implies that optically
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Figure 3.12: Calculation of ∆θ(∆t) for the metal-organic molecule

PtN2C8H12 (main text Fig. 3.1). Each line represents a different orientation of a

sample with molecules all oriented similarly (where the color variation is merely in-

tended for contrast). Besides, the only difference with respect to main text Fig. 3.4 is

that a circular pump pulse is considered (Êpump = −iẑ+ŷ√
2

). Clearly, for an ensemble of

randomly oriented PtN2C8H12 molecules, a net TRFR signal is obtained. More spe-

cific, the total average TRFR signal (dashed line) for such an ensemble decreases with

only a factor 2 with respect to an ensemble with all molecules oriented such that the

maximum signal is obtained (i.e. perpendicular to the incoming light).

induced spin polarization can be applied to an ensemble of randomly oriented

molecules.

To verify this conclusion with calculations, we study how ∆θ(∆t) depends

on the sample orientation with respect to the incoming pump and probe. We

calculate ∆θ(∆t) as in main text Fig. 3.4 for a sample consisting of similarly

oriented PtN2C8H12 molecules, with the only difference that a circular pump pulse

is considered (Êpump = −iẑ+ŷ√
2

) and that the sample has a random orientation,

obtained by using random values for the so-called proper Euler angles (which
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Figure 3.13: Visualization of the TRFR signal for different sample orien-

tations (with the molecules in the sample oriented similarly) for the metal-organic

molecule PtN2C8H12 (main text Fig. 3.1). We consider a circular pump pulse

(Êpump = −iẑ+ŷ√
2

) and three delay times, where for each plot the arrow corresponds

to the value of a line in Fig. 3.12 at the corresponding delay time (i.e. each arrow rep-

resents a different orientation of a sample with molecules all oriented similarly). The

color of the arrows correlates with the value of the TRFR signal at delay times ∆t (in

units of the oscillation period) equal to (a) 0, (b) 0.25, (c) 0.5. Each arrow is plot-

ted tangent to the surface of a sphere which visualizes a sample orientation where the

molecular y′′z′′ plane is parallel to the sphere and the arrow points in the z′′-direction

of the molecular frame (double primes denote the molecular frame transformed with

respect to the lab frame, where randomly selected values are used for the so-called

proper Euler angles). The incoming pump and probe pulse always propagate in the

x-direction of the lab frame. We conclude that for an ensemble of randomly oriented

molecules a nonzero TRFR signal is obtained.

can in general be used to describe the orientation of a rigid body). Each line in

Fig. 3.12 represents a different orientation of a sample with molecules all oriented

similarly (where the color variation is merely intended for contrast). The total

average equals half the maximum signal (i.e. for a molecule oriented perpendicular
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to the incoming light), confirming our statement that for an ensemble of randomly

oriented PtN2C8H12 molecules, a net TRFR signal will be obtained. Note that a

nonzero signal will also be obtained for a linear pump pulse, but this signal will

be smaller.

Fig. 3.13 is a visualization of the orientation of the sample for each of the traces

in Fig. 3.12. We consider three delay times, where for each plot the color (red:

maximal negative, blue: maximal positive) of an arrow correlates to the value

of a line in Fig. 3.12, at the corresponding delay time (each arrow represents

a different orientation of a sample with molecules all oriented similarly). We

consider delay times ∆t (in units of the oscillation period) equal to (a) 0, (b) 0.25,

(c) 0.5. For each case, an arrow pointing from the point (1,0,0) to the original

z-direction (representing a molecule with its y′′z′′ plane perpendicular to the

x-direction) is transformed using the same Euler angles used to transform the

sample (we use double primes for the molecular frame to distinguish it from the

lab frame). Accordingly, each arrow is plotted tangent to the surface of a sphere

which visualizes a sample orientation where the molecular y′′z′′ plane is parallel

to the sphere and the arrow points in the z′′-direction. The incoming pump

and probe pulse always propagate in the x-direction of the lab frame. Molecules

having their y′′z′′ plane oriented parallel to the x-direction give zero TRFR signal

at all delay times (visualized by the arrows at x = 0). Instead, molecules having

their y′′z′′ plane oriented perpendicular to the x-direction give maximal TRFR

signal when ∆t equals a multiple of a half period of oscillation (visualized by the

arrows at x = ±1). As it should, Fig. 3.13 confirms our statement that for an

ensemble of randomly oriented PtN2C8H12 molecules an oscillating TRFR signal

is obtained with nonzero amplitude.

It is important to realize that the molecular tumbling motion might affect

the TRFR experiment. In order to obtain a nonzero TRFR signal, it is required

that the orientation of the molecules at the arrival of the pump is comparable to

when the probe arrives. Following Berg[81], we take as a suitable measure for the

tumbling motion the mean square angular deviation as a function of the elapsed

time t〈
Θ2
〉

= 2Drt (3.80)

with the rotation diffusion coefficient given by

Dr =
kT

fr
(3.81)

with fr the rotational frictional drag coefficient. For PtN2C8H12, a rotation about
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an axis perpendicular to the face through the center does not affect the TRFR

signal, such that we should consider a parallel axis. For a disk (radius a), rotating

about an axis parallel to the face through the center, the drag constant amounts

fr,disk =
32

3
ηa3 (3.82)

with η the viscosity. It turns out that for a relatively small molecule like PtN2C8H12

(we assume a = 3.75 Å), we need an extremely viscous host fluid to keep the tum-

bling motion small enough. Let us as an example consider glycerol, because of

its exceptional range (10 orders of magnitude) of viscosities between its glass

temperature (Tg = 190 K) and room temperature. Between 195 and 283 K, its

viscosity η can be well estimated according to the Vogel-Fulcher-Tammann-Hesse

law[82]

η = η010
B

T−T0 (3.83)

with η0 = 7.9 × 10−8 Pa s, B = 1260 K and T0 = 118 K. At 195 K, we have

η = 1.83 × 109 Pa s. Taking the square-root of Eq. 3.80 as a measure for the

angular deviation at time t, we obtain the root-mean-square value
√
〈Θ2〉 ≈ 32

nrad for t = 0.2 ps (oscillation period of ∆θ for PtN2C8H12, main text Fig. 3.4),

which is of the same order as the polarization rotation (up to 23 nrad, see Fig. 3.12

and main text Fig. 3.4) and will therefore strongly affect the signal. Hence, in

order to perform a molecular TRFR experiment with a liquid host it would be

better to take a larger molecule (such that the tumbling motion will be decreased),

or one with a shorter oscillation period (such that the tumbling motion is on a

longer time scale than the quantum dynamics). Probably, it is more practical to

take a crystalline host, where (we have shown in this section that) the molecules

of interest can have a random orientation.
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Chapter 4

Proposal for time-resolved optical

probing of electronic spin coherence in

divacancy defects in SiC

Abstract

The Time-Resolved Faraday Rotation (TRFR) technique is an all-

optical non-invasive measurement technique which can provide a mea-

sure of electron spin dynamics and is usually applied to materials with

strong spin-orbit coupling. We propose for the first time to use this

technique to characterize spin active color centers in materials with

negligible spin-orbit coupling, like silicon carbide and diamond. The

fundamentals and scenario for a TRFR experiment are here worked

out for a homogeneous ensemble of c-axis divacancies in silicon car-

bide. We demonstrate that one of the indices of refraction of this

material oscillates as a function of time in the presence of coherences.

Due to this time-dependent birefringence, a probe pulse will undergo

a polarization rotation as a function of the pump-probe delay time.

This polarization rotation is a measure for the spin coherence of the

triplet excited state.

This chapter is based on Ref. 3 on p. 177.

97
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4.1 Introduction

The implementation of solid-state based quantum networks relies fundamentally

on the possibility of initializing, manipulating and reading the information con-

tained in a qubit[83]. Optical implementation of these operations increases the

processing rates and simplify the network architecture, enabling faster and sim-

pler circuits[84]. In this scenario, probing of the electronic spin (dynamics) based

on the polarization rotation (referred to as Faraday and Kerr rotation for the

case of transmission and reflection, respectively) of laser light has been exten-

sively applied to the investigation of localized electronic states embedded in III-V

and II-VI semiconductors[13, 46]. As compared to other optical techniques such

as optically detected magnetic resonance and resonant absorption, these tech-

niques have the advantage that they can preserve the coherence of the measured

state[85], allowing further operations to be performed. Furthermore, since the

polarization rotation measurements rely on the dispersive scattering of a large

number of photons, they are less susceptible to photon losses and can usually

be implemented without optical microcavities[59]. Finally, these techniques can

be performed in a time-resolved manner, enabling the investigation of the time-

evolution of the electronic spin with outstanding resolution.

In III-V and II-VI semiconductors, strong spin-orbit coupling (SOC) gener-

ates spin-dependent optical selection rules[9], such that the spin-state of a system

is directly mapped into a shift of the polarization of a laser beam interacting with

the material. In contrast, silicon carbide (SiC) and diamond, some of the most

promising materials for the implementation of solid-state qubits, show negligi-

ble SOC. Nonetheless, in this theoretical work we demonstrate for SiC c-axis

divacancies (missing neighboring Si and C atom along the growth axis) that

the polarization of a probe pulse can also provide information about the spin-

coherence in these systems due to effective selection rules that emerge from the

symmetry of these localized triplet electronic states. Due to the axial symmetry

of the system, the degeneracy within the ground and excited states is broken,

generating a characteristic zero-field splitting (ZFS) in the absence of a magnetic

field[86, 87]. If the ZFS of the ground and excited states is different, a weak

magnetic field enables spin-flipping transitions with probabilities determined by

the Franck-Condon factors for spin. This generates a dependency between the

specific configuration of the electronic spin and the total transition probability

between the ground and excited states. Accordingly, the linear susceptibility ten-

sor (which governs the optical refractive indices) is modulated by the coherent
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spin precession of the system. In this way, time-resolved measurement of the

polarization rotation allows for characterization of the electronic spin (dynam-

ics) for systems with negligible SOC like many types of color centers in SiC and

diamond, to which this technique has never been applied.

4.2 Fundamentals for a TRFR experiment with

a homogeneous ensemble of c-axis divacan-

cies in SiC

For a proof of principle calculation of a Time-Resolved Faraday Rotation (TRFR)

experiment (Fig. 4.1) applied to color centers in SiC, we consider an ultrashort

polarized pump pulse that excites a homogeneous ensemble of c-axis divacancies

in SiC from their triplet ground state (after preparation in the required state)

Figure 4.1: Outline of a TRFR experiment. After the sample is prepared in a

certain quantum state, it gets excited by a pump pulse to a superposition of excited

state sublevels. Before a probe pulse arrives, the system remains in the dark during the

pump-probe delay time ∆t. The change of the polarization of the probe depends on the

degree of birefringence of the sample at the time it gets hit by the probe. Measuring

this change (usually the polarization rotation ∆θ) as a function of ∆t gives a time-

resolved image of the spin dynamics of the system. For a superposition of two excited

state sublevels, the TRFR signal has a single frequency. A beating of up to three

frequencies (corresponding to the energy differences) can occur for a superposition of

three sublevels. Decoherence is expressed by a decay of the TRFR signal as a function

of time. Analogously, for a probing of ground state coherence, one should prepare the

system first in the excited state in order to create and probe a superposition of ground

state sublevels.
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into a superposition of sublevels of their lowest triplet excited state (Fig. 4.2a).

Such a superposition (|ψe(t)〉 in Fig. 4.2b) will show spin precession as a function

of time. We will derive that in addition also one of the indices of refraction

of the material oscillates with time. Hence, the polarization of an ultrashort

probe pulse is affected (upon transmission), since its components experience a

different real part of the refractive index[16], as is worked out in more detail in

Chapter 3. Specifically, the polarization rotation ∆θ as a function of the (pump-

probe) delay time ∆t (Fig. 4.1, 4.2b) is a measure for the spin dynamics in the

system. For a superposition of two excited state sublevels, the TRFR signal

has a single frequency. A beating of up to three frequencies (corresponding to

the energy differences of the spin sublevels in the excited state) can occur for

a superposition of three sublevels. Taking a detuned probe limits population

transfer back to the ground state sublevels, which allows to consider dispersion

only[54]. In this section (4.2) we derive for a homogeneous ensemble of SiC

divacancies the fundamentals of a TRFR experiment. Although this derivation

is quite general, we make in Fig. 4.2 and Section 4.3 several assumptions (like

excited state coherence for two sublevels only) for the sake of simplicity.

If we assume that in SiC c-axis divacancy defects the SOC effects have neg-

ligible influence, the Hamiltonian describing the ground(excited) state is given

by[86, 88, 89]

Hg(e) = hDg(e)S
2
z + gg(e)µB ~B · ~S

= hDg(e)S
2
z + gg(e)µB(SxBx + SyBy + SzBz)

(4.1)

where the zero-field splitting Dg(e) is determined by the spatial distribution of

the ground(excited) state. Si is the spin S=1 operator in the i direction, ~B is

the magnetic field, gg(e) is the g-factor for the ground(excited) state and µB is

the Bohr magneton.

Due to the absence of SOC, the eigenstates of the Hamiltonian can be written

as a product of a spatial part |χ〉 and a spin state. In this way, the eigenstates

of the ground (excited) state Hamiltonian are (in the basis of the total Hamil-

tonian in Eq. 4.1) given by
∣∣χg(e)〉 |g(e)i〉, where i = l,m, u correspond to the

spin of lowest, median and upper energy, respectively (as illustrated in Fig. 4.2,

where the orbital part is neglected). The Frank-Condon factor for spin, which

determines the overlap between a sublevel i of the ground-state Hamiltonian and

a sublevel j of the excited-state Hamiltonian, is given by 〈ej|gi〉. If the zero-field

splittings for the ground and excited state are different, i.e. if Dg 6= De, all nine
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Figure 4.2: Schematic of the (de)tuning of the pump and probe pulse for

a TRFR experiment with a homogeneous ensemble of c-axis divacancies in

SiC. Although Section 4.2 describes the fundamentals for quite general conditions,

several assumptions are made in this figure for the sake of simplicity. a, We assume

that the system is prepared with its population only in the lowest ground state sublevel.

With ~B ⊥ to the c-axis, several transitions remain forbidden, such that we can neglect

|em〉 in this example. Just before the pump pulse (red arrow) arrives at t = 0, only

|gl〉 is populated, as indicated with the dot. Full absorption of a photon out of a short

optical pump pulse induces the state |ψe(t = 0)〉, being a superposition of |el〉 and |eu〉
(we neglect here the orbital part, Eq. 4.2). b, Directly after excitation with the pump,

|ψe(t)〉 is populated as indicated with the dot. A linear probe pulse (blue arrow) with

detuning ∆p experiences a polarization rotation ∆θ, which oscillates as a function of

the delay time ∆t. This oscillation is a measure for the spin precession related to the

coherence of |ψe(t)〉.

transitions (from the three sublevels of the ground state to the three sublevels

of the excited state) are allowed, unless ~B ⊥ to the c-axis. In that special case,

some transitions remain still forbidden, as derived in Supplementary Information

Section 4.7 (p. 112).

Alternative non-radiative decay paths from levels |ej〉 to |gi〉 are possible via

the intermediate singlet state |s〉[90]. This process, known as intersystem crossing

(ISC) (which also occurs for nitrogen-vacancy (NV−) centers in diamond[91]),

allows for high-fidelity preparation of the initial quantum state (via a continuous

wave laser which should be turned off just before the pump pulse arrives, Fig. 4.1)

via preferred relaxation into |gl〉.
For simplicity, we assume in Fig. 4.2 and Section 4.3 that (before the pump-

pulse arrives) the divacancies are prepared with all the population in the lowest
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sublevel of the ground-state, i.e. |ψprep〉 = |χg〉 |gl〉. Also, we assume that ~B ⊥
to the c-axis, such that certain optical transitions remain forbidden. However,

we will consider the general case for the following derivation of the polariza-

tion change of a probe pulse within a TRFR experiment applied to SiC with a

homogeneous ensemble of c-axis divacancies.

At time t = 0, the system is excited by the pump-pulse which brings the

divacancies into a state described by

|ψe(t = 0)〉 = |χe〉 (cl |el〉+ cm |em〉+ cu |eu〉) (4.2)

where the normalization coefficients ci are proportional to 〈ei|gl〉.
Thus, for a SiC divacancy in an excited state given by |ψe(t)〉 =

∑
i ci(t) |ψe,i〉,

the driven coherent transition rate into the j-th eigenvector of the ground state

Hamiltonian |ψg,j〉, via excitation with an optical field, is given by the Rabi

frequency

Ωj =
~E · ~µe→j

~
=
〈ψe(t)| ~E~r |ψg,j〉

~
(4.3)

The total transition rate into the ground state is given by

Ω =
∑
j

Ωj =
∑
j

〈ψe| ~E~r |ψg,j〉
~

=
∑
i,j

−e〈χe| (Exx+ Eyy + Ezz) |χg〉
~

ci(t) 〈ei|gj〉

=
∑

α=x,y,z

Eα
−e
~
〈χe|α |χg〉

∑
i,j

ci(t) 〈ei|gj〉 =
∑
α

Eαd
α

~
∑
i,j

ci(t) 〈ei|gj〉

(4.4)

where we have defined dα ≡ −e 〈χe|α |χg〉. By combining Eq. 4.3 and 4.4, we

can thus write for µαe(→)g

µαeg = dα
∑
i,j

ci(t) 〈ei|gj〉 (4.5)

The linear susceptibility tensor of the medium, which describes how the medium

interacts with light polarized in the x, y, z directions, has components

χ̃
(1)
αβ =

N

ε0~

(∆p − iγ
∆2
p + γ2

)
µαegµ

β
ge (4.6)
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where the tilde denotes a complex number, N is the number density of defects, ε0
is the vacuum permittivity, ~ is the reduced Planck’s constant, ∆p is the detuning

between the driving field and the transition frequency of the system, and γ is the

damping rate of the system. Substituting the transition dipole moments obtained

from Eq. 4.5 into Eq. 4.6, we get

χ̃
(1)
αβ =

N

ε0~

(∆p − iγ
∆2
p + γ2

)
dαdβ∗φ(t) (4.7)

with the time-dependent term φ(t) defined as

φ(t) =
∑
w,v

cw(t) 〈ew|gv〉
∑
i,j

c∗i (t) 〈gj|ei〉 =
∑
w

cw(t) 〈ew|
∑
v,j

|gv〉 〈gj|
∑
i

c∗i (t) |ei〉

(4.8)

We define the operator O =
∑

v,j |gv〉 〈gj|, which is clearly Hermitian. In these

terms, the expression for φ(t) obtained in Eq. 4.8 can be simplified as

φ(t) =
∑
w,i

cw(t)c∗i (t) 〈ew|O |ei〉

=
∑
i

|ci(t)|2 〈ei|O |ei〉+
∑
w<i

[cw(t)c∗i (t) 〈ew|O |ei〉+ c∗w(t)ci(t) 〈ei|O |ew〉]

(4.9)

Since the operator O is Hermitian, the term 〈ei|O |ei〉 is real and 〈ew|O |ei〉 =

〈ei|O |ew〉∗, which yields

φ(t) =
∑
i

|ci(t)|2Oii +
∑
w<i

[Owicw(t)c∗i (t) + c.c.]
(4.10)

where we have defined Oij ≡ 〈ei|O |ej〉, and the abbreviation c.c. denotes the

complex conjugate of Owicw(t)c∗i (t). Thus, φ(t) is real valued, and (the sec-

ond term) varies in time. Since the operator O is time-independent, the time-

dependence of φ(t) comes directly from the time-evolution of the excited state

given by ci(t).



104 Chapter 4. Proposal for time-resolved ... in divacancy defects in SiC

Previous work revealed that the absorption of c-axis divacancies in SiC hap-

pens only for light polarized along the basal plane[87]. This means that if ẑ

coincides with the c-axis, dz = 0, and the first-order susceptibility tensor is given

by

χ̃(1) =
N

ε0~

(∆p − iγ
∆2
p + γ2

)
φ(t)

dx∗dx dx∗dy 0

dy∗dx dy∗dy 0

0 0 0

 (4.11)

This matrix can be diagonalized, so that in its eigenbasis {x̂′, ŷ′, ẑ′} it is given by

χ̃(1) =
N

ε0~

(∆p − iγ
∆2
p + γ2

)
φ(t)

d2
0 0 0

0 0 0

0 0 0

 (4.12)

where we have defined d2
0 = dx∗dx + dy∗dy. Its eigenvectors are given by

x̂′ =
dx∗x̂+ dy∗ŷ

d0

ŷ′ =
−dyx̂+ dxŷ

d0

ẑ′ = ẑ

(4.13)

Here we can note the difference between the case considered in this chapter com-

pared to Chapter 3. There, the polarization selection rules for the transition

to different eigenvectors of the excited state give a time-dependence specific to

each component of the susceptibility tensor, implying that the eigenbasis of the

susceptibility tensor is time-dependent. In contrast, in the current chapter the

eigenbasis is time-independent, whereas the time-dependence for the components

of χ̃(1) originates from φ(t).

Once the susceptibility tensor is diagonalized, we can calculate the complex

refractive indices ñα =

√
1 + χ̃

(1)
αα ≈ 1 + χ̃

(1)
αα/2 of the material in the direction of

the eigenvectors of χ̃(1), i.e.

ñx′ = 1 +
Nd2

0

2ε0~

(∆p − iγ
∆2
p + γ2

)
φ(t)

ñy′ = 1

ñz′ = 1

(4.14)
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Thus, the sample functions as a birefringent plate, such that the electric field

components of the probe pulse along the ẑ′ and ŷ′ directions propagate as they

would in the bulk material (unaffected by divacancy transitions), while the com-

ponent along the x̂′ direction feels the presence of the divacancy defects in a

time-dependent way.

The Jones matrix formalism allows us to calculate the polarization and ellipticity

of an outcoming beam after it interacts with a sample whose principal axes have

different refractive indices, nx′ and ny′ . In the basis of the principal axes of the

sample {x̂′, ŷ′}, the Jones matrix describing the effect of the interaction with the

sample on the propagating electromagnetic field is given by

Jx̂′,ŷ′ =

[
eiΛnx′ 0

0 eiΛny′

]
(4.15)

where Λ = 2πd/λ, with d denoting the thickness of the sample, and λ the wave-

length of light. A multiplication by a common phase factor yields

Jx̂′,ŷ′ =

[
eiΛ∆n 0

0 1

]
(4.16)

where ∆n = nx′ − ny′ . The matrix Tx̂,ŷ→x̂′,ŷ′

Tx̂,ŷ→x̂′,ŷ′ =
1

d0

[
dx∗ dy∗

−dy dx

]
(4.17)

allows us to write the Jones matrix in the {x̂, ŷ} basis, such that

Jx̂,ŷ =T−1
x̂,ŷ→x̂′,ŷ′Jx̂′,ŷ′Tx̂,ŷ→x̂′,ŷ′

Jx̂,ŷ =
1

d2
0

[
dx −dy∗

dy dx∗

][
eiΛ∆n 0

0 1

][
dx∗ dy∗

−dy dx

]

Jx̂,ŷ =
1

d2
0

[
|dx|2eiΛ∆n + |dy|2 dxdy∗(eiΛ∆n − 1)

dx∗dy(eiΛ∆n − 1) |dy|2eiΛ∆n + |dx|2

] (4.18)

After interacting with the sample, the electromagnetic field is transformed such

that

~Eout = Jx̂,ŷ ~Ein (4.19)
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where ~Ein and ~Eout are the incoming and outcoming beam, respectively. Within

the Jones formalism, the generalized electric field vector ~Ein of an incoming beam

(normalized and global phase factor set to zero) in terms of the azimuth θ and

the ellipticity ε is given by Eq. 1.2, i.e.

~Ein = E0

[
cos(θ) cos(ε)− i sin(θ) sin(ε)

sin(θ) cos(ε) + i cos(θ) sin(ε)

]
(4.20)

It is convenient (following the Cartesian complex-plane representation of polar-

ized light as in [16] and analogous to Chapter 3) to define the ratio

κ = Ex/Ey (4.21)

After substituting Eq. 4.20 and 4.18 into 4.19, one can calculate the change in

the azimuth ∆θ = θout− θin and the change in the ellipticity ∆ε = εout− εin from

tan 2θ =
κ∗ + κ

1− |κ|2
(4.22)

and

sin 2ε =
i(κ∗ − κ)

1 + |κ|2
(4.23)

respectively.

4.3 Estimating the polarization rotation of a lin-

ear probe for a TRFR experiment with c-

axis divacancies in SiC

4.3.1 Assumptions and parameters

To determine whether a TRFR experiment can be applied to SiC divacancies, we

will in this section calculate ∆θ(∆t), i.e the polarization rotation as a function of

the pump-probe delay time, based on the parameters (Table 4.1) and assumptions

that we here elaborate on.

We will here consider a TRFR experiment applied to a homogeneous ensem-

ble of c-axis divacancies (C3v symmetry) in a SiC sample with thickness d = 2
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mm and a divacancy number density of N = 1016 cm−3, based on [87]. For

an inhomogeneously broadened ensemble, the TRFR signal will drop, typically

proportional to 1/σ, with σ the standard deviation of the inhomogeneous broad-

ening[92]. For the initially prepared state (before the pump pulse arrives), we

assume that only the lowest ground state sublevel is populated, i.e. |ψprep〉 = |gl〉.
It is assumed that the transition dipole moments are equal for the x and y di-

rection, i.e. |dx| = |dy| = d0/
√

2, based on previous work showing a weak po-

larization dependence on the transition dipoles in the basal plane[86, 87]. We

have estimated d0 = 6.4 · 10−32 C·m, as worked out in Supplementary Informa-

tion Section 4.6 (p. 111). For both the pump and probe we assume a transition

wavelength of 1082 nm (corresponding to Ee−Eg, with Eg(e) the ground(excited)

state energy), although the probe will be slightly detuned. We take the incoming

pump and probe pulse polarized along the x-direction (i.e. both having θin = 0).

We assume that the delay time ∆t between pump and probe is taken such that

∆t << ω−1
ij and ∆t >> ω−1

eg (with ~ωij = Ee,i − Ee,j and ~ωeg = Ee − Eg). This

ensures that the TRFR experiment will take only account of coherences between

excited state sublevels (not between ground and excited state). The magnetic

field is taken B = 50 mT, along the x-axis (perpendicular to the c-axis). This

implies an excited state energy splitting Ee,u − Ee,l ≈ 1.9 µeV (2.9 GHz angular

frequency). To simultaneously address |el〉 and |eu〉, we propose to use ultrashort

laser pulses with an uncertainty in the photon energy given by σEph > Ee,u−Ee,l.
This requires that the standard deviation of the time duration σt of the pulses

should not exceed 0.17 ns, as follows from the time−energy uncertainty relation.

It should be noted here that although any σt smaller than 0.17 ns satisfies the

criterion of simultaneously addressing the excited state sublevels in order to cre-

Table 4.1: Parameters for a SiC divacancy TRFR experiment applied to a

homogeneous ensemble of spin S=1 divacancies in SiC.

Parameter Value

Bx (⊥ to c-axis) 50 mT

d 2 mm

N 1016 cm−3

λ 1082 nm

∆p -3(Ee,u − Ee,l) = 8.7 GHz

γ 0.1 GHz

d0 6.4 · 10−32 C·m



108 Chapter 4. Proposal for time-resolved ... in divacancy defects in SiC

0 0.2 0.4 0.6 0.8 1
 t (ns)

5.5

6

6.5

7

7.5

8

8.5

 (
ra

d)

10-5

Figure 4.3: Polarization rotation ∆θ of a probe pulse after transmission

through a 2 mm SiC sample, containing a homogeneous ensemble (number density

N = 1016 cm−3) of divacancies (with estimated transition dipole moment d0 = 6.4 ·
10−32 C·m. Furthermore, we consider a magnetic field along the x-axis withB = 50 mT,

a detuning ∆p = 8.7 GHz for the probe laser, and a dephasing γ = 0.1 GHz. The

incoming pump and probe pulse are linearly polarized with θin = 0.

ate a superposition with the pump pulse, one should keep σt as close to 0.17 ns

as possible in order to suppress population transfer to the ground state via the

detuned probe pulse (which requires |∆p| >> |Ee,u−Ee,l|/~, which we assume to

be satisfied by taking ∆p = −3|Ee,u − Ee,l|/~ ≈ −8.7 GHz). Since most pulsed

lasers have σt << 0.17 ns, it might (for the suppression of population transfer to

the ground state) be required to use a larger magnetic field in order to increase

(according to the Zeeman effect) the energy splitting Ee,u−Ee,l or to take the de-

tuning ∆p (much) more than 3 times the sublevel splitting. We take γ = 0.1 GHz

(in order to have ∆p >> γ). This value might be exceeded for high temperatures,

but γ is in the order of MHz below 10 K[87].

4.3.2 Results and discussion

Fig. 4.3 shows the polarization rotation ∆θ(∆t) (Eq. 4.22) of a linearly polar-

ized probe pulse after transmission through a SiC sample with a homogeneous

ensemble of c-axis divacancies, based on the assumptions given in Section 4.3.1.
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In practice, the TRFR signal (and other oscillations) will decay as a function of

(delay) time due to decoherence, which we have not taken into account in our

model. Hence, the TRFR signal is to a good approximation given by the sine

function ∆θ = A∆θ sin(ωul∆t+ ϕ) + b∆θ, with amplitude A∆θ ≈ 1.4 · 10−5 rad,

angular frequency ωul = (Ee,u−Ee,l)/~ ≈ 2.9 GHz, constant b∆θ ≈ 6.9 · 10−5 rad,

and phase ϕ = π/2 (which originate from the first and second term in Eq. 4.10,

respectively).

Analogously, φ(t) (Eq. 4.10), ∆n(t) (Eq. 4.16) and the change of ellipticity

∆ε(∆t) (Eq. 4.23) are to a good approximation sines with the same angular

frequency ωul and phase ϕ, but different amplitudes (Aφ ≈ 0.16, A∆ε ≈ 1.2 · 10−3

rad, A∆n ≈ 0.2 · 10−6) and constant b (bφ ≈ 0.84, b∆ε ≈ 6.0 · 10−3 rad, b∆n ≈
1.05 · 10−6).

We have verified that the polarization rotation scales to a good approximation

linearly with the thickness d (compare Chapter 3.9), as long as the product Λ∆n

(Eq. 4.16) is small.

When the magnetic field is not taken perpendicular to the c-axis, all nine

optical transitions between ground and excited state become allowed. As such,

the pump pulse can induce a superposition of three excited state sublevels, which

ends up as a beating of up to three frequencies in the polarization rotation ∆θ(∆t)

of the probe pulse (as well as in φ(t), ∆n(t) and ∆ε(∆t)).

4.4 Summary and Outlook

In SiC and diamond, SOC is weak. Nonetheless, the crystal symmetry is re-

sponsible for effective selection rules which yield a correlation between the spin-

polarization of color centers and the refractive indices along the principal axes,

allowing the TRFR experiment to be applied to these materials. We have worked

out the fundamentals and scenario for a homogeneous ensemble of c-axis divacan-

cies in SiC. A derivation is given for the polarization rotation of a probe pulse,

induced by time-dependent birefringence. Realistic parameters and assumptions

are considered, giving a polarization rotation (of the probe pulse upon transmis-

sion) of 1.4 · 10−5 rad amplitude, which is well within the measurable range (>

nrad). If a SiC sample with an inhomogeneous ensemble of c-axis divacancies is

used instead, this TRFR signal will drop, but even then it should be possible to

realize a TRFR experiment[92].
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Supplementary Information (SI)

4.6 SI: Estimating the transition dipole moment

of divacancies in SiC

For a monochromatic propagating wave, such as a plane wave or a Gaussian

beam, the optical intensity I relates to the amplitude |E| of the electric field as

I =
cε0n

2
|E|2 (4.24)

with c the speed of light in vacuum, ε0 the vacuum permittivity, and n the

refractive index.

Let us assume that our laser beam can be approximated as a Gaussian beam

for which the peak intensity is given in terms of the optical power P and beam

radius w as

I =
2P

πw2
(4.25)

Assuming that the electric field component of light is parallel to the transition

dipole moment of the system of interest, the Rabi frequency (Eq. 4.3) is given by

Ω =
|µij||E|

~
(4.26)

where µij is the transition dipole moment related to states ψi and ψj.

From Eq. 4.24-4.26 we obtain

|µij| =
~
2

√
πcε0n

Ωw√
P

(4.27)

For a transition between the ground and (lowest) excited state of a spin S=1

SiC divacancy system, our estimate for the transition dipole moment (d0 in the

main text) is 6.4 · 10−32 C·m, based on the following parameters: n = 2.64

corresponding to 6H-SiC at room temperature (becoming somewhat lower at

cryogenic temperatures[93]), Ω = 7.4 MHz, w = 35 µm and P = 1 mW, with the

last three parameters based on [87].
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4.7 SI: Dependency on the magnetic field an-

gle for the optical selection rules of c-axis

divacancies in SiC

The c-axis divacancy in SiC is characterized by a ground and excited state with

spin 1, with addressable optical transitions and weak spin-orbit coupling. Due

to this last feature, we can regard the ground(excited) state eigenvectors as

a product of a spatial component (denoted by
∣∣χg(e)〉) and a spin component

(|g(e)i〉, where g(e) refers to the ground(excited) state and i = l,m, u refers to

the lowest, middle and upper spin eigenstates, respectively). Here, we are in-

terested in obtaining the transition probability between ground state sublevel

(|φg,j〉 = |χg〉 |gj〉) and an excited state sublevel (|φe,i〉 = |χe〉 |ei〉), given by

〈φg,j| ~µ |φe,i〉, where ~µ is the electric dipole operator. Since the electric dipole

operator operates on the spatial component of the electronic wavefunction, we

can rewrite

〈φg,j| ~µ |φe,i〉 = 〈χg| ~µ |χe〉 〈gj|ei〉 (4.28)

which shows that the transition probability between a ground and excited state

sublevel is proportional to the overlap of the spin wavefunctions, 〈ei|gj〉. In order

to calculate this overlap as a function of magnetic field, we refer to the spin

Hamiltonian describing the ground(excited) state of the c-axis divacancy defect

in SiC under the action of a magnetic field, i.e.

Hg(e) = hDg(e)S
2
z + gg(e)µB(SxBx + SyBy + SzBz) (4.29)

where h is Planck’s constant, D is the zero field splitting (ZFS), Si and Bi denote

the Cartesian components of the spin-1 operator and the magnetic field, respec-

tively. The ẑ axis is defined by the symmetries of the crystal and coincides with

the c-axis.

In the absence of a magnetic field, the Hamiltonian is given by the ZFS

term alone, whose eigenvectors are given by the eigenvectors of the operator S2
z .

Thus, the spin eigenvectors in the ground and excited states coincide, despite the

ZFS constant D taking on different values. In this case, the overlap of the spin

eigenfunctions in ground and excited states is given by
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〈gj|ei〉 = δij (4.30)

where δij denotes the Kronecker delta. This means that only direct transitions

(|φe,i〉 ↔ |φg,i〉) are allowed. The same occurs if a magnetic field is applied along

the ẑ direction. In this case, the eigenvectors of both ground and excited states

coincide with the eigenvectors of the operator Sz.

In contrast, if a magnetic field is applied at an angle with the c-axis, the sub-

levels of the ground(excited) state spin Hamiltonian are given by the eigenvectors

of Eq. 4.29. In the basis {|+〉 , |0〉 , |−〉} given by the eigenvectors of Sz (where ẑ

coincides with the crystal c-axis), this operator can be written in matrix form as

Hg(e) =

hDg(e) + gg(e)µBB cos(θ) gg(e)µBB sin(θ) 0

gg(e)µBB sin(θ) 0 gg(e)µBB sin(θ)

0 gg(e)µBB sin(θ) hDg(e) − gg(e)µBB cos(θ)


(4.31)

Here we assume that the magnetic field makes an angle θ with the crystal c-axis,

and its component along the ŷ axis is zero. This last assumption is allowed due to

the symmetry of the defect. For a general θ different from 0 (i.e. for a magnetic

field non-collinear with the c-axis), the eigenvectors of this operator depend on

the value of the ZFS constant Dg(e), such that the eigenvectors of ground and

excited state Hamiltonians differ. In this case, the overlap between sublevels of

ground and excited state 〈gj|ei〉 6= δij, and diagonal transitions (|φg,j〉 ↔ |φe,i〉,
for i 6= j) are allowed for arbitrary i and j.

We note finally the case of a magnetic field perpendicular to the crystal c-

axis (parallel to the basal plane). In this case the angle is θ = π/2 and the

Hamiltonian given in Eq. 4.31 becomes

Hg(e) =

 hDg(e) gg(e)µBB 0

gg(e)µBB 0 gg(e)µBB

0 gg(e)µBB hDg(e)

 (4.32)

The lowest and upper eigenvectors of this operator depend on the value of Dg(e)

and are thus given by different vectors in ground and excited states. However,

the middle eigenvector of this operator is given by |g(e)m〉 = (|+〉 − |−〉)/
√

(2)

(which is an eigenvector of Sx and S2
z ), regardless of the value of Dg(e) or gg(e).
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Thus, this eigenvector is the same in the ground and excited states, i.e. |gm〉 =

|em〉. Within ground and excited states, the eigenvectors of the Hamiltonian are

orthogonal to each other (since 〈gm|gl,u〉 = 0 and 〈em|el,u〉 = 0). This means that

〈em|gl,u〉 = 〈gm|el,u〉 = 0. Thus, although diagonal transitions between the lower

and upper sublevels of ground and excited states are allowed (|φe,l〉 ↔ |φg,u〉 and

|φg,l〉 ↔ |φe,u〉), diagonal transitions into or out of |gm〉 and |em〉 are forbidden.

We consider then a pump pulse used to excite the c-axis divacancies. Just

before the pulse arrives in the sample, the population is entirely in the lowest level

of the ground state. Since the overlap between the lowest level of the ground state

and the middle level of the excited state is zero, the pump pulse is only able to

excite population into the lowest and upper levels of the excited state. Thus, in

this case the only relevant coherence in the system after the pump pulse arrives

is the coherence between the lowest and upper levels of the excited state, such

that only one characteristic frequency is present.

In contrast, if the magnetic field is applied at an angle θ 6= 0, π/2, all optical

transitions are allowed. In this case, population from the lowest level of the

ground state can be excited into all three levels of the excited state. Thus, after

the pump pulse arrives in the sample, all three sublevels of the excited state are

populated, and the coherences in the system are characterized by three oscillating

frequencies corresponding to the three energy differences between the sublevels

of the excited state.



Chapter 5

Identification and tunable optical

coherent control of transition-metal

spins in silicon carbide

Abstract

Color centers in wide-bandgap semiconductors are attractive systems

for quantum technologies since they can combine long-coherent elec-

tronic spin and bright optical properties. Several suitable centers

have been identified, most famously the nitrogen-vacancy defect in

diamond. However, integration in communication technology is hin-

dered by the fact that their optical transitions lie outside telecom

wavelength bands. Several transition-metal impurities in silicon car-

bide do emit at and near telecom wavelengths, but knowledge about

their spin and optical properties is incomplete. We present all-optical

identification and coherent control of molybdenum-impurity spins in

silicon carbide with transitions at near-infrared wavelengths. Our re-

sults identify spin S = 1/2 for both the electronic ground and excited

state, with highly anisotropic spin properties that we apply for imple-

menting optical control of ground-state spin coherence. Our results

show optical lifetimes of ∼60 ns and inhomogeneous spin dephas-

ing times of ∼0.3 µs, establishing relevance for quantum spin-photon

interfacing.

This chapter is based on Ref. 4 on p. 177.

115
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5.1 Introduction

Electronic spins of lattice defects in wide-bandgap semiconductors have come for-

ward as an important platform for quantum technologies[94], in particular for ap-

plications that require both manipulation of long-coherent spin and spin-photon

interfacing via bright optical transitions. In recent years this field showed strong

development, with demonstrations of distribution and storage of non-local entan-

glement in networks for quantum communication[95–99], and quantum-enhanced

field-sensing[100–104]. The nitrogen-vacancy defect in diamond is the material

system that is most widely used[105, 106] and best characterized[107–109] for

these applications. However, its zero-phonon-line (ZPL) transition wavelength

(637 nm) is not optimal for integration in standard telecom technology, which

uses near-infrared wavelength bands where losses in optical fibers are minimal. A

workaround could be to convert photon energies between the emitter-resonance

and telecom values[110–112], but optimizing these processes is very challenging.

This situation has been driving a search for similar lattice defects that do

combine favorable spin properties with bright emission directly at telecom wave-

length. It was shown that both diamond and silicon carbide (SiC) can host

many other spin-active color centers that could have suitable properties[113–116]

(where SiC is also an attractive material for its established position in the semi-

conductor device industry[117, 118]). However, for many of these color centers

detailed knowledge about the spin and optical properties is lacking. In SiC the

divacancy[86, 119, 120] and silicon vacancy[103, 121–123] were recently explored,

and these indeed show millisecond homogeneous spin coherence times with bright

ZPL transitions closer to the telecom band.

We present here a study of transition-metal impurity defects in SiC, which

exist in great variety[89, 124–128]. There is at least one case (the vanadium im-

purity) that has ZPL transitions at telecom wavelengths[125], around 1300 nm,

but we focus here (directed by availability of lasers in our lab) on the molyb-

denum impurity with ZPL transitions at 1076 nm (in 4H-SiC) and 1121 nm (in

6H-SiC), which turns out to be a highly analogous system. Theoretical investiga-

tions[129], early electron paramagnetic resonance[125, 130] (EPR), and photolu-

minescence (PL) studies[131–133] indicate that these transition-metal impurities

have promising properties. These studies show that they are deep-level defects

that can be in several stable charge states, each with a distinctive value for its

electronic spin S and near-infrared optical transitions. Further tuning and engi-

neering possibilities come from the fact that these impurities can be embedded
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in a variety of SiC polytypes (4H, 6H, etc., see Fig. 1a). Recent work by Koehl et

al.[128] studied chromium impurities in 4H-SiC using optically detected mag-

netic resonance. They identified efficient ZPL (little phonon-sideband) emission

at 1042 nm and 1070 nm, and their charge state as neutral with an electronic

spin S = 1 for the ground state.

Our work is an all-optical study of ensembles of molybdenum impurities in

p-type 4H-SiC and 6H-SiC material. The charge and spin configuration of these

impurities, and the defect configuration in the SiC lattice that is energetically

favored, was until our work not yet identified with certainty. Our results show

that these Mo impurities are in the Mo5+(4d1) charge state (we follow here con-

ventional notation[125]: the label 5+ indicates that of an original Mo atom 4

electrons participate in bonds with SiC and that 1 electron is transferred to the

p-type lattice environment). The single remaining electron in the 4d shell gives

spin S = 1/2 for the ground state and optically excited state that we address.

While we will show later that this can be concluded from our measurements, we

assume it as a fact from the beginning since this simplifies the explanation of our

experimental approach.

In addition to this identification of the impurity properties, we explore whether

ground-state spin coherence is compatible with optical control. Using a two-laser

magneto-spectroscopy method[86, 134, 135], we identify the spin Hamiltonian of

the S = 1/2 ground state and optically excited state, which behave as doublets

with highly anisotropic Landé g-factors. This gives insight in how a situation

with only spin-conserving transitions can be broken, and we find that we can use

a weak magnetic field to enable optical transitions from both ground-state spin

levels to a common excited-state level (Λ level scheme). Upon two-laser driving

of such Λ schemes, we observe coherent population trapping (CPT, all-optical

control of ground-state spin coherence and fundamental to operating quantum

memories[15, 136]). The observed CPT reflects inhomogeneous spin dephasing

times comparable to that of the SiC divacancy[86, 87] (near 1 µs).

In what follows, we first present our methods and results of single-laser spec-

troscopy performed on ensembles of Mo impurities in both SiC polytypes. Next,

we discuss a two-laser method where optical spin pumping is detected. This al-

lows for characterizing the spin sublevels in the ground and excited state, and we

demonstrate how this can be extended to controlling spin coherence.

Both the 6H-SiC and 4H-SiC (Fig. 1a) samples were intentionally doped with

Mo. There was no further intentional doping, but near-band-gap photolumines-

cence revealed that both materials had p-type characteristics. The Mo concen-
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trations in the 4H and 6H samples were estimated[132, 133] to be in the range

1015-1017 cm−3 and 1014-1016 cm−3, respectively. The samples were cooled in a

liquid-helium flow cryostat with optical access, which was equipped with a su-

perconducting magnet system. The setup geometry is depicted in Fig. 1b. The

angle φ between the direction of the magnetic field and the c-axis of the crys-

tal could be varied, while both of these directions were kept orthogonal to the

propagation direction of excitation laser beams. In all experiments where we res-

onantly addressed ZPL transitions the laser fields had linear polarization, and we

always kept the direction of the linear polarization parallel to the c-axis. Earlier

studies[129, 132, 133] of these materials showed that the ZPL transition dipoles

are parallel to the c-axis. For our experiments we confirmed that the photolumi-

nescence response was clearly the strongest for excitation with linear polarization

parallel to the c-axis, for all directions and magnitudes of the magnetic fields that

we applied. All results presented in this work come from photoluminescence (PL)

or photoluminescence-excitation (PLE) measurements. The excitation lasers were

focused to a ∼100 µm spot in the sample. PL emission was measured from the

side. A more complete description of experimental aspects is presented in the

Methods section.

5.2 Materials and experimental methods

Both the 6H-SiC and 4H-SiC (Fig. 5.1a) samples were intentionally doped with

Mo. There was no further intentional doping, but near-band-gap photolumines-

cence revealed that both materials had p-type characteristics. The Mo concen-

trations in the 4H and 6H samples were estimated[132, 133] to be in the range

1015-1017 cm−3 and 1014-1016 cm−3, respectively. The samples were cooled in a

liquid-helium flow cryostat with optical access, which was equipped with a su-

perconducting magnet system. The setup geometry is depicted in Fig. 5.1b. The

angle φ between the direction of the magnetic field and the c-axis of the crystal

could be varied, while both of these directions were kept orthogonal to the propa-

gation direction of excitation laser beams. In all experiments where we resonantly

addressed ZPL transitions the laser fields had linear polarization, and we always

kept the direction of the linear polarization parallel to the c-axis (our work and

earlier studies[132, 133] of these materials showed that the ZPL transition dipoles

are parallel to the c-axis). All results presented in this work come from photo-

luminescence (PL) or photoluminescence-excitation (PLE) measurements. The

excitation lasers were focused to a ∼100 µm spot in the sample. PL emission was
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Figure 5.1: Crystal structures of SiC, setup schematic and optical signatures

of Mo in 6H-SiC. a, Schematic illustration of the stacking of Si-C bilayers in the

crystal structure of the 4H-SiC and 6H-SiC polytypes, which gives lattice sites with

cubic and hexagonal local environment labeled by k(1,2) and h, respectively. Our work

revisits the question whether Mo impurities are present as substitutional atoms or

residing inside Si-C divacancies. The c-axis coincides with the growth direction. b,

Schematic of SiC crystal in the setup. The crystal is placed in a cryostat with optical

access. Laser excitation beams are incident on a side facet of the SiC crystal and

propagate along the optical axis (see label), normal to the c-axis. Magnetic fields B

are applied in a direction orthogonal to the optical axis and at angle φ with the c-axis.

Photoluminescence (PL) is detected out of another side facet of the SiC crystal. c, PL

from Mo in 6H-SiC at 3.5 K and zero field, resulting from excitation with an 892.7 nm

laser, with labels identifying the zero-phonon-line (ZPL, at 1.1057 eV) emission and

phonon replicas (shaded and labeled as phonon sideband, PSB). The inset shows the

ZPL as measured by photoluminescence excitation (PLE). Here, the excitation laser is

scanned across the ZPL peak and emission from the PSB is used for detection.
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measured from the side. A more complete description of experimental aspects is

presented in the Methods section.

5.3 Single-laser characterization

For initial characterization of Mo transitions in 6H-SiC and 4H-SiC we used

PL and PLE spectroscopy (see Methods). Figure 5.1c shows the PL emission

spectrum of the 6H-SiC sample at 3.5 K, measured using an 892.7 nm laser for

excitation. The ZPL transition of the Mo defect visible in this spectrum will be

studied in detail throughout this work. The shaded region indicates the emission

of phonon replicas related to this ZPL[132, 133]. While we could not perform

a detailed analysis, the peak area of the ZPL in comparison with that of the

phonon replicas indicates that the ZPL carries clearly more than a few percent of

the full PL emission. Similar PL data from Mo in the 4H-SiC sample, together

with a study of the temperature dependence of the PL, can be found in the

Supplementary Information (Fig. 5.6) (p. 132).

For a more detailed study of the ZPL of the Mo defects, PLE was used. In

PLE measurements, the photon energy of a narrow-linewidth excitation laser is

scanned across the ZPL part of the spectrum, while resulting PL of phonon-

sideband (phonon-replica) emission is detected (Fig. 5.1b, we used filters to keep

light from the excitation laser from reaching the detector, see Methods). The inset

of Fig. 5.1c shows the resulting ZPL for Mo in 6H-SiC at 1.1057 eV (1121.3 nm).

For 4H-SiC we measured the ZPL at 1.1521 eV (1076.2 nm, see Supplementary

Information). Both are in close agreement with literature[132, 133]. Temperature

dependence of the PLE from the Mo defects in both 4H-SiC and 6H-SiC can be

found in the Supplementary Information (Fig. 5.7) (p. 133).

The width of the ZPL is governed by the inhomogeneous broadening of the

electronic transition throughout the ensemble of Mo impurities, which is typically

caused by nonuniform strain in the crystal. For Mo in 6H-SiC we observe a

broadening of 24±1 GHz FWHM, and 23±1 GHz for 4H-SiC. This inhomogeneous

broadening is larger than the anticipated electronic spin splittings[125], and it

thus masks signatures of spin levels in optical transitions between the ground

and excited state.
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Figure 5.2: Two-laser spectroscopy results for Mo in 6H-SiC. a, Working

principle of two-laser spectroscopy: one laser at frequency f0 is resonant with the |g2〉-
|e2〉 transition, the second laser is detuned from the first laser by δ. If δ is such that

the second laser becomes resonant with another transition (here sketched for |g1〉-|e2〉)
the photoluminescence will increase since optical spin-pumping by the first laser is

counteracted by the second and vice versa. b-d, Photoluminescence excitation (PLE)

signals as function of two-laser detuning at 4 K. b, Magnetic field dependence with

field parallel to the c-axis (φ = 1◦). For clarity, data in the plot have been magnified

by a factor 10 right from the dashed line. Two peaks are visible, labeled L1 and L2

(the small peak at 3300 MHz is an artefact from the Fabry-Pérot interferometer in the

setup). c, Magnetic field dependence with the field nearly perpendicular to the c-axis

(φ = 87◦). Three peaks and a dip (enlarged in the inset) are visible. These four features

are labeled L1 through L4. The peak positions as a function of field in b-c coincide

with straight lines through the origin (within 0.2% error). d, Angle dependence of the

PLE signal at 300 mT. Peaks L1 and L4 move to the left with increasing angle, whereas

L2 moves to the right. The data in b-d are offset vertically for clarity.
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5.4 Two-laser characterization

In order to characterize the spin-related fine structure of the Mo defects, a two-

laser spectroscopy technique was employed[86, 134, 135]. We introduce this for

the four-level system sketched in Fig. 5.2a. A laser fixed at frequency f0 is reso-

nant with one possible transition from ground to excited state (for the example in

Fig. 5.2a |g2〉 to |e2〉), and causes PL from a sequence of excitation and emission

events. However, if the system decays from the state |e2〉 to |g1〉, the laser field

at frequency f0 is no longer resonantly driving optical excitations (the system

goes dark due to optical pumping). In this situation, the PL is limited by the

(typically long) lifetime of the |g1〉 state. Addressing the system with a second

laser field, in frequency detuned from the first by an amount δ, counteracts opti-

cal pumping into off-resonant energy levels if the detuning δ equals the splitting

∆g between the ground-state sublevels. Thus, for specific two-laser detuning val-

ues corresponding to the energy spacings between ground-state and excited-state

sublevels the PL response of the ensemble is greatly increased. Notably, this

technique gives a clear signal for sublevel splittings that are smaller than the in-

homogeneous broadening of the optical transition, and the spectral features now

reflect the homogeneous linewidth of optical transitions[86, 87].

In our measurements a 200 µW continuous-wave control and probe laser were

made to overlap in the sample. For investigating Mo in 6H-SiC the control beam

was tuned to the ZPL at 1121.32 nm (fcontrol = f0 = 267.3567 THz), the probe

beam was detuned from f0 by a variable detuning δ (i.e. fprobe = f0 + δ). In

addition, a 100 µW pulsed 770 nm re-pump laser was focused onto the defects to

counteract bleaching of the Mo impurities due to charge-state switching[86, 137,

138] (which we observed to only occur partially without re-pump laser). All three

lasers were parallel to within 3◦ inside the sample. A magnetic field was applied

to ensure that the spin sublevels were at non-degenerate energies. Finally, we

observed that the spectral signatures due to spin show strong broadening above

a temperature of ∼10 K, and we thus performed measurements at 4 K (unless

stated otherwise).

Figure 5.2b shows the dependence of the PLE on the two-laser detuning for the

6H-SiC sample (4H-SiC data in Supplementary Information Fig. 5.10 (p. 137)),

for a range of magnitudes of the magnetic field (here aligned close to parallel

with the c-axis, φ = 1◦). Two emission peaks can be distinguished, labeled line

L1 and L2. The emission (peak height) of L2 is much stronger than that of L1.

Figure 5.2c shows the results of a similar measurement with the magnetic field
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nearly orthogonal to the crystal c-axis (φ = 87◦), where four spin-related emission

signatures are visible, labeled as lines L1 through L4 (a very small peak feature

left from L1, at half its detuning, is an artifact that occurs due to a leakage effect

in the spectral filtering that is used for beam preparation, see Methods). The

two-laser detuning frequencies corresponding to all four lines emerge from the

origin (B = 0, δ = 0) and evolve linearly with magnetic field (we checked this up

to 1.2 T). The slopes of all four lines (in Hertz per Tesla) are smaller in Fig. 5.2c

than in Fig 5.2b. In contrast to lines L1, L2 and L4, which are peaks in the PLE

spectrum, L3 shows a dip.

In order to identify the lines at various angles φ between the magnetic field

and the c-axis, we follow how each line evolves with increasing angle. Figure 5.2d

shows that as φ increases, L1, L3, and L4 move to the left, whereas L2 moves

to the right. Near 86◦, L2 and L1 cross. At this angle, the left-to-right order

of the emission lines is swapped, justifying the assignment of L1, L2, L3 and L4

as in Fig. 5.2b,c. The Supplementary Information presents further results from

two-laser magneto-spectroscopy at intermediate angles φ (section 5.12a (p. 133)).

5.5 Analysis

We show below that the results in Fig. 5.2 indicate that the Mo impurities have

electronic spin S = 1/2 for the ground and excited state. This contradicts pre-

dictions and interpretations of initial results[125, 129, 132, 133]. Theoretically, it

was predicted that the defect associated with the ZPL under study here is a Mo

impurity in the asymmetric split-vacancy configuration (Mo impurity asymmet-

rically located inside a Si-C divacancy), where it would have a spin S = 1 ground

state with zero-field splittings of about 3 to 6 GHz[125, 129, 132, 133]. However,

this would lead to the observation of additional emission lines in our measure-

ments. Particularly, in the presence of a zero-field splitting, we would expect to

observe two-laser spectroscopy lines emerging from a nonzero detuning[86]. We

have measured near zero fields and up to 1.2 T, as well as up to 21 GHz detuning

(Supplementary Information section 5.12b (p. 133)), but found no more peaks

than the four present in Fig. 5.2c. A larger splitting would have been visible as a

splitting of the ZPL in measurements as presented in the inset of Fig. 5.1c, which

was not observed in scans up to 1000 GHz. Additionally, a zero-field splitting

and corresponding avoided crossings at certain magnetic fields would result in

curved behavior for the positions of lines in magneto-spectroscopy. Thus, our

observations rule out that there is a zero-field splitting for the ground-state and
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excited-state spin sublevels. In this case the effective spin-Hamiltonian[139] can

only take the form of a Zeeman term

Hg(e) = µBgg(e)B · S̃ (5.1)

where gg(e) is the g-factor for the electronic ground (excited) state (both assumed

positive), µB the Bohr magneton, B the magnetic field vector of an externally

applied field, and S̃ the effective spin vector. The observation of four emission

lines can be explained, in the simplest manner, by a system with spin S = 1/2

(doublet) in both the ground and excited state.

For such a system, Fig. 5.3 presents the two-laser optical pumping schemes

that correspond to the observed emission lines L1 through L4. Addressing the

system with the V-scheme excitation pathways from Fig. 5.3c leads to increased

pumping into a dark ground-state sublevel, since two excited states contribute

to decay into the off-resonant ground-state energy level while optical excitation

out of the other ground-state level is enhanced. This results in reduced emission

observed as the PLE dip feature of L3 in Fig. 5.2c (for details see Supplementary

Information section 5.15 (p.140)).

We find that for data as in Fig. 5.2c the slopes of the emission lines are

correlated by a set of sum rules

ΘL3 = ΘL1 + ΘL2 (5.2)

ΘL4 = 2ΘL1 + ΘL2 (5.3)

Here ΘLn denotes the slope of emission line Ln in Hertz per Tesla. The two-laser

detuning frequencies for the pumping schemes in Fig. 5.3a-d are related in the

same way, which justifies the assignment of these four schemes to the emission

lines L1 through L4, respectively. These schemes and equations directly yield

the g-factor values gg and ge for the ground and excited state (Supplementary

Information section 5.12 (p. 133)).

We find that the g-factor values gg and ge strongly depend on φ, that is, they

are highly anisotropic. While this is in accordance with earlier observations for

transition metal defects in SiC[125], we did not find a comprehensive report on the

underlying physical picture. In Supplementary Information section 5.17 (p. 144)

we present a group-theoretical analysis that explains the anisotropy gg ≈ 1.7 for

φ = 0◦ and gg = 0 for φ = 90◦, and similar behavior for ge (which we also use to

identify the orbital character of the ground and excited state). In this scenario

the effective Landé g-factor[139] is given by

g(φ) =

√(
g‖ cosφ

)2
+ (g⊥ sinφ)2 (5.4)
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Figure 5.3: Two-laser pumping schemes with optical transitions between S

= 1/2 ground and excited states. a, Λ scheme, responsible for L1 emission feature:

Two lasers are resonant with transitions from both ground states |g1〉 (red arrow) and

|g2〉 (blue arrow) to a common excited state |e2〉. This is achieved when the detuning

equals the ground-state splitting ∆g. The gray arrows indicate a secondary Λ scheme

via |e1〉 that is simultaneously driven in an ensemble when it has inhomogeneous values

for its optical transition energies. b, Π scheme, responsible for L2 emission feature: Two

lasers are resonant with both vertical transitions. This is achieved when the detuning

equals the difference between the ground-state and excited-state splittings, |∆g−∆e|. c,

V scheme, responsible for L3 emission feature: Two lasers are resonant with transitions

from a common ground state |g1〉 to both excited states |e1〉 (blue arrow) and |e2〉 (red

arrow). This is achieved when the laser detuning equals the excited state splitting ∆e.

The gray arrows indicate a secondary V scheme that is simultaneously driven when the

optical transition energies are inhomogeneously broadened. d, X scheme, responsible

for the L4 emission feature: Two lasers are resonant with the diagonal transitions in

the scheme. This is achieved when the detuning is equal to the sum of the ground-state

and the excited-state splittings, (∆g + ∆e).

where g‖ represents the component of g along the c-axis of the silicon carbide

structure and g⊥ the component in the basal plane. Figure 5.4 shows the ground

and excited state effective g-factors extracted from our two-laser magnetospec-

troscopy experiments for 6H-SiC and 4H-SiC (additional experimental data can

be found in the Supplementary Information). The solid lines represent fits to the

equation (5.4) for the effective g-factor. The resulting g‖ and g⊥ parameters are

given in table 5.1.

The reason why diagonal transitions (in Fig. 5.3 panels a,c), and thus the
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Table 5.1: Components of the g-factors for the spin of Mo impurities in SiC

g‖ g⊥

4H-SiC

ground state 1.87± 0.2 0.04± 0.04

excited state 1.39± 0.2 0.10± 0.02

6H-SiC

ground state 1.61± 0.02 0.000± 0.004

excited state 1.20± 0.02 0.11± 0.02

Λ and V scheme are allowed, lies in the different behavior of ge and gg. When

the magnetic field direction coincides with the internal quantization axis of the

defect, the spin states in both the ground and excited state are given by the basis

of the Sz operator, where the z-axis is defined along the c-axis. This means that

the spin-state overlap for vertical transitions, e.g. from |g1〉 to |e1〉, is unity. In

such cases, diagonal transitions are forbidden as the overlap between e.g. |g1〉
and |e2〉 is zero. Tilting the magnetic field away from the internal quantization

axis introduces mixing of the spin states. The amount of mixing depends on

the g-factor, such that it differs for the ground and excited state. This results

in a tunable non-zero overlap for all transitions, allowing all four schemes to

be observed (as in Fig. 5.2b where φ = 87◦). This reasoning also explains the

suppression of all emission lines except L2 in Fig. 5.2b, where the magnetic field

is nearly along the c-axis. A detailed analysis of the relative peak heights in

Fig. 5.2b-c compared to wave function overlap can be found in the Supplementary

Information (section 5.14 (p. 138)).

5.6 Coherent Population Trapping

The Λ driving scheme depicted in Fig. 5.3a, where both ground states are coupled

to a common excited state, is of particular interest. In such cases it is possible

to achieve all-optical coherent population trapping (CPT)[15], which is of great

significance in quantum-optical operations that use ground-state spin coherence.

This phenomenon occurs when two lasers address a Λ system at exact two-photon

resonance, i.e. when the two-laser detuning matches the ground-state splitting.

The ground-state spin system is then driven towards a superposition state that
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Figure 5.4: Effective g-factors for the spin of Mo impurities in SiC. Angular

dependence of the g-factor for the S = 1/2 ground (gg) and excited states (ge) of the

Mo impurity in 4H-SiC and 6H-SiC. The solid lines indicate fits of equation (5.4) to

the data points extracted from two-laser magneto-spectroscopy measurements as in

Fig. 5.2b,c.

approaches |ΨCPT 〉 ∝ Ω2 |g1〉 − Ω1 |g2〉 for ideal spin coherence. Here Ωn is the

Rabi frequency for the driven transition from the |gn〉 state to the common ex-

cited state. Since the system is now coherently trapped in the ground state, the

photoluminescence decreases.

In order to study the occurrence of CPT, we focus on the two-laser PLE fea-

tures that result from a Λ scheme. A probe field with variable two-laser detuning

relative to a fixed control laser was scanned across this line in frequency steps

of 50 kHz, at 200 µW. The control laser power was varied between 200 µW

and 5 mW. This indeed yields signatures of CPT, as presented in Fig. 5.5. A

clear power dependence is visible: when the control beam power is increased, the

depth of the CPT dip increases (and can fully develop at higher laser powers or

by concentrating laser fields in SiC waveguides[87]). This observation of CPT

also confirms our earlier interpretation of lines L1-L4, in that it confirms that L1

results from a Λ scheme.

Using a standard model for CPT[15], adapted to account for strong inhomo-

geneous broadening of the optical transitions[87] (see also Supplementary Infor-

mation section 5.16 (p. 143)) we extract an inhomogeneous spin dephasing time

T ∗2 of 0.32 ± 0.08 µs and an optical lifetime of the excited state of 56 ± 8 ns.

The optical life time is about a factor two longer than that of the nitrogen-
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Figure 5.5: Signatures of coherent population trapping of Mo spin states in

6H-SiC. Two-laser spectroscopy of the L1 peak in the PLE signals reveals a dipped

structure in the peak at several combinations of probe-beam and control-beam power.

This results from coherent population trapping (CPT) upon Λ-scheme driving. Tem-

perature, magnetic field orientation and magnitude, and laser powers, were as labeled.

The data are offset vertically for clarity. Solid lines are fits of a theoretical model of

CPT (see main text). The inset shows the normalized CPT feature depths.

vacancy defect in diamond[105], indicating that the Mo defects can be applied

as bright emitters. The value of T ∗2 is relatively short but sufficient for appli-

cations based on CPT[15]. Moreover, the EPR studies by Baur et al.[125] on

various transition-metal impurities show that the inhomogeneity probably has

a strong static contribution from an effect linked to the spread in mass for Mo

isotopes in natural abundance (nearly absent for the mentioned vanadium case),

compatible with elongating spin coherence via spin-echo techniques. In addition,

this work showed that the hyperfine coupling to the impurity nuclear spin can be

resolved. There is thus clearly a prospect for storage times in quantum memory

applications that are considerably longer than T ∗2 .
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5.7 Further discussion

The anisotropic behavior of the g-factor similar to what we observe for Mo was

also observed in the EPR studies by Baur et al.[125] (for vanadium and titanium

g‖ ≈ 1.7 and g⊥ = 0 for the ground state was observed). In these cases the

transition metal has a single electron in its 3d orbital and occupies the hexagonal

(h) Si substitutional site. The correspondence with what we observe for the

Mo impurity strongly suggests that our materials have Mo impurities present as

Mo5+(4d1) systems residing on a hexagonal h silicon substitutional site. In this

case, the molybdenum would be bonded in a tetrahedral geometry, sharing four

electrons with its nearest neighbors, and the defect is in a singly ionized +|e|
charge state (e denotes the elementary charge). This is plausible for the p-type

SiC host material in our experiments.

However, recently Ivády et al. proposed the existence of the asymmetric split-

vacancy (ASV) defect in SiC based on theoretical work[126]. An ASV defect in

SiC occurs when an impurity occupies the divacancy formed by adjacent silicon

and carbon vacancies. The local symmetry of this defect is a distorted octahedron

with a threefold symmetry axis in which the strong g-factor anisotropy (g⊥ = 0)

may also be present for the S = 1/2 state[139]. Considering six shared electrons

for this divacancy environment, the 4d1 Mo configuration would now occur for

the singly charged −|e| state (which is not a likely scenario for our case given

that we have p-type material).

In addition, Baur et al.[125] studied the Mo5+(4d1) charge state in slightly n-

type 6H-SiC and reported a fully isotropic g-factor. This corresponds to Mo on a

site with cubic symmetry (k) in the crystal field[139] (see also Supplementary In-

formation section 5.17 (p. 144)). Furthermore, it was mentioned that Mo5+(4d1)

in n-type SiC could not be addressed optically. We thus propose that Mo5+(4d1)

on a lattice site with cubic symmetry may only be stable in n-type SiC, and that

its transitions are possibly optically forbidden. On the other hand, Mo5+(4d1) in

hexagonal symmetry is stable in p-type SiC and optically accessible.

5.8 Summary and Outlook

We have studied ensembles of molybdenum defect centers in 6H and 4H sili-

con carbide with 1.1521 eV and 1.1057 eV transition energies, respectively. The

ground-state and excited-state spin of both defects was determined to be S = 1/2

with large g-factor anisotropy. Since this is allowed in hexagonal symmetry, but



130 Chapter 5. Identification and tunable optical coherent control...

forbidden in cubic, we find this to be consistent with theoretical descriptions that

predict that Mo resides at a hexagonal lattice site in 4H-SiC and 6H-SiC[126, 129],

and our p-type host environment strongly suggests that this occurs for Mo at a

silicon substitutional site. We used the measured insight in the S = 1/2 spin

Hamiltonians for tuning control schemes where two-laser driving addresses tran-

sitions of a Λ system, and observed CPT for such cases. This demonstrates that

the Mo defect and similar transition-metal impurities are promising for quantum

information technology. In particular for the highly analogous vanadium color

center, engineered to be in SiC material where it stays in its neutral V4+(3d1)

charge state, this holds promise for combining S = 1/2 spin coherence with op-

eration directly at telecom wavelengths.

5.9 Methods

Cryostat During all measurements, the sample was mounted in a helium flow

cryostat with optical access through four windows and equipped with a super-

conducting magnet system.

Photoluminescence (PL) The PL spectrum of the 6H-SiC sample was mea-

sured by exciting the material with an 892.7 nm laser, and using a double

monochromator equipped with infrared-sensitive photomultiplier. For the 4H-

SiC sample, we used a 514.5 nm excitation laser and an FTIR spectrometer.

Photoluminescence Excitation (PLE) The PLE spectrum was measured by

exciting the defects using a CW diode laser tunable from 1178 nm to 1158 nm

with linewidth below 50 kHz, stabilized within 1 MHz using feedback from a

HighFinesse WS-7 wavelength meter. The polarization was linear along the sam-

ple c-axis. The laser spot diameter was ∼100 µm at the sample. The PL exiting

the sample sideways was collected with a high-NA lens, and detected by a single-

photon counter. The excitation laser was filtered from this signal using a set of

three 1082 nm (for the 4H-SiC case) or 1130 nm (for the 6H-SiC case) longpass

interference filters. PLE was measured using an ID230 single-photon counter.

Additionally, to counter charge state switching of the defects, a 770 nm re-pump

beam from a tunable pulsed Ti:sapphire laser was focused at the same region in

the sample. Laser powers as mentioned in the main text.

Two-laser characterization The PLE setup described above was modified by

focusing a detuned laser beam to the sample, in addition to the present beams.

The detuned laser field was generated by splitting off part of the stabilized diode

laser beam. This secondary beam was coupled into a single-mode fiber and passed
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through an electro-optic phase modulator in which an RF signal (up to ∼5 GHz)

modulated the phase. Several sidebands were created next to the fundamen-

tal laser frequency, the spacing of these sidebands was determined by the RF

frequency. Next, a Fabry-Pérot interferometer was used to select one of the first-

order sidebands (and it was locked to the selected mode). The resulting beam

was focused on the same region in the sample as the original PLE beams (diode

laser and re-pump) with similar spot size and polarization along the sample c-

axis. Laser powers were as mentioned in the main text. Small rotations of the

c-axis with respect to the magnetic field were performed using a piezo-actuated

goniometer with 7.2 degrees travel.

5.10 Author contributions

This chapter is based on Ref. 4 on p. 177. The project was initiated by C.H.W.,

O.V.Z, I.G.I and N.T.S. SiC materials were grown and prepared by A.E. and B.M.

Experiments were performed by T.B., G.J.J.L. and O.V.Z, except for the PL

measurements which were done by A.G. and I.G.I. Data analysis was performed

by T.B., G.J.J.L., C.G., O.V.Z., F.H., R.W.A.H. and C.H.W. T.B., G.J.J.L. and

C.H.W. had the lead on writing the manuscript, and T.B. and G.J.J.L. are co-first

author. All authors read and commented on the manuscript.
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Supplementary Information (SI)

5.11 SI: Single-laser spectroscopy

Figure 5.6 shows the photoluminescence (PL) emission spectrum of the 4H-SiC

sample at 5 and 20 K, characterized using a 514.5 nm excitation laser. The

Mo zero-phonon line (ZPL) at 1.1521 eV is marked by a dashed box and shown

enlarged in the inset. The broader peaks at lower energies are phonon replicas of

the ZPL. There is almost no dependence on temperature for both the ZPL and

the phonon replicas.
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Figure 5.6: Temperature dependence of Mo PL spectrum in 4H-SiC. PL from

excitation with a 514.5 nm laser, for 5 and 20 K sample temperatures. The dashed

box marks the ZPL at 1.1521 eV. The inset gives a magnified view of the ZPL. The

broader peaks at lower photon energies are phonon replicas of the ZPL.

Figures 5.7a,b show results of PLE measurements of the ZPL for Mo in 4H-

SiC at 1.1521 eV and 6H-SiC at 1.1057 eV, and the temperature dependence of

these PLE signals. When the temperature is decreased, the width of the ZPL
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stays roughly the same, but its height drops significantly. Combined with the

near-independence on temperature of the emission spectrum in Fig. 5.6, this is an

indication for optical spin pumping for Mo-impurity states at lower temperatures,

where a single resonant laser pumps then the system into long-lived off-resonant

spin states.
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Figure 5.7: Temperature dependence of the PLE signals from the Mo ZPL

in 4H-SiC and 6H-SiC. PLE signals from scanning a single CW narrow-linewidth

laser across the ZPL photon-energy range. The temperature was varied between 4 and

20 K. The ZPL for Mo in (a) 4H-SiC is at 1.1521 eV, and for Mo in (b) 6H-SiC at

1.1057 eV.

5.12 SI: Additional two-laser spectroscopy for

Mo in 6H-SiC

Angle dependence. In addition to Fig. 5.2b,c in the main text, we also mea-

sured the magnetic field dependence of the spin related emission signatures at

intermediate angles φ. Figure 5.8 shows this dependence for φ = 37◦, 57◦ and

81◦. The spectroscopic position of emission lines Ln show a linear dependence on

magnetic field, with slopes ΘLn (in Hertz per Tesla) that decrease as φ increases.

The effective g-factors in Fig. 5.4 are acquired from the emission lines by relating

their slopes to the Zeeman splittings in the ground and excited state. Using the
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four pumping schemes depicted in Fig. 5.3 in the main text, we derive

ΘL1 =
µB
h
gg (5.5)

ΘL2 =
µB
h
|ge − gg| (5.6)

ΘL3 =
µB
h
ge (5.7)

ΘL4 =
µB
h

(ge + gg) (5.8)

where h is Planck’s constant, µB the Bohr magneton and gg(e) the ground (ex-

cited) state g-factor.
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Figure 5.8: Magneto-spectroscopy of two-laser spin signatures in PLE from

Mo in 6H-SiC. Magnetic field dependence of the PLE signal versus two-laser detuning,

for angles φ between the magnetic field and c-axis set to φ = 37◦ (a), φ = 57◦ (b) and

φ = 81◦ (c). Results for the temperature at 4 K. The labeling of the emission lines (L1

- L4) is consistent with Fig. 5.2. The data are offset vertically for clarity.

Two-laser spectroscopy for the 5-21 GHz detuning range. In order to

check for a possible presence of spin-related emission features at detunings larger

than 5 GHz (checking for a possible zero-field splitting), we modified the setup

such that we could control two-laser detunings up to 21 GHz. The electro-optical

phase modulator (EOM) we used for generating the detuned laser field could

generate first-order sidebands up to 7 GHz. In order to check for two-laser spec-

troscopy emission features at larger detunings, we removed the Fabry-Pérot (FP)

resonator that had the role of filtering out a single sideband. Now, all sidebands

(on the same optical axis) were focused onto the sample with 2 mW total laser

power. Apart from the re-pump beam, no additional laser was focused onto the
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sample in this experiment. In this way, the Mo defects could interact with several

combinations of sidebands. Figure 5.9a shows the spectral content of this beam

(here characterized by still using the FP resonator). The first and second order

sidebands at negative and positive detuning take a significant portion of the to-

tal optical power. Hence, pairs of sidebands spaced by single, double or triple

frequency intervals (EOM frequency fEOM) now perform two-laser spectroscopy

on the Mo defects. The relevant sideband spacings are indicated in Fig. 5.9a.

Figure 5.9b presents results of these measurements, showing various peaks

that we identified and label as Ln,m. Here n is identifying the peak as a line Ln
as in the main text, while the label m identifies it as a spectroscopic response for

two-laser detuning at m · fEOM (that is, m = 1 is for first-order EOM sideband

spacing, etc.). Note that second-order manifestations of the known peaks L1-L4

(from double sideband spacings, labeled as Ln,2) are now visible at 1
2
fEOM, and

third-order response of the known L1-L4 occurs at 1
3
fEOM (but for preserving

clarity these have not been labeled in Fig. 5.9b).

Figure 5.9c depicts a continuation of this experiment with fEOM up to 7 GHz

with the same resolution as Fig. 5.9b. No new peaks are observed. Considering

that third-order peaks were clearly visible before, we conclude that no additional

two-laser emission features exist up to 21 GHz.

5.13 SI: Two-laser spectroscopy for Mo in 4H-

SiC

We also studied the spin-related fine structure of Mo defects in 4H-SiC. Our 4H-

SiC sample suffered from large background absorption, which drastically lowered

the signal-to-noise ratio. We relate this absorption to a larger impurity content (of

unknown character, but giving broad-band absorption) in our 4H-SiC material as

compared to our 6H-SiC material. Therefore, the lasers were incident on a corner

of the sample, so as to minimize the decay of the emitted PL. We present the

results in gray-scale plots in Fig. 5.10 for optimized contrast. The figure shows

the magnetic field and two-laser detuning dependence of the PLE.

Analogous to Fig. 5.2 for 6H-SiC in the main text, the spectroscopic position

features appear as straight lines that emerge from zero detuning, indicating the

absence of a zero-field splitting. When the magnetic field is nearly perpendicular

to the c-axis (Fig. 5.10c), four lines are visible. This is consistent with an S = 1/2

ground and excited state.
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Figure 5.9: Two-laser spin signatures of Mo in 6H-SiC at large detuning.

a, Transmission scan of the Fabry-Pérot resonator, characterizing which optical fre-

quencies are present in the beam after passing through the electro-optical modulator

(EOM). The first-order sidebands at ±300 MHz have the highest intensity, whereas

the fundamental laser frequency is suppressed (but not fully removed) by the EOM.

Relevant sideband spacings are indicated. b, Spin signatures at low two-laser detun-

ing. PLE is increased when two sidebands are appropriately detuned from each other.

Emission features similar to those in Fig. 5.2c of the main text are visible, and labeled

Ln,m (see main text of this section). c, The PLE signal from two-laser spectroscopy

at larger detuning. No peaked features from single, double or triple sideband spacings

are visible.

The data from Fig. 5.10c was measured at 10 K, whereas Fig. 5.10a,b was at

4.2 K. At 10 K, all emission lines become dips, while for 6H-SiC only the V system

shows a dip. The temperature dependence of L3 and L1 is shown in Fig. 5.11

for the same configuration as in Fig. 5.10c (φ = 83◦). At low temperatures

L1 shows a peak and L3 shows a dip. Upon increasing the temperature, both

features become dips. This phenomenon was only observed for Mo in 4H-SiC, it

could not be seen in 6H-SiC. We therefore conclude that this probably arises from

effects where Mo absorption and emission is influenced by the large background
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Figure 5.10: Two-laser spin signatures of Mo in 4H-SiC. PLE signal as function

of two-laser detuning and magnetic field strength, for various angles φ between the

magnetic field and c-axis. a, Measurement at 4.2 K, with φ = 33◦. A single emission

line (peak) is visible, labeled L2. b, Measurement at 4.2 K, with φ = 57◦. Three

emission lines are visible, labeled L1, L2 (peaks), and L3 (dip). c, Measurement at

10 K, with φ = 83◦. Four emission lines are visible, labeled L1 through L4 (all dips).

Note that the measurement range of c is six time as large as a and b, but the plot

aspect ratio is the same. The labeling is consistent with the main text. A gray-scale

plot has been used for optimal contrast.

absorption in the 4H-SiC material.

The labels in Fig. 5.10 are assigned based on the sum rules from equation

(5.2) and (5.3) (main text), which indeed also hold for the observed emission

lines observed here. Like in the main text, L1 through L4 indicate Λ, Π, V and X

two-laser pumping schemes, respectively. The L1 and L3 labels are interchange-
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Figure 5.11: Temperature dependence of PLE spin signatures from Mo in

4H-SiC. PLE signal as function of two-laser detuning and temperature with magnetic

field at φ = 83◦ from the sample c-axis at 100 mT. As the temperature increases,

the signal from L1 changes from a peak to a broad dip, while L3 remains a dip. The

labeling is consistent with the main text.

able in Fig. 5.10c when only considering the sum rules. However, the fact that

the left feature in Fig. 5.11 shows a dip for all temperatures means that it should

be related to a V scheme. Thus, the current assignment of the labels with corre-

sponding pumping schemes is justified. Using equations 5.5 through 5.8 (Suppl.

Inf.), the effective g-factors can be determined. Fitting these to equation (5.4)

gives the values for g‖ and g⊥ reported in the main text.

5.14 SI: Franck-Condon principle with respect

to spin

The amplitude of the two-laser emission signatures is determined by the strength

of the underlying optical transitions. For a transition |gi〉-|ej〉, this strength is

determined by the spin overlap 〈gi|ej〉, according to the Franck-Condon principle

with respect to spin[10]. The quantum states of the spin in the electronic ground

and excited state can be described using effective spin Hamiltonian

Hg(e) = µBB · gg(e) · S̃ (5.9)
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with µB the Bohr magneton, B the applied magnetic field vector, S̃ the effective

spin vector, and where the ground (excited) state g-parameter is a tensor gg(e).

Using Cartesian coordinates this can be written as

gg(e) =

g
g(e)
⊥ 0 0

0 g
g(e)
⊥ 0

0 0 g
g(e)
‖

 (5.10)

Here the z-axis is parallel to the SiC c-axis, and the x and y-axes lay in the plane

perpendicular to the c-axis. Due to the symmetry of the defect, the magnetic

field B can be written as

B =

 0

B sinφ

B cosφ

 (5.11)

where B indicates the magnitude of the magnetic field. The resulting Hamil-

tonian Hg(e) may be found by substituting B and gg(e) into equation (5.9), and

considering that S = 1/2. The basis of Hg(e) can be found from the eigenvectors.

For the ground state gg⊥ is zero, thus the bases of Hg and Sz coincide, indepen-

dent of φ. Therefore, there is no mixing of spins in the ground state. However, in

the excited state ge⊥ is nonzero, causing its eigenbasis to rotate if a magnetic field

is applied non-parallel to the c-axis. The new eigenbasis is a linear combination

of eigenstates of Sx, Sy and Sz, such that there will be mixing for spins in the

excited state for any nonzero angle φ.

We calculate the spin overlap for the |gi〉-|ej〉 transition from the inner product

of two basis states |gi〉 and |ej〉. The strength of a two-laser pumping scheme is

then the product of the strength of both transitions. For example, the strength

of the Λ scheme from Fig. 5.3a equals the inner product 〈g1|e2〉 multiplied by

〈g2|e2〉. The resulting strengths for all four pumping schemes are depicted in

Fig. 5.12.

We now compare these transition strengths to the data in Fig. 5.2b,c and

Fig. 5.8 and 5.10. It is clear that the Π scheme is the strongest pumping scheme

for all angles φ 6= 90◦. This explains the large relative amplitude of L2 in our

measurements. The Λ and V scheme transition strengths are equal, starting from

zero for φ = 0◦ and increasing as φ approaches 90◦. For the Λ scheme, this is

consistent with the increasing relative amplitude of L1. For φ close to 90◦ the

amplitude of L1 is even larger than for L2. The reason for this is that a Λ scheme

is emitting more effectively than a Π scheme. The V scheme is harder to observe
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Figure 5.12: Two-laser pumping scheme transition strengths. For each scheme

the product of the spin overlaps from both underlying transitions is shown. The

strength of the Π scheme is near unity for large angles and never vanishes. The

strengths of the Λ and V schemes are equal, they vanish at φ = 0◦. The X scheme

strength vanishes more rapidly than any other scheme for angles φ close to 0◦.

in the background emission, such that L3 is only visible for φ close to 90◦. Finally,

the transition strength of the X scheme is only significant for φ close to 90◦, which

is why we have not been able to observe L4 below 81◦ in 6H-SiC.

5.15 SI: V-scheme dip

Understanding the observation of a dip for the V pumping scheme in a four-level

system (Fig. 5.2c in the main text) is less trivial than for the observation of peaks

from the other three pumping schemes. The latter can be readily understood

from the fact that for proper two-laser detuning values both ground states are

addressed simultaneously, such that there is no optical pumping into dark states.

In this section we will investigate how a dip feature can occur in the PLE signals.

Our modeling will be based on solving a master equation in Lindblad form with

a density matrix in rotating wave approximation for a four-level system with two

near-resonant lasers[15].

Consider the four-level system depicted in Fig. 5.13a. A control laser is near-

resonant with the |g1〉-|e1〉 (vertical) transition and a probe laser near-resonant

with |g1〉-|e2〉 (diagonal) transition. Here the two-laser detuning is defined as

δ = ∆p − ∆c, i.e. the difference between the detunings ∆ of both lasers from

their respective near-resonant transitions, such that the emission feature appears

at zero two-laser detuning. The decay rates from the excited states are Γv and

Γd for vertical and diagonal transitions, respectively. They are quadratically
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Figure 5.13: Four-level V-scheme model. a, V pumping scheme in a four level

system. Here Ω is the Rabi frequency for the control and probe lasers, and ω their

(angular) frequency. Γv and Γd are the decay rates for vertical and diagonal decay,

respectively. ∆ represents the detuning from resonance of the control and probe beam.

b, V-scheme simultaneously resonant (with the scheme in panel a) for another part

of the inhomogeneously broadened ensemble. Probe and control Rabi frequencies Ω′

differ from a, since both lasers drive other transitions with different dipole strengths. c,

Total population in the excited-state levels (|e1〉 and |e2〉) for both schemes separately

(blue and green) as well as their sum (black).

proportional to the spin-state overlap 〈gi|ej〉

Γv ∝ |〈g1|e1〉|2 , (5.12)

Γd ∝ |〈g1|e2〉|2 . (5.13)

These rates are unequal, since the spin-state overlap for diagonal transitions is

generally smaller than for vertical transitions (see previous section). The decay

rates Γe between excited-state levels and Γg ground-state levels are assumed very

small compared to the decay rates from the excited-state levels. The decay rates

from ground-state levels towards the excited-state levels are set to zero. Dephas-

ing rates are taken relative to the |g1〉 state (γg1 = 0). The choices for parameters

are listed in table 5.2. The Rabi frequencies Ωc and Ωp of the driven transitions

are linearly proportional to the spin-state overlap

Ωc ∝ |〈g1|e1〉| , (5.14)

Ωp ∝ |〈g1|e2〉| . (5.15)



142 Chapter 5. Identification and tunable optical coherent control...

Table 5.2: Parameter choices for V-scheme model

parameter value (Hz) parameter value (Hz)

Γv 0.9 · 107 γg1 0

Γd 0.1 · 107 γg2 5 · 106

Γg 1 · 104 γg3 5 · 106

Γe 1 · 104 γg4 5 · 106

∆c 0 Ωc

√
.9 · 107

∆p ∈ [−500, 500] · 106 Ωp

√
.1 · 107

Additionally, we have to consider a secondary V-scheme (Fig. 5.13b) resonant

with another part of the inhomogeneously broadened ensemble. The control

and probe laser are swapped, as the former now addresses a diagonal transition,

while the latter addresses a vertical one. The new Rabi frequency is taken to be

Ω′c =
√

Γd
Γv

Ωc for the control beam, which is now driving a diagonal transition

(with reduced strength). The probe beam is driving a vertical transition (with

increased strength), and its Rabi frequency is Ω′p =
√

Γv
Γd

Ωp.

Considering both V-schemes, we calculate the total population in both excited-

state levels as it reflects the amount of photoluminescence resulting from decay

back to the ground states. The two-laser detuning dependence of the excited-

state population is shown in Fig. 5.13c. The black curve considers both schemes

simultaneously, which represents the situation in our measurements. Here the

dip indeed appears, although both separate schemes (a and b) display a dip and

peak (respectively). The competition between both schemes limits the depth of

the observed dip, which explains our observation of shallow dips in contrast to

sharp peaks in Fig. 5.2c in the main text.

Interestingly, the black curve displays a peak within the dip, which might

seem like a CPT feature. However, this feature is not visible in either curve from

the two separate pumping schemes. This peak appears because the peak from

the second V-scheme (green) is slightly sharper than the dip from the first one

(blue). The peak might still be caused by CPT, as the blunting of the dip relative

to the peak can be caused by a long dephasing time of the ground state.

Key to understanding the appearance of a dip in the total photoluminescence

emission is the difference in decay rates, vertical decay being favored over diagonal

decay. Consider the pumping scheme from Fig. 5.13a. When the probe laser is

off-resonant the control laser drives the |g1〉-|e1〉 transition. Decay will occur
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mostly towards the |g1〉 state and occasionally to the dark |g2〉 state. If the probe

laser becomes resonant with the |g1〉-|e2〉 transition, the increased population

in the |e2〉 state will prefer to decay towards the dark |g2〉 state. The overall

decay towards the dark state is now increased. The secondary pumping scheme

(Fig. 5.13b) works the other way around, where the diagonal transition is always

driven by the control beam and a resonant probe beam will counteract some of the

pumping into the dark state (now |g1〉). However, the slightly increased emission

from scheme b cannot fully counteract the decreased emission from scheme a

(even when Ωp = Ωc = Ω′p = Ω′c).

5.16 SI: Modeling of coherent population trap-

ping

For fitting the CPT traces in Fig. 5.5 in the main text, we use a standard CPT

description[15], extended for strong inhomogeneous broadening of the optical

transitions, and an approach similar to the one from the previous section. How-

ever (as compared to the previous section), the behavior of CPT has a more

pronounced dependence on parameters, such that almost no assumptions have to

be made. When taking the spin Hamiltonians as established input (section 4),

the only assumption made is that the spin relaxation time in the ground state and

excited state is much slower than all other decay process. This allows for setting

up fitting of the CPT traces with only two free fit parameters, which correspond

to the optical lifetime and the inhomogeneous dephasing time T ∗2 .

Since two lasers couple both ground-state levels to a single common excited-

state level, the other excited-state level will be empty. Therefore, we may describe

this situation with a three-level system, where the PL is directly proportional to

the excited-state population. The decay rates and Rabi frequencies are propor-

tional to the Franck-Condon factors for spin-state overlaps 〈gi|e〉 in the same way

as before (equations (5.12)-(5.15)). At this angle (φ = 102◦) we calculate these

factors to be

〈g1|e〉 = 0.9793 (5.16)

〈g2|e〉 = 0.2022 (5.17)

according to the reasoning in section 5.14. We take that the |g1〉-|e〉 is a vertical

transition and |g2〉-|e〉 a diagonal one.
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In order to account for inhomogeneous broadening throughout the ensem-

ble, the solution of the master equation is computed for a set of control-laser

detunings ∆c (see Fig. 5.13a) around zero, its range extending far beyond the

two-laser detuning values δ (since we experimentally observed an inhomogeneous

broadening much in excess of the spin splittings). In this case the probe-laser

detuning becomes ∆p = ∆c + δ. The resulting excited-state populations are

integrated along the inhomogeneous broadening ∆c (up to the point where the

signal contribution vanishes) to give the PL emission versus two-laser detuning δ.

Analogous to the previous section, we have to consider a secondary Λ-scheme in

order to fully account for the inhomogeneous broadening. The total PL emission

is found by adding together the excited-state populations from both schemes.

We fit this model to the data presented in Fig. 5.5 after subtracting a static

background. We extract the inhomogeneous dephasing time T ∗2 = 0.32± 0.08 µs

and an optical lifetime of 56± 8 ns. The errors are estimated from the spread in

extracted dephasing times and lifetimes throughout the data sets.

5.17 SI: Anisotropic g-factor in the effective spin-

Hamiltonian

5.17.1 Relationship between effective spin Hamiltonian

and local configuration of the defect

An effective spin-Hamiltonian as the one used in the main text is a convenient

tool which allows us to describe the behavior of the system in a wide range of

configurations, as long as the effective parameters are experimentally determined

and all relevant states are considered. It is often the meeting point between

experimentalists, who measure the relevant parameters, and theoreticians, who

attempt to correlate them to the Hamiltonian that describes the configuration of

the system. A careful description of the latter, and how it modifies the parame-

ters at hand, allows us to rationalize our choices when investigating defects with

varying characteristics (such as a different charge state or element). This task

is more approachable when we consider the group-theoretical properties of the

system at hand. Here we combine group-theoretical considerations with ligand

field theory in order to qualitatively describe the features observed in our exper-

iment. In particular, we aim at explaining the large Zeeman splitting anisotropy

observed in both ground and excited states, and correlating it to the charge and
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spatial configuration of the defect.

In our experiments, we observe a single zero-phonon line (ZPL) associated

with optical transitions between two Kramers doublets (KD, doublets whose de-

generacy is protected by time-reversal symmetry and is thus broken in the pres-

ence of a magnetic field) in defects which contain Mo. The presence of a single

zero-phonon line in both 4H and 6H-SiC samples indicates that the defect oc-

cupies a lattice site with hexagonal symmetry. The lattice of 6H-SiC has two

inequivalent sites with cubic symmetry. Thus, if the defect were to occupy sites

of cubic symmetry, we would expect to observe two ZPLs closely spaced in this

sample. The absence of the ZPL associated with this defect in samples of 3C-

SiC[140] further corroborates this assumption. Additionally, we observe strong

anisotropy in the Zeeman splitting of the ground and excited states. Specifically,

when the magnetic field is perpendicular to the symmetry axis of the crystal, the

Zeeman splitting of the ground state goes to zero, whereas that of the excited

state is very small. This feature is observed in other transition-metal defects

in SiC situated at Si substitutional sites of hexagonal symmetry and with one

electron in its 3d orbital[141], but we are not aware of a clear explanation of the

phenomenon.

In our experiments, we observed transitions between sublevels of doubly de-

generate ground and excited states, whose degeneracy is broken in the presence

of a magnetic field. Thus, we note that ground and excited states are isolated

KDs, indicating that the defect contains an odd number of electrons. A Mo atom

has 6 electrons in its valence shell. The atom can occupy a Si substitutional site

(MoSi), where it needs to bond to 4 neighboring atoms, or an asymmetric split

vacancy (ASV) site (MoVSi−VC
), where it bonds to 6 neighboring atoms. These

defects can, respectively, be described by a Mo ion in the configurations 4d2 and

4d0, indicating that the defect must be ionized in order to contain an odd num-

ber of electrons. Its charge state, which could be ±1, ±3, etc., is determined by

the Fermi level in the crystal of interest. We note that the ZPL could only be

observed in p-doped samples, which indicates that the features investigated here

are unlikely to arise from negatively charged defect. The defect Mo+1
Si (where

+1 represents the charge state of the defect, not the Mo atom) can be approxi-

mately described by a Mo in a configuration 4d1, which facilitates the treatment

of its configuration in terms of d orbitals. In contrast, the defect Mo+1
VSi−VC

is de-

scribed by an electronic configuration containing a hole in the bonding orbitals.

These orbitals show strong hybridization between the d orbitals of the Mo and

the orbitals of the ligands, and cannot be straight-forwardly analyzed using the
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formalism described below. Nonetheless, inspired by the similarities between our

system and other transition-metal defects reported in SiC[141], we investigate the

effect of the crystal field of C3v symmetry –which is expected to be significant in

hexagonal lattice sites in 4H-SiC and 6H-SiC– on the one-electron levels of the 5

sublevels (10, if spin multiplicity is included) of the 4d shell of a Mo atom. We

qualitatively predict the spin-hamiltonian parameters expected for a Mo ion in a

4d1 configuration, and compare our analysis to the experimental results.

5.17.2 Ion in 4d1 configuration in the presence of crystal

field of C3v symmetry and spin-orbit coupling

The 5 degenerate sublevels of a 4d-orbital are split by a crystal field of C3v

symmetry[142]. The energy splittings induced by this field are much smaller

than the energy difference between the 4d shell and the next orbital excited state

(5s). This allows us to, initially, consider the 5 orbitals of the 4d shell as a

complete set. Since Mo is a heavy atom, we cannot disregard the effect of spin-

orbit interaction. However, we assume that the crystal field is larger than the

effect of SOC, that is, ∆Efree � ∆Ecrystal � ∆Espin−orbit � ∆EZeeman, where

∆E denotes the energy splitting induced by each term (see Fig. 5.14).

The 5 orbital states of the d-orbital form a 5-dimensional irreducible represen-

tation (irrep) of the full rotation group SO(3). When the symmetry is lowered by

the crystal field to C3v, the 5-dimensional representation is split into 2 doublets

(E1, E2) and 1 singlet (A) that are irreps of C3v. Writing the 5 components of

the 4d orbital in terms of the quadratic functions z2, x2 − y2, xy, xz, yz allows

us to identify which orbitals are degenerate in the presence of a crystal field of

trigonal symmetry. We find that the singlet A is composed of the orbital 4dz2 .

Furthermore, the orbitals 4dxz and 4dyz are degenerate upon action of the crystal

field and make up doublet E1. Finally the orbitals 4dx2−y2 and 4dxy correspond

to doublet E2. Group-theoretical considerations alone are not capable of eluci-

dating which irrep corresponds to the ground state, that is, they do not provide

information about the order of the energy levels.

Comparison between the Cartesian form of these 5 orbitals and the spherical

harmonics which span a 5-dimensional space (that is, the spherical harmonics

Y m
l with l = 2) allows us to rewrite the relevant orbitals as linear combinations

of the eigenstates of the operators L2, Lz. This yields a new basis for each irrep
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Figure 5.14: Splitting of one-electron energy levels of a 4d orbital, under

the action of a crystal field and spin-orbit coupling. In the free atom, the 5 orbitals

corresponding to the 4d shell (disregarding the spin) are degenerate. A crystal field

of cubic symmetry breaks this degeneracy, generating an orbital triplet and a doublet,

whereas a crystal field of C3v symmetry, splits the 5 orbitals into one singlet and two

doublets. In the text, we focus on a crystal field of C3v symmetry, and disregard the

cubic term. Although we recognize that this is an approximation, we argue that this

approach clarifies the physics governing the strong magnetic anisotropy observed, and is

thus justified. Spin-orbit coupling is responsible for splitting the doublets, generating in

total 5 sets of Kramers doublets (here, the spin of the electron is taken into account).

The energy splittings caused by a magnetic field within these KD give rise to the

effective spin Hamiltonian parameters considered. We note that a group-theoretical

approach alone is not capable of providing the order of the energy levels shown in

the figure. We take this order to be the one observed in transition-metal defects in a

tetrahedral crystal field with strong trigonal distortion[142].

considered above:

E1 : Y −2
2 = |d−2〉 ;Y 2

2 = |d2〉 1st orbital doublet (5.18)

E2 : Y −1
2 = |d−1〉 ;Y 1

2 = |d1〉 2nd orbital doublet (5.19)

A : Y 0
2 = |d0〉 orbital singlet (5.20)

When the spin multiplicity is considered, each orbital doublet yields 4 possible

states, whereas the orbital singlet yields 2 possible states. Spin-orbit coupling
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(represented by the operator HSO = −λL · S) is responsible for splitting these

states into 5 different Kramers doublets:

KD1 :
∣∣d+2,+

1
2

〉
;
∣∣d−2,−1

2

〉
(5.21)

KD2 :
∣∣d+2,−1

2

〉
;
∣∣d−2,+

1
2

〉
(5.22)

KD3 :
∣∣d+1,+

1
2

〉
;
∣∣d−1,−1

2

〉
(5.23)

KD4 :
∣∣d+1,−1

2

〉
;
∣∣d−1,+

1
2

〉
(5.24)

KD5 :
∣∣d0,+

1
2

〉
;
∣∣d0,−1

2

〉
(5.25)

where the basis vectors are given in terms of the quantum numbers ml and ms

which denote the projection of the orbital and spin angular momentum along

the quantization axis, respectively (Fig. 5.14). Here, the spin-orbit coupling is

considered up to first order in the energy correction, whereas the wave function

is corrected up to zeroth order.

A magnetic field lifts the degeneracy between the two components of each KD.

This splitting is usually described phenomenologically by an effective Zeeman

Hamiltonian in a system with pseudospin S̃ = 1
2
.

Heff =− µBB · g · S̃1/2 (5.26)

where µB is the Bohr magneton, B the magnetic field vector, S̃1/2 the pseudo

spin 1
2

operator and g the g-tensor. In the presence of axial symmetry, g can be

diagonalized such that equation (5.26) can be rewritten in terms of the symmetry

axis of the crystal

Heff =− µB
(
g‖BzS̃1/2,z + (g⊥BxS̃1/2,x + g⊥ByS̃1/2,y)

)
(5.27)

In terms of the eigenstates belonging to each KD, the splitting is described

by the Zeeman Hamiltonian given by

HZee = −B · µ = −µBB · (g0S + kL) (5.28)

where µ is the magnetic moment operator, g0 the g-factor for a free electron,

S the total spin operator, k the orbital reduction factor, and L the orbital an-

gular momentum operator[142, 143]. The orbital reduction factor k, is a factor

between 0 and 1 which corrects for partial covalent bonding between the electron

and the ligands[142] (note that the value of k differs for each of the 5 KDs in

equations (5.21-5.25)). Comparison of equations (5.27) and (5.28) shows that

g‖ =2 〈geSz + kLz〉 =
2 〈µz〉
µB

(5.29)

g⊥ =2 〈ge(Sx + Sy) + k(Lx + Ly)〉 =
2 〈µx + µy〉

µB
(5.30)
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As long as the magnitude of this Zeeman splitting is small compared to the

spin-orbit interaction we can consider, to first order, the effect of the magnetic

field in the sets formed by each KD independently. That is, we consider that the

magnetic field does not mix states pertaining to two different KDs.

In order to calculate the values of g‖ and g⊥ for each KD defined by trigonal

symmetry and spin-orbit coupling, we rewrite equation (5.28) as

HZee = −(Bzµz +Bxµx +Byµy) = −
(
Bzµz + 1

2
(B+µ− +B−µ+)

)
(5.31)

where the + and − subindices denote the raising and lowering magnetic moment

operators and the linear combinations Bx± iBy, respectively. When we consider

the basis given in equations (5.21-5.24), the matrix elements of both µ+ and µ−
are zero between two eigenvectors pertaining to one KD. This arises from the

fact that the operator µ+ couples states with (ml,ms) to states with (ml + 1,ms)

or (ml,ms + 1). Since, within a KD, there is a change in both ml and ms when

going from one eigenvector to the other, the operators µ+ and µ− cannot couple

these states to each other. Explicitly, for KD1 for example, we obtain〈
d+2,−1

2

∣∣µ±∣∣d+2,−1
2

〉
= 0 (5.32)〈

d+2,−1
2

∣∣µ±∣∣d−2,+
1
2

〉
= 0 (5.33)〈

d−2,+
1
2

∣∣µ±∣∣d−2,+
1
2

〉
= 0 (5.34)

and in a similar way for KDs 2 through 4. Thus, up to first order, a magnetic

field applied perpendicular to the crystal c-axis is not capable of lifting the de-

generacies of the 4 KDs given in equations (5.21)-(5.24). Comparing these results

to equation (5.30) we conclude that, for the 8 sublevels of the KDs 1 through 4,

g⊥ = 0. This arises from the effect of both the crystal field of C3v symmetry and

SOC in decoupling and isolating KDs with the properties mentioned above. This

is not the case for KD5, given in equation (5.25). In this case,〈
d0,−1

2

∣∣µ±∣∣d0,+
1
2

〉
6= 0 (5.35)

and the degeneracy of this KD is broken in the presence of a magnetic field

perpendicular to the c-axis of the crystal.

We can consider in addition the effect of spin-orbit coupling in mixing the

eigenstates presented in equations (5.21-5.25). Spin-orbit coupling is responsible

for mixing between the eigenstates of KD2 and KD3 (equations (5.22) and (5.23)).

Since both of these KDs show g⊥ = 0, this mixing does not modify the expected

value of g⊥ in neither KD. In contrast, the SOC induced mixing between KD4
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and KD5 causes some deviation of g⊥ from 0 in KD4, since g⊥ 6= 0 in KD5. The

values of g‖ and g⊥ for one electron in each of the KDs described in this section

are presented in table 5.3.

From the 5 KDs in equations (5.21-5.25), one KD is the ground state and one

KD is the excited state that we address in our experiments. As said before, our

group-theoretical approach cannot identify the ordering in energy of these 5 KDs.

However, by looking at the g-factor properties of the KDs in table 5.3 we can check

which ones show consistent behavior with that of the observed ground and excited

state. For the observed ground state, we found |g‖| < 2 and g⊥ = 0. Concerning

possible values for the orbital reduction factor k, by definition k < 1, and we

must have k > 0.1 since |g‖| deviates substantially from 2. This suggests that

KD2 is the ground state. For the excited state, we also have |g‖| < 2, but with

g⊥ ' 0. This suggests KD4 is the excited state we observed in our experiments.

In addition, the optical transition observed is mainly polarized along the crystal

c-axis of the defect. Careful analysis of the selection rules associated with the

double trigonal group (which includes, besides the spatial symmetry, the spin of

the electron) has been reported by Kunzer et al.[144]. Comparing their results

to the considerations presented in the previous paragraphs confirms that the

transition between KD2 and KD4 is predominantly polarized along the crystal

c-axis, as observed. Finally, we note that we could not experimentally identify

secondary ZPLs corresponding to transitions between other sets of KDs, even

though they are allowed by symmetry. This could be explained by a series of

factors. On the one hand, some of the KDs treated could have energies above

the conduction band edge in the crystal, which would impede the observation of

optical transitions from and into these levels. On the other hand, the presence

of these lines could be masked by the intense phonon sideband at the red side of

the ZPL, or the associated photon energies fall outside our detection window.

5.17.3 Validity of our assumptions

The model considered here is capable of qualitatively informing us about the

behavior of orbitals with d character in the presence of trigonal crystal field and

spin orbit coupling. It is clear that the full description of the configuration of

the defect is far more subtle than the simple model applied here. We intend to

comment on this in the next paragraphs.
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Table 5.3: The g-factors of the Kramers Doublets originated due to spin-orbit coupling

within each subspace of the electronic eigenstates in a field of C3v symmetry. Spin-orbit

coupling is added as a perturbation, and included up to first order. The parameters

λ and δ are as defined in the text and in Fig. 5.14. Note that the g-factor values in

this table can take on negative values, while in our experimental analysis we can only

extract |g‖| and |g⊥|.

C3v Spin-Orbit g‖ g⊥

Doublet, ml = ±2
KD1, eq. 5.21 2(2k + 1) 0

KD2, eq. 5.22 2(2k − 1) 0

Doublet, ml = ±1
KD3, eq. 5.23 2(k + 1) 0

KD4, eq. 5.24 2(k − 1) 0 + ∝ λ
δ

Singlet, ml = 0 KD5, eq. 5.25 2 2 − ∝ λ
δ

Symmetry of the crystal field. In our derivation, we assume that the trigonal

crystal field is the prevailing term in the Hamiltonian describing the defect. This

assumption is not rigorously correct, since the symmetry of defects in SiC is

more accurately described by a ligand field of cubic symmetry – which determine

most of its ground and excited state properties. This field is modified in the

presence of axial symmetry, as is the case for defects in hexagonal lattice sites,

which is generally included as a first-order perturbation term in the Hamiltonian.

Nonetheless, it can be shown[142, 145] that the large anisotropy in the Zeeman

response described above, with the cancelation of g⊥, is also observed in the

case of a cubic field with trigonal distortion and spin-orbit coupling of similar

magnitudes. The analysis, in this case, is more laborious due to the fact that

mixing of the orbitals is involved, and calculating the matrix elements of the

operators L±, S±, Lz and Sz is less trivial. Furthermore, this analysis would not

increase our level of understanding of the system at this point, since we were

only capable of observing transitions between the sublevels of two KDs in this

experiment. This approach would be more profitable if transitions between other

sets of KDs were observed, allowing us to unravel several parameters associated

with the system, such as the strength of the spin-orbit coupling and trigonal

crystal field.

Charge state of the defect. Similarly, it can be shown that the considerations

presented here can be expanded to configurations where the 4d orbitals are filled
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by multiple electrons (for instance, a defect in a configuration 4d3). In this case,

a doubly degenerate orbital configuration (in symmetry terms, a configuration of

the kind mE, where m is the spin multiplicity) in the presence of a crystal field

of C3v symmetry gives rise to at least one KD with g⊥ = 0 when SOC is taken

into account. Nonetheless, only a negatively charged Mo in a Si substitutional

site would give rise to a defect in the configuration 4d3. The absence of the ZPL

in n-doped samples indicates that this is unlikely.

In addition, a similar group theoretical analysis can show that one hole in

a bonding orbital of symmetry E would also give rise to g⊥ = 0. Thus, the

features observed here could also correspond to a positively charged MoVSi−VC

defect (where one of the six Mo electrons participating in bonding is lost to

the crystal lattice). Due to the strong hybridization between the Mo and the

divacancy orbitals in this case, the description of this case is more subtle and will

not be performed here.

5.17.4 Summary

We showed that an analysis of the effect of the defect symmetry on the Zeeman

energy splittings of its ground and excited states, combined with the experimental

observations, helps us unravel the configuration of the defect studied in this

work. We show that, in C3v symmetry, a combination of the crystal field and

spin-orbit interaction is responsible for the strong magnetic anisotropy observed

experimentally. Furthermore, the fact that the defect studied in this work is

only observed optically in samples which are p-doped indicates that the charge

of the defect is more likely positive than negative. In this way, we conclude that

the most probable configuration of our defect is a Mo ion on a Si substitutional

site of h symmetry, with a charge +1, which can be approximately described by

a Mo atom in a 4d1 configuration. The absence of other lines associated with

the defect prevents us from providing a more accurate description of the system.

Nonetheless, we have developed a qualitative description based on symmetry,

which explains the Zeeman splittings observed. The considerations presented

here allow us to predict and rationalize the presence of strong anisotropy in other

transition-metal defects in SiC. We expect neutrally charged vanadium defects in

hexagonal lattice sites to show a magnetic behavior similar to the one observed

in the Mo defects investigated in this work.
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58. Köhler, J. Magnetic resonance of a single molecular spin. Physics reports

310, 261–339 (1999).
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Scientific summary

Optical preparation and detection of spin coherence in molecules and

crystal defects

This thesis presents the results of research aimed at exploring several pos-

sibilities of optically-induced electron spin coherence in molecules and crystal

defects. In our approach we have performed a theoretical investigation of under-

lying fundamentals and forthcoming requirements (Chapter 2-4), as well as an

experimental investigation of a system demonstrating optically induced electron

spin coherence (Chapter 5). We believe that the scientific progress of our work

contributes to a better characterization of various materials with opto-electronic

functionality and provides better probing tools. Also, we believe our work is rele-

vant for new quantum-information functionalities based on the selective coupling

of photons to electronic spin states.

For atoms and crystals with a high symmetry, the optical selection rules for

electronic transitions are well covered in physics textbooks. However, how optical

selection rules change when the high symmetry is gradually distorted is less un-

derstood. In Chapter 2, we present a detailed analysis of how a gradual symmetry

distortion leads to a complete alteration of optical selection rules. As a model

system, we consider the transitions between 1s and 2p sublevels of the hydrogen

atom, which get distorted by placing charged particles in its environment. Upon

increasing the distortion, part of the optical selection rules evolve from circular

via elliptical to linear character, with an associated evolution between allowed

and forbidden transitions. Our presentation combines an analytical approach

with quantitative results from numerical simulations, thus providing insight in

how the evolution occurs as a function of the strength of the distortion. This

study provides a useful theoretical framework for more complex systems. More-

over, it paves the road for manipulation of optical selection rules. The ability to

manipulate selection rules allows to better control the interaction of photons and

electrons, potentially allowing for new ways to control the flow of information
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within the field of quantum information.

Organic molecules are increasingly used for opto-electronic devices, because

of their chemical tunability, low-cost and ease of processing. In such devices, the

ratio of singlet to triplet excitons can be an important performance parameter.

Moreover, because of the many interesting spin-related phenomena discovered in

organic semiconductors and molecules, their application into organic spintronics

is very promising. Both for organic opto-electronics and spintronics, being able

to control and probe triplet spin states will be of great value. Optical polariza-

tion proves to be a promising candidate for this. One way to study correlations

between spin and optical polarization is the Time-Resolved Faraday Rotation

(TRFR) technique. Within this all-optical non-invasive pump-probe technique,

a pump pulse induces spin polarization, after which the spin dynamics are probed

by the polarization rotation of a probe pulse. In Chapter 3, we investigate how

this technique allows for optical control and probing of triplet-exciton spin dy-

namics in metal-organic molecules. In our theoretical analysis, an ultrashort

polarized pump pulse brings the molecular system in a superposition of triplet

excited state sublevels. We derive how the polarization of a comparable but de-

tuned probe pulse is affected upon transmission, from which the requirements for

polarization rotation follow. Using the results of ab initio calculations, we calcu-

late the time dependence of the polarization rotation angle and of the expectation

value of the total electronic angular momentum. Both show an oscillation with

a frequency corresponding to the sublevel splitting, implying that the oscillation

of polarization rotation is a suitable measure for the coherent spin dynamics.

Color centers in wide-bandgap semiconductors are attractive systems for quan-

tum technologies since they can combine long-coherent electronic spin and bright

optical properties. Several suitable centers have been identified, most famously

the nitrogen-vacancy defect in diamond. In Chapter 4, we propose to use the

TRFR technique (usually being applied to materials with strong spin-orbit cou-

pling) to characterize spin-active color centers in materials with negligible spin-

orbit coupling, like silicon carbide and diamond. The fundamentals and scenario

for a TRFR experiment are worked out in detail for a homogeneous ensemble of

c-axis divacancies (pairs of missing neighboring silicon and carbon atoms along

the growth axis) in silicon carbide. Under certain circumstances, the material

is birefringent (two different refractive indices). Moreover, one of the indices of

refraction oscillates as a function of time in the presence of coherences. Due to

this time-dependent birefringence, a probe pulse will undergo a polarization ro-

tation as a function of the pump-probe delay time. This polarization rotation is
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a measure for the spin coherence of the triplet excited state.

Integration of semiconductor color centers in communication technology is

hindered by the fact that their optical transitions lie outside telecom wavelength

bands. Several transition-metal impurities in silicon carbide do emit at and near

telecom wavelengths, but knowledge about their spin and optical properties is in-

complete. In Chapter 5, we present all-optical identification and coherent control

of molybdenum-impurity spins in silicon carbide with transitions at near-infrared

wavelengths. Our results identify spin S = 1/2 for both the electronic ground

and excited state, with highly anisotropic spin properties that we apply for imple-

menting optical control of ground-state spin coherence. Our results show optical

lifetimes of ∼60 ns and inhomogeneous spin dephasing times of ∼0.3 µs, estab-

lishing relevance for quantum spin-photon interfacing.
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Wetenschappelijke samenvatting

Optische voorbereiding en detectie van spincoherentie in moleculen en

kristaldefecten

Dit proefschrift presenteert de resultaten van onderzoek bedoeld om verschil-

lende mogelijkheden te onderzoeken van optisch gëınduceerde elektron spincoher-

entie in moleculen en kristaldefecten. In onze aanpak hebben we een theoretisch

onderzoek uitgevoerd van de onderliggende fundamenten en daaruit voortvloeiende

vereisten (Hoofdstuk 2-4), alsook een experimenteel onderzoek van een systeem

dat optisch gëınduceerde spincoherentie vertoont (Hoofdstuk 5). Wij zijn ervan

overtuigd dat de wetenschappelijke vooruitgang van ons werk bijdraagt aan een

betere karakterisatie van verschillende materialen met opto-elektronische func-

tionaliteit en betere middelen aanreikt voor detectie. Tevens zijn we ervan over-

tuigd dat ons werk relevant is voor nieuwe kwantum-informatica functionaliteiten

die gebaseerd zijn op de selectieve koppeling van fotonen en elektronische spin-

toestanden.

De optische selectieregels zijn voor atomen en kristallen met een hoge sym-

metrie goed beschreven in natuurkundeboeken. Daarentegen is er minder kennis

over hoe optische selectieregels veranderen wanneer de hoge symmetrie geleidelijk

wordt verstoord. In Hoofdstuk 2 presenteren we een gedetailleerde analyse van

hoe een geleidelijke symmetrieverstoring leidt tot een volledige wijziging van de

optische selectieregels. We nemen de transities tussen 1s en 2p sublevels van

het waterstofatoom als een modelsysteem dat verstoord wordt door de plaatsing

van geladen deeltjes in diens omgeving. Met het vergroten van de verstoring

veranderen sommige optische selectieregels van circulair via elliptisch naar een

lineair karakter, terwijl andere veranderen tussen toegestaan en verboden. Ons

werk combineert een analytische benadering met kwantitatieve resultaten van

numerieke simulaties, daarbij inzicht verschaffend in hoe de verandering plaats

vindt als functie van de sterkte van de verstoring. Deze studie verschaft een nut-

tig theoretisch kader voor complexere systemen. Bovendien bereidt het de weg
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voor manipulatie van optische selectieregels. De mogelijkheid om selectieregels

te manipuleren staat een betere controle toe van de interactie tussen fotonen en

elektronen, wat mogelijkerwijs nieuwe manieren toestaat ter controle van infor-

matiestromen binnen het veld van de kwantuminformatica.

Organische moleculen worden steeds meer gebruikt voor opto-elektronische

apparaten, vanwege diens chemische afstembaarheid, lage kosten en gemak van

verwerking. In dergelijke apparaten kan de ratio van singlet- en tripletexcitonen

een belangrijke parameter zijn in de prestatie. Vanwege de vele interessante spin-

gerelateerde fenomenen die ontdekt zijn in organische halfgeleiders en moleculen is

het bovendien zo dat hun toepassing in organische spintronica erg veelbelovend is.

Zowel voor de organische opto-elektronica als de spintronica zal de mogelijkheid

triplet spintoestanden te controleren en detecteren van grote waarde zijn. Optis-

che polarisatie lijkt een veelbelovende kandidaat te zijn hiervoor. Een manier om

correlaties tussen spin en optische polarizatie te bestuderen is de Time-Resolved

Faraday Rotation (TRFR) techniek. Via deze volledig optische niet-invasieve

pump-probe techniek induceert de pump puls spinpolarisatie, waarna de spindy-

namica wordt gedetecteerd via de polarisatierotatie van een probe puls. In Hoofd-

stuk 3 onderzoeken we hoe deze techniek optische controle toestaat en de detectie

van triplet-exciton spindynamica in metaal-organische moleculen. In ons voorstel

brengt een ultrakorte gepolariseerde pump puls het moleculaire systeem in een

superpositie van triplet aangeslagen sublevels. We leiden af hoe de polarisatie van

een vergelijkbare maar niet-resonante probe puls wordt bëınvloed bij transmissie,

waaruit de vereisten voor polarisatierotatie volgen. Gebruik makend van de re-

sultaten van ab initio berekeningen, berekenen we de tijdsafhankelijkheid van de

polarisatierotatiehoek en van de verwachtingswaarde van het totale elektronische

impulsmoment. Beide vertonen een oscillatie met een frequentie corresponderend

met de sublevel splitsing, implicerend dat de oscillatie van de polarisatierotatie

een geschikte maat is voor spinprecessie.

Kleurcentra in halfgeleiders met een grote energiekloof zijn aantrekkelijke sys-

temen voor kwantumtechnologieën omdat ze lang-coherente elektronspin com-

bineren met helder optische eigenschappen. Verschillende geschikte centra zijn

gëıdentificeerd, met name het stikstof-gat defect in diamant. In Hoofdstuk 4

stellen we voor de TRFR techniek te gebruiken (gewoonlijk toegepast op mate-

rialen met sterke spin-baan koppeling) om spin-actieve kleurcentra te karakteris-

eren in materialen met verwaarloosbare spin-baan koppeling, zoals siliciumcar-

bide en diamant. De fundamenten en het scenario voor een TRFR experiment zijn

in detail uitgewerkt voor een homogeen ensemble van paren van missende aan-
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grenzende silicium- en koolstofatomen liggend langs de groeirichting van silicium-

carbide. Onder sommige omstandigheden is het materiaal dubbelbrekend (twee

verschillende brekingsindices). Bovendien oscilleert een van de brekingsindices

als functie van tijd onder de aanwezigheid van coherenties. Vanwege deze tijd-

safhankelijke dubbelbreking zal een probe puls een polarisatierotatie ondergaan

als functie van de pump-probe vertragingstijd. Deze polarisatierotatie is een maat

voor de spincoherentie van de triplet aangeslagen toestand.

Integratie van halfgeleider kleurcentra binnen de communicatietechnologie

wordt gehinderd door het feit dat diens optische transities buiten de telecom-

golflengtebanden liggen. Verschillende transitiemetaalonzuiverheden in silicium-

carbide zenden licht uit nabij telecomgolflengtes, maar de kennis over diens spin-

en optische eigenschappen is incompleet. In Hoofdstuk 5 bespreken we volledig

optische identificatie en coherente controle van de spins van molybdeenonzuiver-

heden in siliciumcarbide met transities in het nabij-infrarode golflengteregime.

Onze resultaten identificeren een spin S = 1/2 voor zowel de elektronische

grond- als aangeslagen toestand, met zeer anisotropische spineigenschappen die

toegepast worden voor de implementatie van optische controle van spincoheren-

tie in de grondtoestand. Onze resultaten tonen optische levensduren van ∼60 ns

en inhomogene spinontfasingstijden van ∼0.3 µs. Deze resultaten vertonen rele-

vantie voor kwantumtoepassingen met spin-foton koppelingen.
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